
I-BERT: Integer-only BERT Quantization

Sehoon Kim * 1 Amir Gholami * 1 Zhewei Yao * 1 Michael W. Mahoney 1 Kurt Keutzer 1

Abstract
Transformer based models, like BERT and
RoBERTa, have achieved state-of-the-art results
in many Natural Language Processing tasks. How-
ever, their memory footprint, inference latency,
and power consumption are prohibitive for effi-
cient inference at the edge, and even at the data
center. While quantization can be a viable solu-
tion for this, previous work on quantizing Trans-
former based models use floating-point arithmetic
during inference, which cannot efficiently utilize
integer-only logical units such as the recent Tur-
ing Tensor Cores, or traditional integer-only ARM
processors. In this work, we propose I-BERT, a
novel quantization scheme for Transformer based
models that quantizes the entire inference with
integer-only arithmetic. Based on lightweight
integer-only approximation methods for nonlin-
ear operations, e.g., GELU, Softmax, and Layer
Normalization, I-BERT performs an end-to-end
integer-only BERT inference without any float-
ing point calculation. We evaluate our approach
on GLUE downstream tasks using RoBERTa-
Base/Large. We show that for both cases, I-BERT
achieves similar (and slightly higher) accuracy as
compared to the full-precision baseline. Further-
more, our preliminary implementation of I-BERT
shows a speedup of 2.4 − 4.0× for INT8 infer-
ence on a T4 GPU system as compared to FP32
inference. The framework has been developed in
PyTorch and has been open-sourced (Kim, 2021).

1. Introduction
The recent Transformer based Neural Network (NN) mod-
els (Vaswani et al., 2017), pre-trained from large unlabeled
data (e.g., BERT (Devlin et al., 2018), RoBERTa (Liu et al.,

*Equal contribution 1University of California, Berkeley. Cor-
respondence to: Sehoon Kim <sehoonkim@berkeley.edu>,
Amir Gholami <amirgh@berkeley.edu>, Zhewei Yao
<zheweiy@berkeley.edu>, Michael W. Mahoney <ma-
honeymw@berkeley.edu>, Kurt Keutzer <keutzer@berkeley.edu>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

2019), and the GPT family (Brown et al., 2020; Radford
et al., 2018; 2019)), have achieved a significant accuracy
improvement when fine-tuned on a wide range of Natural
Language Processing (NLP) tasks such as sentence classi-
fication (Wang et al., 2018) and question answering (Ra-
jpurkar et al., 2016). Despite the state-of-the-art results
in various NLP tasks, pre-trained Transformer models are
generally orders of magnitude larger than prior models. For
example, the BERT-Large model (Devlin et al., 2018) con-
tains 340M parameters. Much larger Transformer models
have been introduced in the past few years, with even more
parameters (Brown et al., 2020; Lepikhin et al., 2020; Rad-
ford et al., 2019; Raffel et al., 2019; Rosset, 2019; Shoeybi
et al., 2019; Yang et al., 2019). Efficient deployment of
these models has become a major challenge, even in data
centers, due to limited resources (energy, memory footprint,
and compute) and the need for real-time inference. Obvi-
ously, these challenges are greater for edge devices, where
the compute and energy resources are more constrained.

One promising method to tackle this challenge is quantiza-
tion (Dong et al., 2019; Jacob et al., 2018; Krishnamoorthi,
2018; Wu et al., 2018; 2016; Zhang et al., 2018), a pro-
cedure which compresses NN models into smaller size by
representing parameters and/or activations with low bit pre-
cision, e.g., 8-bit integer (INT8) instead of 32-bit floating
point (FP32). Quantization reduces memory footprint by
storing parameters/activations in low precision. With the re-
cent integer-only quantization methods, one can also benefit
from faster inference speed by using low precision integer
multiplication and accumulation, instead of floating point
arithmetic. However, previous quantization schemes for
Transformer based models use simulated quantization (aka
fake quantization), where all or part of operations in the
inference (e.g., GELU (Hendrycks & Gimpel, 2016), Soft-
max, and Layer Normalization (Ba et al., 2016)) are carried
out with floating point arithmetic (Bhandare et al., 2019;
Shen et al., 2020; Zafrir et al., 2019). This approach has
multiple drawbacks for deployment in real edge applica-
tion scenarios. Most importantly, the resulting NN models
cannot be deployed on neural accelerators or popular edge
processors that do not support floating point arithmetic. For
instance, the recent server class of Turing Tensor Cores
have added high throughput integer logic that are faster
than single/half-precision. Similarly, some of the edge pro-

I-BERT: Integer-only BERT Quantization

cessor cores in ARM Cortex-M (ARM, 2020) family for
embedded systems only contain integer arithmetic units, and
they can only support NN deployment with the integer-only
kernels (Lai et al., 2018). Moreover, one has to consider
that compared to the integer-only inference, the approaches
that use floating point arithmetic are inferior in latency and
power efficiency. For chip designers wishing to support
BERT-like models, adding floating point arithmetic logic
occupies larger die area on a chip, as compared to integer
arithmetic logic. Thus, the complete removal of floating
point arithmetic for inference could have a major impact on
designing applications, software, and hardware for efficient
inference at the edge (ARM, 2020).

While prior work has shown the feasibility of integer-only
inference (Jacob et al., 2018; Yao et al., 2020), these ap-
proaches have only focused on models in computer vi-
sion with simple CNN layers, Batch Normalization (Batch-
Norm) (Ioffe & Szegedy, 2015), and ReLU activations.
These are all linear or piece-wise linear operators. Due to the
non-linear operations used in Transformer architecture, e.g.,
GELU, Softmax, and Layer Normalization (LayerNorm),
these methods cannot be applied to Transformer based mod-
els. Unlike ReLU, computing GELU and Softmax with
integer-only arithmetic is not straightforward, due to their
non-linearity. Furthermore, unlike BatchNorm whose pa-
rameters/statistics can be fused into the previous convolu-
tional layer in inference, LayerNorm requires the dynamic
computation of the square root of the variance for each input.
This cannot be naïvely computed with integer-only arith-
metic. Another challenge is that processing GELU, Softmax,
and LayerNorm with low precision can result in signifciant
accuracy degradation (Bhandare et al., 2019; Zafrir et al.,
2019). For these reasons, other quantization methods such
as (Bhandare et al., 2019; Shen et al., 2020; Zafrir et al.,
2019) keep these operations in FP32 precision.

In this work, we propose I-BERT to address these chal-
lenges. I-BERT incorporates a series of novel integer-only
quantization scheme for Transformer based models. Specifi-
cally, our contributions are:

• We propose new kernels for the efficient and accurate
integer-only computation of GELU and Softmax. In par-
ticular, we approximate GELU and Softmax with light-
weight second-order polynomials, which can be evaluated
with integer-only arithmetic. We utilize different tech-
niques to improve the approximation error, and achieve a
maximum error of 1.8× 10−2 for GELU, and 1.9× 10−3

for Softmax. See § 3.4 and 3.5 for details.
• For LayerNorm, we perform integer-only computation by

leveraging a known algorithm for integer calculation of
square root (Crandall & Pomerance, 2006). See § 3.6 for
details.

