Geometric Rates of Convergence for Kernel-based Sampling Algorithms – Supplementary material

Rajiv Khanna¹

Liam Hodgkinson^{1,2}

Michael W. Mahoney^{1,2}

¹Department of Statistics, UC Berkeley ²International Computer Science Institute (ICSI), Berkeley

A APPENDIX

A.1 PROOF OF THEOREM 2

We begin by first proving Theorem 2, since the additional assumption of realizability makes it an easier read. For further ease of exposition, instead of directly working with $g(\cdot)$, we translate the function to remove any constants not dependent on the variable. We write,

$$l(\mathsf{S}) := \|\mu_{\pi}\|_k^2 - g(\mathsf{S}) = \mathbf{z}^{\top} \mathbf{K}^{-1} \mathbf{z}$$

Some auxiliary Lemmas are proved later in this section. We use $Z(S_j) := \sum_j w_j \phi(\mathbf{x}_j)$ Further, note that the Assumption 2, when applied for $h(\cdot)$, ensures that for any iterates considered in this proof we have that

$$\begin{aligned} &-\frac{m_{\omega}}{2} \|Z(\mathsf{S}_{i}) - Z(\mathsf{S}_{j})\|_{k}^{2} \\ &\geq l(\mathsf{S}_{i}) - l(\mathsf{S}_{j}) - \langle \nabla l(\mathsf{S}_{i}), Z(\mathsf{S}_{i}) - Z(\mathsf{S}_{j}) \rangle_{k} \\ &\geq -\frac{M_{\Omega}}{2} \|Z(\mathsf{S}_{i}) - Z(\mathsf{S}_{j})\|_{k}^{2}. \end{aligned}$$

Proof. Say (i - 1) steps of the Algorithm 1 have been performed to select the set S. Let $\mathbf{w} \in \mathbb{R}^{(i-1)}$ be the corresponding weight vector. Let $h(\mathsf{S}, \mathbf{u}) := \|\mu_{\pi}\|_{k}^{2} - \|\mu_{\pi} - \sum_{j} u_{j}\phi(\mathbf{x}_{j})\|_{k}^{2}$, so that $l(\mathsf{S}) = \min_{\mathbf{u}} h(\mathsf{S}, \mathbf{u})$ (as per Lemma 1). Set weight vector $\mathbf{u} \in \mathbb{R}^{i}$ as follows. For $j \in [0, i - 1], u_{i} = w_{i}$. Set $u_{i} = \alpha$, where α is an arbitrary scalar.

From weight optimality proved in Lemma 1,

$$l(\mathsf{S} \cup \{\mathbf{x}_i\}) - l(\mathsf{S}) \ge h(\mathsf{S} \cup \{\mathbf{x}_i\}, \mathbf{u}) - l(\mathsf{S})$$

for an arbitrary $\alpha \in \mathbb{R}$. From Assumption 2 (smoothness),

$$l(\mathsf{S} \cup \{\mathbf{x}_i\}) - l(\mathsf{S}) \ge \alpha \langle \nabla l(\mathsf{S}), \phi(\mathbf{x}_i) \rangle_k - \alpha^2 \frac{M_\Omega}{2}$$

Let γ_{S} be the optimum value of the solution of the inner LMO problem. Since x_i is the optimizing atom,

$$l(\mathsf{S} \cup \{\mathbf{x}_i\}) - l(\mathsf{S}) \ge \alpha \gamma_{\mathsf{S}} - \alpha^2 \frac{M_{\Omega}}{2}.$$

Let S_{\perp}^{\star} be the set obtained by orthogonalizing S_r^{\star} with respect to S using the Gram-Schmidt procedure. Putting in $\alpha = \frac{\gamma_s}{M_{\Omega}}$, we get,

$$l(\mathsf{S} \cup \{\mathbf{x}_i\}) - l(\mathsf{S}) \geq \frac{1}{2M_{\Omega}}\gamma_{\mathsf{S}}$$
(1)
$$\geq \frac{1}{2rM_{\Omega}}\sum_{\mathbf{x}_j \in \mathsf{S}_{\perp}^{\star}} \langle \phi(\mathbf{x}_j), \nabla l(\mathsf{S}) \rangle_k^2$$

