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A APPENDIX

A.1 PROOF OF THEOREM 2

We begin by first proving Theorem 2, since the additional
assumption of realizability makes it an easier read. For fur-
ther ease of exposition, instead of directly working with
g(·), we translate the function to remove any constants not
dependent on the variable. We write,

l(S) := ‖µπ‖2k − g(S) = z>K−1z.

Some auxiliary Lemmas are proved later in this section. We
use Z(Sj) :=

∑
j wjφ(xj) Further, note that the Assump-

tion 2, when applied for h(·), ensures that for any iterates
considered in this proof we have that

− mω

2
‖Z(Si)− Z(Sj)‖2k
≥ l(Si)− l(Sj)− 〈∇l(Si), Z(Si)− Z(Sj)〉k

≥ −MΩ

2
‖Z(Si)− Z(Sj)‖2k.

Proof. Say (i − 1) steps of the Algorithm 1 have been
performed to select the set S. Let w ∈ R(i−1) be the
corresponding weight vector. Let h(S,u) := ‖µπ‖2k −
‖µπ −

∑
j ujφ(xj)‖2k, so that l(S) = minu h(S,u) (as

per Lemma 1) . Set weight vector u ∈ Ri as follows. For
j ∈ [0, i− 1], ui = wi. Set ui = α, where α is an arbitrary
scalar.

From weight optimality proved in Lemma 1,

l(S ∪ {xi})− l(S) ≥ h(S ∪ {xi},u)− l(S),

for an arbitrary α ∈ R. From Assumption 2 (smoothness),

l(S ∪ {xi})− l(S) ≥ α〈∇l(S), φ(xi)〉k − α2MΩ

2
.

Let γS be the optimum value of the solution of the inner
LMO problem. Since xi is the optimizing atom,

l(S ∪ {xi})− l(S) ≥ αγS − α2MΩ

2
.

Let S?⊥ be the set obtained by orthogonalizing S?r with re-
spect to S using the Gram-Schmidt procedure. Putting in
α = γS

MΩ
, we get,

l(S ∪ {xi})− l(S) ≥
1

2MΩ
γS (1)

≥ 1

2rMΩ

∑
xj∈S?

⊥

〈φ(xj),∇l(S)〉2k

≥ mω

rMΩ
(l(S ∪ S?⊥)− l(S)) (2)

≥ mω

rMΩ
(l(S?r)− l(S))

=
mω

rMΩ

(
‖µπ‖2k − l(S)

)
.

The second inequality is true because γS = 〈∇l(S),xi〉k
is the optimum value of the inner LMO problem in the
ith iteration. The third inequality follows from Lemma 2.
The fourth inequality is true because of monotonicity of
l(·), and the final equality is true because of Assumption 1
(realizability).

Let C := mω

rMΩ
. We have l(S∪{xi})− l(S) = g(S)−g(S∪

{xi}) ≥ Cg(S) =⇒ g(S ∪ {xi}) ≤ (1 − C)g(S). The
result now follows.

A.2 PROOF OF THEOREM 1

Proof. We proceed as in the proof of Theorem 2, but by
replacing S?r with Tr. From (2),

l(S ∪ {xi})− l(S) ≥
mω

rMΩ
(l(Tr)− l(S)) .

Adding and subtracting l(Tr) on the LHS and rearranging,
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l(Tr)− l(S ∪ {xi}) ≤ (1− mω

rMΩ
)(l(Tr)− l(S)).

Thus after k iterations,

l(Tr)− l(Sk) ≤ (1− mω

rMΩ
)k (l(Tr)− l(∅)) .

Rearranging,

l(Sk) ≥
(
1− (1− mω

rMΩ
)k
)
l(Tr)

≥
(
1− exp(−kmω

rMΩ
)

)
l(Tr).

With k = (rMΩ

mω
log 1

ε ), we get,

l(Sk) ≥ (1− ε)l(Tr).

The result now follows.

A.3 AUXILIARY LEMMAS

The following Lemma proves that the weightswi in g(S) ob-
tained using the posterior inference are an optimum choice
that minimize the distance to µπ in the RKHS over any set
of weights [Khanna et al., 2019].

Lemma 1. The residual µπ −
∑
j wjφ(xj) is orthogonal

to xi ∈ S∀i. In other words, for any set of samples S,
g(S) = minu ‖µπ −

∑
i uiφ(xi)‖k.

Proof. Recall that wi =
∑
j [K

−1]ijzj , and zi =∫
k(x,xi)dπ(x). For an arbitrary index i,

〈µπ −
∑
j

wjφ(xj), φ(xi)〉k

=

∫
k(x,xi)dπ(x)− 〈

∑
j

wjφ(xj), φ(xi)〉k

=zi − 〈
∑
j

wjφ(xj), φ(xi)〉k

=zi −
∑
j

wjk(xj ,xi)

=zi −
∑
j

∑
t

[K−1]tjztk(xj ,xi)

=zi −
∑
t

zt
∑
j

Kji[K
−1]tj

=zi − zi,

where the last equality follows by noting that∑
jKji[K

−1]tj is inner product of row i of K and
row t of K−1, which is 1 if t = i and 0 otherwise. This
completes the proof.