• We use these approximations of GELU, Softmax, and
LayerNorm to design integer-only quantization for Trans-

former based models. Specifically, we process Embedding
and matrix multiplication (MatMul) with INT8 multiplica-
tion and INT32 accumulation. The following non-linear
operations (GELU, Softmax, and LayerNorm) are then
calculated on the INT32 accumulated result and then re-
quantized back to INT8. We represent all parameters and
activations in the entire computational graph with integers,
and we never cast them into floating point. See Fig. 1
(right) for a schematic description.

• We apply I-BERT to RoBERTa-Base/Large, and we eval-
uate their accuracy on the GLUE (Wang et al., 2018)
downstream tasks. I-BERT achieves similar results as
compared to full-precision baseline. Specifically, I-BERT
outperforms the baseline by 0.3 and 0.5 on the GLUE
downstream tasks for RoBERTa-Base and RoBERTa-
Large, respectively. See Tab. 2 in § 4.1 for details.

• We deploy INT8 BERT models with the integer-only ker-
nels for non-linear operations on a T4 GPU using Ten-
sorRT (NVIDIA, 2018). We show that INT8 inference
achieves up to 4× speedup as compared to FP32 inference.
See Tab. 3 in § 4.2 for details.

2. Related Work
Efficient Neural Network. There are several different
approaches to reduce the memory footprint, latency, and
power of modern NN architectures. These techniques can
be broadly categorized into: (1) pruning (Fan et al., 2019;
Gordon et al., 2020; Han et al., 2015; LeCun et al., 1990; Li
et al., 2016b; Mao et al., 2017; 2020; Michel et al., 2019;
Molchanov et al., 2016; Raganato et al., 2020; Sanh et al.,
2020; Yang et al., 2017); (2) knowledge distillation (Hinton
et al., 2014; Jiao et al., 2019; Mishra & Marr, 2017; Polino
et al., 2018; Romero et al., 2014; Sanh et al., 2019; Sun
et al., 2019; 2020; Tang et al., 2019; Turc et al., 2019; Wang
et al., 2020; Xu et al., 2020); (3) efficient neural architecture
design (Dehghani et al., 2018; Howard et al., 2019; Ian-
dola et al., 2016; Lan et al., 2019; Sandler et al., 2018; Tan
& Le, 2019); (4) hardware-aware NN co-design (Gholami
et al., 2018; Han & Dally, 2017; Kwon et al., 2018); and (5)
quantization.

Here, we only focus on quantization and briefly discuss the
related work.

Quantization. For quantization, the parameters and/or acti-
vations are represented with low bit precision (Choi et al.,
2018; Courbariaux et al., 2015; 2016; Dong et al., 2019;
Jacob et al., 2018; Li et al., 2016a; Rastegari et al., 2016;
Wang et al., 2019; Wu et al., 2016; Zhang et al., 2018; Zhou
et al., 2016). While this line of research mostly focuses on
CNN models, there have been recent attempts to introduce
quantization techniques into Transformer based models as
well. For example, (Bhandare et al., 2019) and (Zafrir et al.,
2019) propose an 8-bit quantization scheme for Transformer

I-BERT: Integer-only BERT Quantization

Figure 1. Comparison of different quantization schemes applied to the self-attention layer in the Transformer architecture. (Left) Simulated
quantization, where all operations are performed with floating point arithmetic. Parameters are quantized and stored as integer, but they
are dequantized into floating point for inference. (Middle) Simulated quantization, where only a part of operations are performed with
integer arithmetic. Because the Softmax in this figure is performed with floating point arithmetic, the input to the Softmax should be
dequantized; and the output from the Softmax should be quantized back into integer to perform the subsequent integer MatMul. (Right)
The integer-only quantization that we propose. There is neither floating point arithmetic nor dequantization during the entire inference.

based models and compress the model size up to 25% of the
original size. Another work (Shen et al., 2020) applies uni-
form and mixed-precision to quantize BERT model, where
a second-order sensitivity method is used for the mixed-
precision setting. (Fan et al., 2020) quantizes a different
subset of weights in each training iteration to make models
more robust to quantization. Recently, there have been at-
tempts to quantize BERT with even lower precision. (Zadeh
et al., 2020) presents a 3/4-bit centroid-based quantization
method that does not require fine-tuning. (Bai et al., 2020;
Zhang et al., 2020) leverage knowledge distillation (Hinton
et al., 2014) to ternarize/binarize weights. (Jin et al., 2021)
combines knowledge distillation and learned step size quan-
tization (Esser et al., 2019) method to achieve up to 2-bit
quantization of BERT.

However, to the best of our knowledge, all of the prior
quantization work on Transformer based models use simu-
lated quantization (aka fake quantization), where all or part
of operations are performed with floating point arithmetic.
This requires the quantized parameters and/or activations
to be dequantized back to FP32 for the floating point op-
erations. For example, (Shen et al., 2020; Zadeh et al.,
2020) perform the entire inference using floating point arith-
metic, as schematically shown in Fig. 1 (left). While (Bai
et al., 2020; Bhandare et al., 2019; Zafrir et al., 2019; Zhang
et al., 2020) attempt to process Embedding and MatMul
efficiently with integer arithmetic, they keep the remain-
ing operations (i.e., GELU, Softmax, and LayerNorm) in
FP32, as illustrated in Fig. 1 (middle). However, our method
I-BERT uses integer-only quantization for the entire infer-
ence process—i.e., without any floating point arithmetic
and without any dequantization during the entire inference.
This is illustrated in Fig. 1 (right). This allows more effi-
cient hardware deployment on specialized accelerators or
integer-only processors (ARM, 2020) as well as faster and

less energy consuming inference. While we focus on uni-
form quantization, our method is complementary to other
mixed and/or low-precision methods, and can be deployed
for those settings as well.

To briefly discuss, there are also several quantization works
for computer vision. (Jacob et al., 2018) introduces an
integer-only quantization scheme for popular CNN models,
by replacing all floating point operations (e.g., convolution,
MatMul, and ReLU) with integer operations. Similarly,
the recent work of (Yao et al., 2020) extends this approach
to low precision and mixed precision dyadic quantization,
which is an extension of integer-only quantization where
no integer division is used. However, both of these works
are limited to CNN models that only contain linear and
piece-wise linear operators, and they cannot be applied to
Transformer based models with non-linear operators, e.g.,
GELU, Softmax, and LayerNorm. Our work aims to address
this limitation by extending the integer-only scheme to the
Transformer based models without accuracy drop.

3. Methodology
3.1. Basic Quantization Method

Under uniform symmetric quantization scheme, a real
number x is uniformly mapped to an integer value q ∈
[−2b−1, 2b−1 − 1], where b specifies the quantization bit
precision. The formal definition is:

q = Q(x, b, S) = Int

(
clip(x,−α, α)

S

)
, (1)

where Q is the quantization operator, Int is the integer map
(e.g., round to the nearest integer), clip is the truncation
function, α is the clipping parameter used to control the
outliers, and S is the scaling factor defined as α/(2b−1− 1).

