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A APPENDIX

A.1 PROOF OF THEOREM

We begin by first proving Theorem 2] since the additional
assumption of realizability makes it an easier read. For fur-
ther ease of exposition, instead of directly working with
g(+), we translate the function to remove any constants not
dependent on the variable. We write,

[(S) = luxllf — 9(S) =2" K '=.

Some auxiliary Lemmas are proved later in this section. We
use Z(S;) == 3_; w;j¢(x;) Further, note that the Assump-
tion 2, when applied for A(-), ensures that for any iterates
considered in this proof we have that
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Proof. Say (i — 1) steps of the Algorithm [1| have been
performed to select the set S. Let w € RC~1 be the
corresponding weight vector. Let h(S,u) = ||u|? —
e — 325 uid(x;)[17, so that [(S) = miny (S, u) (as
per Lemma . Set weight vector u € R’ as follows. For
j €10,7— 1], u; = w;. Set u; = o, where « is an arbitrary
scalar.

From weight optimality proved in Lemma[T}
I(SU{xi}) = U(S) = h(SU {x;},u) — I(S),
for an arbitrary o € R. From Assumption 2 (smoothness),
S U i) ~1(S) > a(VI(S), 6(x:))i — 0?22
Let s be the optimum value of the solution of the inner
LMO problem. Since x; is the optimizing atom,
2 Mo

USU x:}) = 1(S) = ans —a? 5.

Let S* be the set obtained by orthogonalizing S} with re-
spect to S using the Gram-Schmidt procedure. Putting in

a = 5, we get,
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The second inequality is true because vs = (VI(S),x;)x
is the optimum value of the inner LMO problem in the
t jteration. The third inequality follows from Lemma
The fourth inequality is true because of monotonicity of
[(), and the final equality is true because of Assumption 1
(realizability).

Let C := 7. We have [(SU{x;}) —(S) = ¢(S) —g(SU
{xi}) =2 Cg(S) = g(SU{xi}) < (1 —C)g(S). The
result now follows.
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A.2 PROOF OF THEOREM

Proof. We proceed as in the proof of Theorem [2] but by
replacing S} with T,.. From (2),

I(Su{x;}) —1I(S) >

(T - US)).

Adding and subtracting [(T,.) on the LHS and rearranging,
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I(Tr) =S U{xi}) < (1 -

(T~ 1S))

Thus after k iterations,

W(Ty) = 1(Sk) < (01—

Rearranging,

150 > (1= (1= ) uer)

> (1 - exp(—f]\n/}g)) I(Ty).

With k = (r% log 1), we get,

1(Sk) = (1= e)I(Ty).
The result now follows. O
A.3 AUXILIARY LEMMAS
The following Lemma proves that the weights w; in g(S) ob-
tained using the posterior inference are an optimum choice

that minimize the distance to w, in the RKHS over any set
of weights [Khanna et al.|[2019].

Lemma 1. The residual jix — ) ; w;$(x;) is orthogonal
to x; € SVi. In other words, for any set of samples S,

9(S) = ming [|pr — >, wid(x;) |k

Proof. Recall that w; = 3 [K™']jz;, and z; =
J k(x,x;)dm(x). For an arbitrary index i,
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where the last equality follows by noting that
> K;i[K~!);; is inner product of row i of K and
row t of K~1, which is 1 if ¢ = i and 0 otherwise. This
completes the proof. O

Lemma 2. For any set of chosen samples Sy, So, let P
be the operator of projection onto span(Sy U Sa). Then,
1(S1USy) —1(Sy) < ZGHE),

Proof. Observe that

0 <I(S1USz) —1(S1)
<|(VI(51),Z(51US2) — Z(S1))x
- 7”2(51 USs) — Z(S1)IF
< argmax (VI(S1), X — Z(S1)) — %HX ~Z(S
X espan(S1US2)

= argmax(P(VI(S1)), X — Z(S1))x — %nx —Z(S
X

Solving the argmax problem on the RHS for X, we get the
required result.
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A4 PROOF OF THEOREM

We next present some notation and few lemmas that lead up
to the main result of this section (Theorem [3). The domain
of candidate atoms X is split into {X;,j € [s]} over s
machines, where machine j runs WKH on X). Let G; be
the k-sized solution returned by running Algorithm [T} on
Xj,ie., G = WKH(X}, k). Note that each X; induces a
partition onto the optimal r-sized solution S* as follows
(r = 1 for this theorem):

Tj = {l‘ € ST T ¢ WKH(X] U, k)},
TS :={r€S]:x € WKH(X; Uz, k)}.

In other words, T; = S7 if the ;' " machine running WKH
on X; U ST will not select it as among its output, and it
is empty otherwise, since S} is a singleton. We re-use the
definition of /(-) used in Appendix [A.1]

Before moving to the proof of the main theorem, we prove
two prerequisites. Recall G; is the set of iterates selected by
machine j. In this mini-result, we lower bound the expected
improvement in the loss at the aggregator machine.

Lemma 3. For the aggregator machine that runs WKH
over U;G; (step 6 of Algorithm , we have, at selection of
next sample point x; after having selected S, 3 machine j
such that

E(S U {xi}) ~U(S)] > 7B (I(T5) ~ 1(5))
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Proof. The expectation is over the random split of X" into
X; for j € [s]. We denote T to be the complement of T;.
Then, we have that

E[I(SU {x;}) — U(S)]

> Bl

> 3 P < UG B0, TS
) Lg_: PG € T5) | E(o(x), VIS))E
e ;x;fw(x),wswi

> gws UTE) — 1(S))

m
> = E ¢) —
> e S TEQ(T) - 1(S)
> 2 minE (I(T§) — 1(S)) -

The equality in step 3 above is because of Lemmal5] O

In the following lemma, we lower bound the greedy im-
provement in the loss on each machine.

Lemma 4. For any individual worker machine j running
local WKH, if S is the set of (i — 1) iterates already chosen,
then at the selection of next sample point x;, [(SU {x;}) >

(U(T5) = U(S))-

Proof. We proceed as in proof of Theorem [2] in Ap-
pendix [A.T] From (T)), we have,
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We are now ready to prove Theorem 3]

Proof of Theorem[3] If, for a random split of X, for any
J € [s], T, = S7, then the given rate follows from LemmaE],
after following the straightforward steps covered in proof
of Theorem 2] for proving the rate from the given condition

on [(-). On the other hand, if none of j € [s], T; = S, then
Vjiels]), T, =0 = T§ = S7. In this case, the given rate
follows from Lemma 3 O

Finally, here is the statement and proof of an auxiliary
lemma that was used above.

Lemma 5. Forany x € X,P(z € U;G;) = %Zg P(x €
TO).
Proof. We have
]P)(l‘ S UjGj)
= P(z € X;Na € WKH(X;, k))
J
=Y Pz € X;))P(x € WKH(X;, k)| € X;)
J

=> P(z € X))P(z € TY)
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