Lemma 2. For any set of chosen samples S1, S2, let P
be the operator of projection onto span(S1 ∪ S2). Then,
l(S1 ∪ S2)− l(S1) ≤ P(∇l(S1))

2mω
.

Proof. Observe that

0 ≤ l(S1 ∪ S2)− l(S1)

≤ 〈∇l(S1), Z(S1 ∪ S2)− Z(S1)〉k

− mω

2
‖Z(S1 ∪ S2)− Z(S1)‖2k

≤ argmax
X∈span(S1∪S2)

〈∇l(S1), X − Z(S1)〉k −
mω

2
‖X − Z(S1)‖2k

= argmax
X

〈P(∇l(S1)), X − Z(S1)〉k −
mω

2
‖X − Z(S1)‖2k.

Solving the argmax problem on the RHS for X , we get the
required result.

A.4 PROOF OF THEOREM 3

We next present some notation and few lemmas that lead up
to the main result of this section (Theorem 3). The domain
of candidate atoms X is split into {Xj , j ∈ [s]} over s
machines, where machine j runs WKH on Xj . Let Gj be
the k-sized solution returned by running Algorithm 1 on
Xj , i.e., Gj = WKH(Xj , k). Note that each Xj induces a
partition onto the optimal r-sized solution S?r as follows
(r = 1 for this theorem):

Tj := {x ∈ S?1 : x /∈WKH(Xj ∪ x, k)},
Tcj := {x ∈ S?1 : x ∈WKH(Xj ∪ x, k)}.

In other words, Tj = S?1 if the jth machine running WKH
on Xj ∪ S?1 will not select it as among its output, and it
is empty otherwise, since S?1 is a singleton. We re-use the
definition of l(·) used in Appendix A.1.

Before moving to the proof of the main theorem, we prove
two prerequisites. Recall Gj is the set of iterates selected by
machine j. In this mini-result, we lower bound the expected
improvement in the loss at the aggregator machine.

Lemma 3. For the aggregator machine that runs WKH
over ∪jGj (step 6 of Algorithm 2), we have, at selection of
next sample point xi after having selected S, ∃ machine j
such that

E[l(S ∪ {xi})− l(S)] ≥
mω

MΩ
E
(
l(Tcj)− l(S)

)
.



Proof. The expectation is over the random split of X into
Xj for j ∈ [s]. We denote Tcj to be the complement of Tj .
Then, we have that

E[l(S ∪ {xi})− l(S)]

≥ E[
1

2MΩ
γS]

≥ 1

2MΩ

∑
x∈S?

1

P(x ∈ ∪jGj)E〈φ(x),∇l(S)〉2k

=
1

2sMΩ

∑
x∈S?

1

[
s∑
b=1

P(x ∈ Tcb)

]
E〈φ(x),∇l(S)〉2k

=
1

2sMΩ

s∑
b=1

∑
x∈Tc

b

E〈φ(x),∇l(S)〉2k

≥ mω

sMΩ

s∑
b=1

E (l(S ∪ Tcb)− l(S))

≥ mω

sMΩ

s∑
b=1

E (l(Tcb)− l(S))

≥ mω

MΩ
min
b∈[s]

E (l(Tcb)− l(S)) .

The equality in step 3 above is because of Lemma 5.

In the following lemma, we lower bound the greedy im-
provement in the loss on each machine.

Lemma 4. For any individual worker machine j running
local WKH, if S is the set of (i− 1) iterates already chosen,
then at the selection of next sample point xi, l(S ∪ {xi}) ≥
(l(Tj)− l(S)).

Proof. We proceed as in proof of Theorem 2 in Ap-
pendix A.1. From (1), we have,

l(S ∪ {x})− l(S) ≥ 1

2MΩ
γS

≥ 1

2MΩ

∑
xj∈Tj

〈φ(xj),∇l(S)〉2k

≥ mω

MΩ
(l(S ∪ Tj)− l(S))

≥ mω

MΩ
(l(Tj)− l(S)) .

We are now ready to prove Theorem 3.

Proof of Theorem 3. If, for a random split of X , for any
j ∈ [s], Tj = S?1, then the given rate follows from Lemma 4,
after following the straightforward steps covered in proof
of Theorem 2 for proving the rate from the given condition

on l(·). On the other hand, if none of j ∈ [s], Tj = S?1, then
∀j ∈ [s],Tj = ∅ =⇒ Tcj = S?1. In this case, the given rate
follows from Lemma 3.

Finally, here is the statement and proof of an auxiliary
lemma that was used above.

Lemma 5. For any x ∈ X ,P(x ∈ ∪jGj) = 1
s

∑
j P(x ∈

Tcj).

Proof. We have

P(x ∈ ∪jGj)

=
∑
j

P(x ∈ Xj ∩ x ∈WKH(Xj , k))

=
∑
j

P(x ∈ Xj)P(x ∈WKH(Xj , k)|x ∈ Xj)

=
∑
j

P(x ∈ Xj)P(x ∈ Tcj)

=
1

s
P(x ∈ Tcj).
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