I-BERT: Integer-only BERT Quantization

The reverse mapping from the quantized values q to the real
values (aka dequantization) is:

x̃ = DQ(q, S) = Sq ≈ x, (2)

where DQ denotes the dequantization operator. This ap-
proach is referred to as uniform symmetric quantization. It
is uniform because the spacing between quantized values
and their corresponding mapping to real values is constant.
However, several different non-uniform quantization meth-
ods have also been proposed (Choi et al., 2018; Park et al.,
2018; Wu et al., 2016; Zhang et al., 2018). While non-
uniform quantization approaches may better capture the
distribution of parameters/activations than uniform quanti-
zation, they are in general difficult to deploy on hardware
(as they often require a look up table which results in over-
head). Thus, we focus only on uniform quantization in this
work. In addition, this approach is symmetric because we
clip the values symmetrically within a range [−α, α]; while
in asymmetric quantization, the left and right side of this
range could be asymmetric/different. Finally, we use static
quantization where all the scaling factors S are fixed during
inference to avoid runtime overhead of computing them.
See § A for more details in quantization methods.

3.2. Non-linear Functions with Integer-only
Arithmetic

The key to integer-only quantization is to perform all op-
erations with integer arithmetic without using any floating
point calculation. Unlike linear (e.g., MatMul) or piece-
wise linear operations (e.g., ReLU), this is not straightfor-
ward for non-linear operations (e.g., GELU, Softmax, and
LayerNorm). This is because the integer-only quantization
algorithms in previous works (Jacob et al., 2018; Yao et al.,
2020) rely on the linear property of the operator. For exam-
ple, MatMul(Sq) is equivalent to S ·MatMul(q) for the
linear MatMul operation. This property allows us to apply
integer MatMul to the quantized input q and then multiply
the scaling factor S to obtain the same result as applying
floating point MatMul to the dequantized input Sq. Impor-
tantly, this property does not hold for non-linear operations,
e.g., GELU(Sq) 6= S ·GELU(q). One naïve solution is to
compute the results of these operations and store them in a
look up table (Lai et al., 2018). However, such an approach
can have overhead when deployed on chips with limited
on-chip memory, and will create a bottleneck proportional
to how fast the look up table could be performed. Another
solution is to dequantize the activations and convert them
to floating point, and then compute these non-linear oper-
ations with single precision logic (Bhandare et al., 2019;
Zafrir et al., 2019). However, this approach is not integer-
only and cannot be used on specialized efficient hardware
that does not support floating point arithmetic, e.g., ARM
Cortex-M (ARM, 2020).

Algorithm 1 Integer-only Computation of Second-order Polyno-
mial a(x+ b)2 + c

Input: q, S: quantized input and scaling factor
Output: qout, Sout: quantized output and scaling factor

function I-POLY(q, S) . qS = x
qb ← bb/Sc
qc ← bc/aS2c
Sout ← baS2c
qout ← (q + qb)

2 + qc
return qout, Sout . qoutSout ≈ a(x+ b)2 + c

end function

To address this challenge, we approximate non-linear activa-
tion functions, GELU and Softmax, with polynomials that
can be computed with integer-only arithmetic. Computing
polynomials consists of only addition and multiplication,
which can be performed with integer arithmetic. As such, if
we can find good polynomial approximations to these opera-
tions, then we can perform the entire inference with integer-
only arithmetic. For instance, a second-order polynomial
represented as a(x + b)2 + c can be efficiently calculated
with integer-only arithmetic as shown in Alg. 1.1

3.3. Polynomial Approximation of Non-linear
Functions

There is a large body of work on approximating a func-
tion with a polynomial (Stewart, 1996). We use a class
of interpolating polynomials, where we are given the
function value for a set of n + 1 different data points
{(x0, f0), . . . , (xn, fn)}, and we seek to find a polynomial
of degree at most n that exactly matches the function value
at these points. It is known that there exists a unique poly-
nomial of degree at most n that passes through all the data
points (Waring, 1779). We denote this polynomial by L,
defined as:

L(x) =

n∑
i=0

fili(x) where li(x) =
∏

0≤j≤n
j 6=i

x− xj
xi − xj

. (3)

Interestingly for our problem, we have two knobs to change
to find the best polynomial approximation. Since we know
the actual target function and can query its exact value for
any input, we can choose the interpolating point (xi, fi) to
be any point on the function. The second knob is to choose
the degree of the polynomial. While choosing a high-order
polynomial results in smaller error (see Appendix B), there
are two problems with this. First, high-order polynomials
have higher computational and memory overhead. Second,
it is challenging to evaluate them with low-precision integer-
only arithmetic, as overflow can happen when multiplying
integer values. For every multiplication, we need to use dou-

1In Alg. 1, b·c means the floor function. Note that, qb, qc, and
Sout can be pre-computed under static quantization. That is to say,
there is no floating point calculation, e.g., of S/b, in inference.

I-BERT: Integer-only BERT Quantization

ble bit-precision to avoid overflow. As such, the challenge is
to find a good low-order polynomial that can closely approx-
imate the non-linear functions used in Transformers. This
is what we discuss next, for GELU and Softmax, in § 3.4
and 3.5, respectively, where we show that one can get a close
approximation by using only a second-order polynomial.

3.4. Integer-only GELU

GELU (Hendrycks & Gimpel, 2016) is a non-linear activa-
tion function used in Transformer models, defined as:

GELU(x) := x · 1
2

[
1 + erf(

x√
2
)

]
,

where erf(x) :=
2√
π

∫ x

0

exp (−t2)dt.
(4)

Here, erf is the error function. Figure 2 shows the be-
haviour of the GELU function (shown in red). GELU has a
similar behaviour as ReLU (shown in green) in the limit of
large positive/negative values, but it behaves differently near
zero. Direct evaluation of the integration term in erf is not
computationally efficient. For this reason, several different
approximations have been proposed for evaluating GELU.
For example, (Hendrycks & Gimpel, 2016) suggests using
Sigmoid to approximate erf:

GELU(x) ≈ xσ(1.702x), (5)

where σ(·) is the Sigmoid function. This approximation,
however, is not a viable solution for integer-only quantiza-
tion, as the Sigmoid itself is another non-linear function
which requires floating point arithmetic. One way to ad-
dress this is to approximate Sigmoid with the so-called hard
Sigmoid (h-Sigmoid) proposed by (Howard et al., 2019) (de-
signed in the context of efficient computer vision models)
to obtain an integer-only approximation for GELU:

h-GELU(x) := x
ReLU6(1.702x+ 3)

6
≈ GELU(x). (6)

We refer to this approximation as h-GELU. Although h-
GELU can be computed with integer arithmetic, we ob-
served that replacing GELU with h-GELU in Transformers
results in a significant accuracy drop. This is due to the large
gap between h-GELU and GELU as depicted in Tab. 1.2

Figure 2 (left) also shows the noticeable gap between those
two functions.

A simple way to address the above problem is to use poly-
nomials to approximate GELU, by solving the following
optimization problem:

min
a,b,c

1

2

∥∥∥∥GELU(x)− x · 1
2

[
1 + L(

x√
2
)

]∥∥∥∥2
2

,

s.t. L(x) = a(x+ b)2 + c,

(7)

2Later in our ablation study, we show this can lead to accuracy
degradation of up to 2.2 percentages, as reported in Tab. 4.

Figure 2. (Left) Comparison between RELU, GELU, h-GELU and
i-GELU. (Right) Comparison between exponential (exp) and our
integer-only exponential (i-exp).

where L(x) is a second-order polynomial used to approx-
imate the erf function. Directly optimizing Eq. 7 results
in a poor approximation since the definition domain of erf
contains the entire real numbers. To address this, we only
optimize L(x) in a limited range since erf approaches to 1
(−1) for large values of x. We also take advantage of the
fact that erf is an odd function (i.e., erf(−x) = −erf(x)),
and thus only consider approximating it in the positive do-
main. After finding the best interpolating points, i.e., (xi, fi)
in Eq. 3, and applying these adjustments we arrive at the
following polynomial:

L(x) = sgn(x)
[
a(clip(|x|,max = −b) + b)2 + 1

]
, (8)

where a = −0.2888 and b = −1.769, and sgn denotes the
sign function. 3 Using this polynomial we arrive at i-GELU,
the integer-only approximation for GELU, defined as:

i-GELU(x) := x · 1
2

[
1 + L(

x√
2
)

]
. (9)

Algorithm 2 summarizes the integer-only computation of
GELU using i-GELU. We illustrate the behaviour of i-
GELU in Fig. 2 (left). As one can see, i-GELU closely
approximates GELU, particularly around the origin. We
also report the approximation error of i-GELU along with
h-GELU in Tab. 1, where i-GELU has an average error of
8.2 × 10−3 and a maximum error of 1.8 × 10−2. This is
∼ 3× more accurate than h-GELU whose average and max-
imum errors are 3.1 × 10−2 and 6.8 × 10−2, respectively.
Also, i-GELU even slightly outperforms the Sigmoid based
approximation of Eq. 5, but without using any floating point
arithmetic. Note that computing the Sigmoid requires float-
ing point. Later in the results section, we show that this
improved approximation, actually results in better accuracy
of i-GELU as compared to h-GELU (see Tab. 4).

3Note that L(x) is approximating GELU in the range of
[0,−b].

I-BERT: Integer-only BERT Quantization

Algorithm 2 Integer-only GELU

Input: q, S: quantized input and scaling factor
Output: qout, Sout: quantized output and scaling factor

function I-ERF(q, S) . qS = x
a, b, c← −0.2888,−1.769, 1
qsgn, q ← sgn(q), clip(|q|,max = −b/S)
qL, SL ← I-POLY(q, S) with a, b, c . Eq. 8
qout, Sout ← qsgnqL, SL

return qout, Sout . qoutSout ≈ erf(x)
end function

function I-GELU(q, S) . qS = x

qerf , Serf ← I-ERF(q, S/
√
2)

q1 ← b1/Serfc
qout, Sout ← q(qerf + q1), SSerf/2
return qout, Sout . qoutSout ≈ GELU(x)

end function

Table 1. Comparison of different approximation methods for
GELU. The second column (Int-only) indicates whether each ap-
proximation method can be computed with integer-only arithmetic.
As metrics for approximation error, we report L2 and L∞ distance
from GELU across the range of [-4, 4].

Int-only L2 dist L∞ dist

xσ(1.702x) 7 0.012 0.020
h-GELU 3 0.031 0.068

i-GELU (Ours) 3 0.0082 0.018

3.5. Integer-only Softmax

Softmax normalizes an input vector and maps it to a proba-
bility distribution:

Softmax(x)i :=
expxi∑k
j=1 expxj

, where x = [x1, . . . , xk].

(10)
Approximating the Softmax layer with integer arithmetic
is quite challenging, as the exponential function used in
Softmax is unbounded and changes rapidly. As such, prior
Transformer quantization techniques (Bhandare et al., 2019;
Zafrir et al., 2019) treat this layer using floating point arith-
metic. Some prior work have proposed look up tables with
interpolation (Schraudolph, 1999), but as before we avoid
look up tables and strive for a pure arithmetic based ap-
proximation. In addition, although (Hauser & Purdy, 2001)
proposes polynomial approximation methods for the expo-
nential function, it uses significantly high-degree polynomi-
als, and is only applicable on a limited finite domain.

Similar to GELU, we cannot use a high-order polynomial,
but even using such polynomial is ineffective to approximate
the exponential function in Softmax. However, it is possible
to address problem by limiting the approximation range of
Softmax. First, we subtract the maximum value from the

input to the exponential for numerical stability:

Softmax(x)i =
exp (xi − xmax)∑k
j=1 exp (xj − xmax)

, (11)

where xmax = maxi(xi). Note that now all the inputs to
the exponential function, i.e., x̃i = xi − xmax, become non-
positive. We can decompose any non-positive real number x̃
as x̃ = (− ln 2)z+p, where the quotient z is a non-negative
integer and the remainder p is a real number in (− ln 2, 0].
Then, the exponential of x̃ can be written as:

exp(x̃) = 2−z exp(p) = exp(p)>>z, (12)

where >> is the bit shifting operation. As a result, we only
need to approximate the exponential function in the compact
interval of p ∈ (− ln 2, 0]. This is a much smaller range as
compared to the domain of all real numbers. Interestingly, a
variant of this method was used in the Itanium 2 machine
from HP (Detrey & de Dinechin, 2005; Thomas et al., 2004),
but with a look up table for evaluating exp(p).

We use a second-order polynomial to approximate the expo-
nential function in this range. To find the coefficients of the
polynomial, we minimize the L2 distance from exponential
function in the interval of (− ln 2, 0]. This results in the
following approximation:

L(p) = 0.3585(p+ 1.353)2 + 0.344 ≈ exp(p). (13)

Substituting the exponential term in Eq. 12 with this poly-
nomial results in i-exp:

i-exp(x̃) := L(p)>>z (14)

where z = b−x̃/ ln 2c and p = x̃ + z ln 2. This can be
calculated with integer arithmetic. Algorithm 3 describes
the integer-only computation of the Softmax fucntion using
i-exp. Figure 2 (right) plots the result of i-exp, which is
nearly identical to the exponential function. We find that
the largest gap between these two functions is only 1.9 ×
10−3. Considering that 8-bit quantization of a unit interval
introduces a quantization error of 1/256 = 3.9 × 10−3,
our approximation error is relatively negligible and can be
subsumed into the quantization error.

3.6. Integer-only LayerNorm

LayerNorm is commonly used in Transformers and involves
several non-linear operations, such as division, square, and
square root. This operation is used for normalizing the input
activation across the channel dimension. The normalization
process is described as:

x̃ =
x− µ
σ

where µ =
1

C

C∑
i=1

xi and σ =

√√√√ 1

C

C∑
i=1

(xi − µ)2.

(15)

I-BERT: Integer-only BERT Quantization

Algorithm 3 Integer-only Exponential and Softmax

Input: q, S: quantized input and scaling factor
Output: qout, Sout: quantized output and scaling factor

function I-EXP(q, S) . qS = x
a, b, c← 0.3585, 1.353, 0.344
qln 2 ← bln 2/Sc
z ← b−q/qln 2c
qp ← q + zqln 2 . qpS = p
qL, SL ← I-POLY(qp, S) with a, b, c . Eq. 13
qout, Sout ← qL>>z, SL

return qout, Sout . qoutSout ≈ exp(x)
end function

function I-SOFTMAX(q, S) . qS = x
q̃ ← q −max(q)
qexp, Sexp ← I-EXP(q̃, S)
qout, Sout ← qexp/sum(qexp), Sexp

return qout, Sout . qoutSout ≈ Softmax(x)
end function

Algorithm 4 Integer-only Square Root

Input: n: input integer
Output: integer square root of n, i.e., b

√
nc

function I-SQRT(n)
if n = 0 then return 0
Intialize x0 to 2dBits(n)/2e and i to 0
repeat

xi+1 ← b(xi + bn/xic)/2c
if xi+1 ≥ xi then return xi
else i← i+ 1

end function

Here, µ and σ are the mean and standard deviation of the in-
put across the channel dimension. One subtle challenge here
is that the input statistics (i.e., µ and σ) change rapidly for
NLP tasks, and these values need to be calculated dynami-
cally during runtime. While computing µ is straightforward,
evaluating σ requires the square-root function.

The square-root function can be efficiently evaluated with
integer-only arithmetic through an iterative algorithm pro-
posed in (Crandall & Pomerance, 2006), as described
in Alg. 4. Given any non-negative integer input n, this
algorithm iteratively searches for the exact value of b

√
nc

based on Newton’s Method and only requires integer arith-
metic. This algorithm is computationally lightweight, as
it converges within at most four iterations for any INT32
inputs and each iteration consists only of one integer divi-
sion, one integer addition, and one bit-shifting operation.
The rest of the the non-linear operations in LayerNorm such
as division and square are straightforwardly computed with
integer arithmetic.

4. Results
In this section, we first measure the accuracy of I-BERT us-
ing the General Language Understanding Evaluation (Wang
et al., 2018) (GLUE) benchmark (§ 4.1). Then, we discuss

the latency speedup of I-BERT using direct hardware de-
ployment and compare it with pure FP32 model (§ 4.2).
Finally, we conduct ablation studies to showcase the effec-
tiveness of our integer-only approximation methods (§ 4.3).

4.1. Accuracy Evaluation on GLUE

We implement I-BERT on the RoBERTa (Liu et al., 2019)
model using (Ott et al., 2019). For the integer-only imple-
mentation, we replace all the floating point operations in the
original model with the corresponding integer-only opera-
tions that were discussed in § 3. In particular, we perform
MatMul and Embedding with INT8 precision, and the non-
linear operations with INT32 precision, as using INT32 for
computing these operations has little overhead. See § C.1 for
implementation details. For each of the GLUE downstream
tasks, we train both FP32 baseline and integer-only I-BERT
models, and evaluate the accuracy on the development set.
See Appendix C.2 and C.3 for training and evaluation de-
tails. While we only test RoBERTa-Base/Large, our method
is not restricted to RoBERTa. The integer-only approxi-
mations can be performed for any NN models including
Transformers that uses similar non-linear operations.

The integer-only quantization results for RoBERTa-
Base/Large are presented in Tab. 2. As one can see, I-BERT
consistently achieves comparable or slightly higher accu-
racy than baseline. For RoBERTa-Base, I-BERT achieves
higher accuracy for all cases (up to 1.4 for RTE), except
for MNLI-m, QQP, and STS-B tasks, where we observe a
small accuracy degradation up to 0.3. We observe a similar
behaviour on the RoBERTa-Large model, where I-BERT
matches or outperforms the baseline accuracy for all the
downstream tasks. On average, I-BERT outperforms the
baseline by 0.3/0.5 for RoBERTa-Base/Large, respectively.

4.2. Latency Evaluation

We evaluate the latency speedup of INT8 inference of I-
BERT, by direct deployment on a Tesla T4 GPU with Tur-
ing Tensor Cores that supports accelerated INT8 execution.
Although T4 GPU is not a pure integer-only hardware, we
select it as our target device due to its extensive software
support (Chen et al., 2018; NVIDIA, 2018), and in particular
Nvidia’s TensorRT library (NVIDIA, 2018). Furthermore,
as we do not exploit any T4-specific exclusive features or re-
quirements, our work can be extensively deployed on other
hardware as well. See § C.4 for the detailed environment
setup. For evaluation, we implement two variants of BERT-
Base/Large: (1) pure FP32 models using naïve FP32 kernels
for non-linear operations; and (2) quantized INT8 models
using customized kernels for the non-linear operations. The
customized kernels compute GELU, Softmax, and Layer-
Norm based on the integer-only methods described in § 3.
We measure the inference latency for different sequence

I-BERT: Integer-only BERT Quantization

Table 2. Integer-only quantization result for RoBERTa-Base and RoBERTa-Large on the development set of the GLUE benchmark.
Baseline is trained by the authors from the pre-trained models, and I-BERT is quantized and fine-tuned from the baseline. We also report
the difference (Diff) between the baseline accuracy and the I-BERT accuracy.

(a) RoBERTa-Base

Precision Int-only MNLI-m MNLI-mm QQP QNLI SST-2 CoLA STS-B MRPC RTE Avg.

Baseline FP32 7 87.8 87.4 90.4 92.8 94.6 61.2 91.1 90.9 78.0 86.0
I-BERT INT8 3 87.5 87.4 90.2 92.8 95.2 62.5 90.8 91.1 79.4 86.3

Diff -0.3 0.0 -0.2 0.0 +0.6 +1.3 -0.3 +0.2 +1.4 +0.3

(b) RoBERTa-Large

Precision Int-only MNLI-m MNLI-mm QQP QNLI SST-2 CoLA STS-B MRPC RTE Avg.

Baseline FP32 7 90.0 89.9 92.8 94.1 96.3 68.0 92.2 91.8 86.3 89.0
I-BERT INT8 3 90.4 90.3 93.0 94.5 96.4 69.0 92.2 93.0 87.0 89.5

Diff +0.4 +0.4 +0.2 +0.4 +0.1 +1.0 0.0 +1.2 +0.7 +0.5

Table 3. Inference latency speedup of INT8 inference with respect
to FP32 inference for BERT-Base and BERT-Large. Latency is
measured for different sentence lengths (SL) and batch sizes (BS).

SL 128 256
Avg.BS 1 2 4 8 1 2 4 8

Base 2.42 3.36 3.39 3.31 3.11 2.96 2.94 3.15 3.08
Large 3.20 4.00 3.98 3.81 3.19 3.51 3.37 3.40 3.56

lengths (128 and 256) and batch sizes (1, 2, 4, and 8).

Table 3 shows the inference latency speedup of INT8 mod-
els with respect to FP32 models. As one can see, the INT8
inference of I-BERT is on average 3.08× and 3.56× faster
than pure FP32 inference for BERT-Base and BERT-Large,
respectively, achieving up to 4.00× speedup. The result im-
plies that, when deployed on specialized hardware that sup-
ports efficient integer computations, I-BERT can achieve
significant speedup as compared to FP32 models. Further
speedups are possible with NVIDIA’s custom Transformer
plugins (Mukherjee et al., 2019) which fuse the multi-head
attention and Softmax layers (see § C.4).

While the greatest value of our work will become evident
when our approach enables quantization on lower-end mi-
croprocessors without floating-point hardware, this demon-
stration must wait for improved software support for im-
plementing quantized NN models on those processors. In
the meantime, we believe the promise of our approach is
illustrated by these latency reductions shown above.

4.3. Ablation Studies

Here, we perform an ablation study to show the benefit of
i-GELU as compared to other approximation methods for
GELU, and in particular h-GELU in Eq. 6. For comparison,
we implement two variants of I-BERT by replacing i-GELU
with GELU and h-GELU, respectively. The former is the

Table 4. Accuracy of models that use GELU, h-GELU and i-GELU
for GELU computation. Note that the former is full-precision,
floating point computation while the latter two are integer-only
approximations.

Int-only QNLI SST-2 MRPC RTE Avg.

GELU 7 94.4 96.3 92.6 85.9 92.3
h-GELU 3 94.3 96.0 92.8 84.8 92.0

i-GELU 3 94.5 96.4 93.0 87.0 92.7

exact computation of GELU with floating point arithmetic,
and the later is another integer-only approximation method
for GELU (see § 3). We use RoBERTa-Large model as
baseline along with the QNLI, SST-2, MPRC, and RTE
tasks. All models are trained and fine-tuned according to
the procedure described in § 4.1, and the final accuracies
are reported in Tab. 4.

As one can see, replacing GELU with h-GELU approxima-
tion results in accuracy degradation for all downstream tasks
except for MRPC. Accuracy drops by 0.5 on average and up
to 1.1 for RTE task. Although accuracy slightly improves
for MRPC, the amount of increase is smaller than replacing
GELU with i-GELU. This empirically demonstrates that
h-GELU is not sufficiently tight enough to approximate
GELU well. Approximating GELU with i-GELU results
in strictly better accuracy for all four downstream tasks
than h-GELU. In particular, i-GELU outperforms h-GELU
by 0.7 on average, and it achieves comparable or slightly
better result to the non-approximated full-precision GELU.
i-GELU also performs better than GELU, which is quite
interesting, but at this time, we do not have an explanation
for this behaviour.

I-BERT: Integer-only BERT Quantization

5. Conclusions
We have proposed I-BERT, a novel integer-only quantiza-
tion scheme for Transformers, where the entire inference
is performed with pure integer arithmetic. Key elements
of I-BERT are approximation methods for nonlinear op-
erations such as GELU, Softmax, and LayerNorm, which
enable their approximation with integer computation. We
empirically evaluated I-BERT on RoBERTa-Base/Large
models, where our quantization method improves the aver-
age GLUE score by 0.3/0.5 points as comapred to baseline.
Furthermore, we directly deployed the quantized models
and measured the end-to-end inference latency, showing
that I-BERT can achieve up to 4.00× speedup on a Tesla
T4 GPU as compared to floating point baseline. As part
of future work, one could consider using our approxima-
tion to improve the training speed as well. For instance,
one could consider replacing GELU with i-GELU during
training. Also, further studies are needed to evaluate the
performance benefit of i-GELU as compared to GELU.

Acknowledgments
The UC Berkeley team acknowledges gracious support from
Intel corporation, Intel VLAB team, Google Cloud, Google
TRC team, and Nvidia, as well as valuable feedback from
Prof. Dave Patterson, and Prof. Joseph Gonzalez. Amir
Gholami was supported through a gracious fund from Sam-
sung SAIT. Michael W. Mahoney would also like to ac-
knowledge the UC Berkeley CLTC, ARO, NSF, and ONR.
Our conclusions do not necessarily reflect the position or the
policy of our sponsors, and no official endorsement should
be inferred.

References
ARM. Cortex-M, https://developer.arm.com/ip-

products/processors/cortex-m, 2020.

Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer normalization.
arXiv preprint arXiv:1607.06450, 2016.

Bai, H., Zhang, W., Hou, L., Shang, L., Jin, J., Jiang, X., Liu,
Q., Lyu, M., and King, I. Binarybert: Pushing the limit
of bert quantization. arXiv preprint arXiv:2012.15701,
2020.

Bhandare, A., Sripathi, V., Karkada, D., Menon, V., Choi, S.,
Datta, K., and Saletore, V. Efficient 8-bit quantization of
transformer neural machine language translation model.
arXiv preprint arXiv:1906.00532, 2019.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
arXiv preprint arXiv:2005.14165, 2020.

Cer, D., Diab, M., Agirre, E., Lopez-Gazpio, I., and Specia,
L. Semeval-2017 task 1: Semantic textual similarity-
multilingual and cross-lingual focused evaluation. arXiv
preprint arXiv:1708.00055, 2017.

Chen, T., Moreau, T., Jiang, Z., Zheng, L., Yan, E., Shen,
H., Cowan, M., Wang, L., Hu, Y., Ceze, L., et al. TVM:
An automated end-to-end optimizing compiler for deep
learning. In 13th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 18), pp. 578–594,
2018.

Choi, J., Wang, Z., Venkataramani, S., Chuang, P. I.-J., Srini-
vasan, V., and Gopalakrishnan, K. PACT: Parameterized
clipping activation for quantized neural networks. arXiv
preprint arXiv:1805.06085, 2018.

Courbariaux, M., Bengio, Y., and David, J.-P. BinaryCon-
nect: Training deep neural networks with binary weights
during propagations. In Advances in neural information
processing systems, pp. 3123–3131, 2015.

Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., and
Bengio, Y. Binarized neural networks: Training deep
neural networks with weights and activations constrained
to+ 1 or-1. arXiv preprint arXiv:1602.02830, 2016.

Crandall, R. and Pomerance, C. B. Prime numbers: a
computational perspective, volume 182. Springer Science
& Business Media, 2006.

Dagan, I., Glickman, O., and Magnini, B. The pascal recog-
nising textual entailment challenge. In Machine Learning
Challenges Workshop, pp. 177–190. Springer, 2005.

Dehghani, M., Gouws, S., Vinyals, O., Uszkoreit, J., and
Kaiser, Ł. Universal transformers. arXiv preprint
arXiv:1807.03819, 2018.

Detrey, J. and de Dinechin, F. A parameterized floating-
point exponential function for fpgas. In Proceed-
ings. 2005 IEEE International Conference on Field-
Programmable Technology, 2005., pp. 27–34. IEEE,
2005.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Dodge, J., Ilharco, G., Schwartz, R., Farhadi, A., Hajishirzi,
H., and Smith, N. Fine-tuning pretrained language mod-
els: Weight initializations, data orders, and early stopping.
arXiv preprint arXiv:2002.06305, 2020.

Dolan, W. B. and Brockett, C. Automatically construct-
ing a corpus of sentential paraphrases. In Proceedings
of the Third International Workshop on Paraphrasing
(IWP2005), 2005.

I-BERT: Integer-only BERT Quantization

Dong, Z., Yao, Z., Gholami, A., Mahoney, M. W., and
Keutzer, K. HAWQ: Hessian aware quantization of neural
networks with mixed-precision. In Proceedings of the
IEEE International Conference on Computer Vision, pp.
293–302, 2019.

Esser, S. K., McKinstry, J. L., Bablani, D., Appuswamy, R.,
and Modha, D. S. Learned step size quantization. arXiv
preprint arXiv:1902.08153, 2019.

Fan, A., Grave, E., and Joulin, A. Reducing transformer
depth on demand with structured dropout. arXiv preprint
arXiv:1909.11556, 2019.

Fan, A., Stock, P., Graham, B., Grave, E., Gribonval, R.,
Jegou, H., and Joulin, A. Training with quantization
noise for extreme fixed-point compression. arXiv preprint
arXiv:2004.07320, 2020.

Gholami, A., Kwon, K., Wu, B., Tai, Z., Yue, X., Jin, P.,
Zhao, S., and Keutzer, K. SqueezeNext: Hardware-aware
neural network design. Workshop paper in CVPR, 2018.

Gordon, M. A., Duh, K., and Andrews, N. Compressing
bert: Studying the effects of weight pruning on transfer
learning. arXiv preprint arXiv:2002.08307, 2020.

Han, S. and Dally, B. Efficient methods and hardware for
deep learning. University Lecture, 2017.

Han, S., Pool, J., Tran, J., and Dally, W. Learning both
weights and connections for efficient neural network. In
Advances in neural information processing systems, pp.
1135–1143, 2015.

Hauser, J. W. and Purdy, C. N. Approximating functions for
embedded and asic applications. In Proceedings of the
44th IEEE 2001 Midwest Symposium on Circuits and Sys-
tems. MWSCAS 2001 (Cat. No. 01CH37257), volume 1,
pp. 478–481. IEEE, 2001.

Hendrycks, D. and Gimpel, K. Gaussian error linear units
(GELUs). arXiv preprint arXiv:1606.08415, 2016.

Hinton, G., Vinyals, O., and Dean, J. Distilling the knowl-
edge in a neural network. Workshop paper in NIPS, 2014.

Howard, A., Sandler, M., Chu, G., Chen, L.-C., Chen, B.,
Tan, M., Wang, W., Zhu, Y., Pang, R., Vasudevan, V.,
et al. Searching for MobilenetV3. In Proceedings of the
IEEE International Conference on Computer Vision, pp.
1314–1324, 2019.

Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K.,
Dally, W. J., and Keutzer, K. SqueezeNet: Alexnet-level
accuracy with 50x fewer parameters and< 0.5 mb model
size. arXiv preprint arXiv:1602.07360, 2016.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
arXiv preprint arXiv:1502.03167, 2015.

Iyer, S., Dandekar, N., and Csernai, K. First quora dataset
release: Question pairs.(2017). URL https://data. quora.
com/First-Quora-Dataset-Release-Question-Pairs, 2017.

Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard,
A., Adam, H., and Kalenichenko, D. Quantization
and training of neural networks for efficient integer-
arithmetic-only inference. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pp. 2704–2713, 2018.

Jiao, X., Yin, Y., Shang, L., Jiang, X., Chen, X., Li,
L., Wang, F., and Liu, Q. Tinybert: Distilling bert
for natural language understanding. arXiv preprint
arXiv:1909.10351, 2019.

Jin, J., Liang, C., Wu, T., Zou, L., and Gan, Z. Kdlsq-
bert: A quantized bert combining knowledge distilla-
tion with learned step size quantization. arXiv preprint
arXiv:2101.05938, 2021.

Kim, S. https://github.com/kssteven418/i-bert, 2021.

Krishnamoorthi, R. Quantizing deep convolutional networks
for efficient inference: A whitepaper. arXiv preprint
arXiv:1806.08342, 2018.

Kwon, K., Amid, A., Gholami, A., Wu, B., Asanovic, K.,
and Keutzer, K. Co-design of deep neural nets and neural
net accelerators for embedded vision applications. In
2018 55th ACM/ESDA/IEEE Design Automation Confer-
ence (DAC), pp. 1–6. IEEE, 2018.

Lai, L., Suda, N., and Chandra, V. CMSIS-NN: Efficient
neural network kernels for arm cortex-m cpus. arXiv
preprint arXiv:1801.06601, 2018.

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P.,
and Soricut, R. Albert: A lite bert for self-supervised
learning of language representations. arXiv preprint
arXiv:1909.11942, 2019.

LeCun, Y., Denker, J. S., and Solla, S. A. Optimal brain
damage. In Advances in neural information processing
systems, pp. 598–605, 1990.

Lepikhin, D., Lee, H., Xu, Y., Chen, D., Firat, O., Huang, Y.,
Krikun, M., Shazeer, N., and Chen, Z. GShard: Scaling
giant models with conditional computation and automatic
sharding. arXiv preprint arXiv:2006.16668, 2020.

Levesque, H., Davis, E., and Morgenstern, L. The winograd
schema challenge. In Thirteenth International Confer-
ence on the Principles of Knowledge Representation and
Reasoning. Citeseer, 2012.

I-BERT: Integer-only BERT Quantization

Li, F., Zhang, B., and Liu, B. Ternary weight networks.
arXiv preprint arXiv:1605.04711, 2016a.

Li, H., Kadav, A., Durdanovic, I., Samet, H., and Graf,
H. P. Pruning filters for efficient convnets. arXiv preprint
arXiv:1608.08710, 2016b.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov,
V. RoBERTa: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692, 2019.

Mao, H., Han, S., Pool, J., Li, W., Liu, X., Wang, Y., and
Dally, W. J. Exploring the regularity of sparse structure in
convolutional neural networks. Workshop paper in CVPR,
2017.

Mao, Y., Wang, Y., Wu, C., Zhang, C., Wang, Y., Yang, Y.,
Zhang, Q., Tong, Y., and Bai, J. Ladabert: Lightweight
adaptation of bert through hybrid model compression.
arXiv preprint arXiv:2004.04124, 2020.

Michel, P., Levy, O., and Neubig, G. Are sixteen heads
really better than one? arXiv preprint arXiv:1905.10650,
2019.

Mishra, A. and Marr, D. Apprentice: Using knowledge
distillation techniques to improve low-precision network
accuracy. arXiv preprint arXiv:1711.05852, 2017.

Molchanov, P., Tyree, S., Karras, T., Aila, T., and Kautz,
J. Pruning convolutional neural networks for resource
efficient inference. arXiv preprint arXiv:1611.06440,
2016.

Mukherjee, P., Weill, E., Taneja, R., Onofrio, D.,
Ko, Y.-J., and Sharma, S. Real-time natural
language understanding with bert using tensorrt,
hhttps://developer.nvidia.com/blog/nlu-with-tensorrt-
bert/, 2019.

NVIDIA. TensorRT: https://developer.nvidia.com/tensorrt,
2018.

Ott, M., Edunov, S., Baevski, A., Fan, A., Gross, S., Ng, N.,
Grangier, D., and Auli, M. FairSeq: A fast, extensible
toolkit for sequence modeling. In Proceedings of NAACL-
HLT 2019: Demonstrations, 2019.

Park, E., Yoo, S., and Vajda, P. Value-aware quantization for
training and inference of neural networks. In Proceedings
of the European Conference on Computer Vision (ECCV),
pp. 580–595, 2018.

Polino, A., Pascanu, R., and Alistarh, D. Model compres-
sion via distillation and quantization. arXiv preprint
arXiv:1802.05668, 2018.

Radford, A., Narasimhan, K., Salimans, T., and Sutskever,
I. Improving language understanding by generative pre-
training, 2018.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and
Sutskever, I. Language models are unsupervised multitask
learners. OpenAI blog, 1(8):9, 2019.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. arXiv preprint arXiv:1910.10683, 2019.

Raganato, A., Scherrer, Y., and Tiedemann, J. Fixed encoder
self-attention patterns in transformer-based machine trans-
lation. arXiv preprint arXiv:2002.10260, 2020.

Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P. SQuAD:
100,000+ questions for machine comprehension of text.
arXiv preprint arXiv:1606.05250, 2016.

Rastegari, M., Ordonez, V., Redmon, J., and Farhadi, A.
XNOR-Net: Imagenet classification using binary convo-
lutional neural networks. In European Conference on
Computer Vision, pp. 525–542. Springer, 2016.

Romero, A., Ballas, N., Kahou, S. E., Chassang, A., Gatta,
C., and Bengio, Y. FitNets: Hints for thin deep nets.
arXiv preprint arXiv:1412.6550, 2014.

Rosset, C. Turing-NLG: A 17-billion-parameter language
model by microsoft. Microsoft Blog, 2019.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and
Chen, L.-C. MobilenetV2: Inverted residuals and linear
bottlenecks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 4510–
4520, 2018.

Sanh, V., Debut, L., Chaumond, J., and Wolf, T. Distilbert,
a distilled version of bert: smaller, faster, cheaper and
lighter. arXiv preprint arXiv:1910.01108, 2019.

Sanh, V., Wolf, T., and Rush, A. M. Movement prun-
ing: Adaptive sparsity by fine-tuning. arXiv preprint
arXiv:2005.07683, 2020.

Schraudolph, N. N. A fast, compact approximation of the
exponential function. Neural Computation, 11(4):853–
862, 1999.

Shen, S., Dong, Z., Ye, J., Ma, L., Yao, Z., Gholami, A.,
Mahoney, M. W., and Keutzer, K. Q-BERT: Hessian
based ultra low precision quantization of bert. In AAAI,
pp. 8815–8821, 2020.

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper, J.,
and Catanzaro, B. Megatron-LM: Training multi-billion
parameter language models using gpu model parallelism.
arXiv preprint arXiv:1909.08053, 2019.

I-BERT: Integer-only BERT Quantization

Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning,
C. D., Ng, A. Y., and Potts, C. Recursive deep models for
semantic compositionality over a sentiment treebank. In
Proceedings of the 2013 conference on empirical methods
in natural language processing, pp. 1631–1642, 2013.

Stewart, G. W. Afternotes on numerical analysis. SIAM,
1996.

Sun, S., Cheng, Y., Gan, Z., and Liu, J. Patient knowledge
distillation for bert model compression. arXiv preprint
arXiv:1908.09355, 2019.

Sun, Z., Yu, H., Song, X., Liu, R., Yang, Y., and Zhou, D.
Mobilebert: a compact task-agnostic bert for resource-
limited devices. arXiv preprint arXiv:2004.02984, 2020.

Tan, M. and Le, Q. V. EfficientNet: Rethinking model
scaling for convolutional neural networks. arXiv preprint
arXiv:1905.11946, 2019.

Tang, R., Lu, Y., Liu, L., Mou, L., Vechtomova, O., and Lin,
J. Distilling task-specific knowledge from bert into simple
neural networks. arXiv preprint arXiv:1903.12136, 2019.

Thomas, J. W., Okada, J. P., Markstein, P., and Li, R.-C.
The libm library and floatingpoint arithmetic in hp-ux
for itanium-based systems. Technical report, Technical
report, Hewlett-Packard Company, Palo Alto, CA, USA,
2004.

Turc, I., Chang, M.-W., Lee, K., and Toutanova, K.
Well-read students learn better: On the importance
of pre-training compact models. arXiv preprint
arXiv:1908.08962, 2019.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Atten-
tion is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and
Bowman, S. R. GLUE: A multi-task benchmark and anal-
ysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

Wang, K., Liu, Z., Lin, Y., Lin, J., and Han, S. HAQ:
Hardware-aware automated quantization. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, 2019.

Wang, W., Wei, F., Dong, L., Bao, H., Yang, N., and Zhou,
M. Minilm: Deep self-attention distillation for task-
agnostic compression of pre-trained transformers. arXiv
preprint arXiv:2002.10957, 2020.

Waring, E. Vii. problems concerning interpolations. Philo-
sophical transactions of the royal society of London,
1779.

Warstadt, A., Singh, A., and Bowman, S. R. Neural network
acceptability judgments. Transactions of the Association
for Computational Linguistics, 7:625–641, 2019.

Williams, A., Nangia, N., and Bowman, S. R. A broad-
coverage challenge corpus for sentence understanding
through inference. arXiv preprint arXiv:1704.05426,
2017.

Wu, B., Wang, Y., Zhang, P., Tian, Y., Vajda, P., and Keutzer,
K. Mixed precision quantization of convnets via dif-
ferentiable neural architecture search. arXiv preprint
arXiv:1812.00090, 2018.

Wu, J., Leng, C., Wang, Y., Hu, Q., and Cheng, J. Quantized
convolutional neural networks for mobile devices. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 4820–4828, 2016.

Xu, C., Zhou, W., Ge, T., Wei, F., and Zhou, M. Bert-of-
theseus: Compressing bert by progressive module replac-
ing. arXiv preprint arXiv:2002.02925, 2020.

Yang, T.-J., Chen, Y.-H., and Sze, V. Designing energy-
efficient convolutional neural networks using energy-
aware pruning. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 5687–
5695, 2017.

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov,
R. R., and Le, Q. V. XLNet: Generalized autoregressive
pretraining for language understanding. In Advances in
neural information processing systems, pp. 5753–5763,
2019.

Yao, Z., Dong, Z., Zheng, Z., Gholami, A., Yu, J., Tan, E.,
Wang, L., Huang, Q., Wang, Y., Mahoney, M. W., and
Keutzer, K. HAWQV3: Dyadic neural network quantiza-
tion. arXiv preprint arXiv:2011.10680, 2020.

Zadeh, A. H., Edo, I., Awad, O. M., and Moshovos, A.
Gobo: Quantizing attention-based nlp models for low la-
tency and energy efficient inference. In 2020 53rd Annual
IEEE/ACM International Symposium on Microarchitec-
ture (MICRO), pp. 811–824. IEEE, 2020.

Zafrir, O., Boudoukh, G., Izsak, P., and Wasserblat,
M. Q8BERT: Quantized 8bit bert. arXiv preprint
arXiv:1910.06188, 2019.

Zhang, D., Yang, J., Ye, D., and Hua, G. LQ-Nets: Learned
quantization for highly accurate and compact deep neural
networks. In Proceedings of the European conference on
computer vision (ECCV), pp. 365–382, 2018.

Zhang, W., Hou, L., Yin, Y., Shang, L., Chen, X., Jiang, X.,
and Liu, Q. Ternarybert: Distillation-aware ultra-low bit
bert. arXiv preprint arXiv:2009.12812, 2020.

I-BERT: Integer-only BERT Quantization

Zhou, S., Wu, Y., Ni, Z., Zhou, X., Wen, H., and Zou, Y.
DoReFa-Net: Training low bitwidth convolutional neural
networks with low bitwidth gradients. arXiv preprint
arXiv:1606.06160, 2016.