$$\geq \frac{m_{\omega}}{rM_{\Omega}} \left(l(\mathsf{S} \cup \mathsf{S}_{\perp}^{\star}) - l(\mathsf{S}) \right)$$
(2)
$$\geq \frac{m_{\omega}}{rM_{\Omega}} \left(l(\mathsf{S}_r^{\star}) - l(\mathsf{S}) \right)$$

$$= \frac{m_{\omega}}{rM_{\Omega}} \left(\|\mu_{\pi}\|_k^2 - l(\mathsf{S}) \right).$$

The second inequality is true because $\gamma_{S} = \langle \nabla l(S), \mathbf{x}_{i} \rangle_{k}$ is the optimum value of the inner LMO problem in the *i*th iteration. The third inequality follows from Lemma 2. The fourth inequality is true because of monotonicity of $l(\cdot)$, and the final equality is true because of Assumption 1 (realizability).

Let $C := \frac{m_{\omega}}{rM_{\Omega}}$. We have $l(\mathsf{S} \cup \{\mathbf{x}_i\}) - l(\mathsf{S}) = g(\mathsf{S}) - g(\mathsf{S} \cup \{\mathbf{x}_i\}) \ge Cg(\mathsf{S}) \implies g(\mathsf{S} \cup \{\mathbf{x}_i\}) \le (1 - C)g(\mathsf{S})$. The result now follows.

A.2 PROOF OF THEOREM 1

Proof. We proceed as in the proof of Theorem 2, but by replacing S_r^* with T_r . From (2),

$$l(\mathsf{S} \cup \{\mathbf{x}_i\}) - l(\mathsf{S}) \ge \frac{m_\omega}{rM_\Omega} \left(l(\mathsf{T}_r) - l(\mathsf{S})\right).$$

Adding and subtracting $l(T_r)$ on the LHS and rearranging,

Supplement for the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence (UAI 2021).

$$l(\mathsf{T}_r) - l(\mathsf{S} \cup \{\mathbf{x}_i\}) \le (1 - \frac{m_\omega}{rM_\Omega})(l(\mathsf{T}_r) - l(\mathsf{S})).$$

Thus after k iterations,

$$l(\mathsf{T}_r) - l(\mathsf{S}_k) \le (1 - \frac{m_\omega}{rM_\Omega})^k \left(l(\mathsf{T}_r) - l(\emptyset)\right).$$

Rearranging,

$$\begin{split} l(\mathsf{S}_k) &\geq \left(1 - (1 - \frac{m_\omega}{rM_\Omega})^k\right) l(\mathsf{T}_r) \\ &\geq \left(1 - \exp(-\frac{km_\omega}{rM_\Omega})\right) l(\mathsf{T}_r). \end{split}$$

With $k = (r \frac{M_{\Omega}}{m_{\omega}} \log \frac{1}{\epsilon})$, we get,

$$l(\mathsf{S}_k) \ge (1-\epsilon)l(\mathsf{T}_r).$$

The result now follows.

A.3 AUXILIARY LEMMAS

The following Lemma proves that the weights w_i in g(S) obtained using the posterior inference are an optimum choice that minimize the distance to μ_{π} in the RKHS over any set of weights [Khanna et al., 2019].

Lemma 1. The residual $\mu_{\pi} - \sum_{j} w_{j}\phi(\mathbf{x}_{j})$ is orthogonal to $\mathbf{x}_{i} \in S \forall i$. In other words, for any set of samples S, $g(S) = \min_{\mathbf{u}} \|\mu_{\pi} - \sum_{i} u_{i}\phi(\mathbf{x}_{i})\|_{k}$.

Proof. Recall that $w_i = \sum_j [\mathbf{K}^{-1}]_{ij} \mathbf{z}_j$, and $\mathbf{z}_i = \int k(\mathbf{x}, \mathbf{x}_i) d\pi(\mathbf{x})$. For an arbitrary index *i*,

$$\begin{split} \langle \mu_{\pi} - \sum_{j} w_{j} \phi(\mathbf{x}_{j}), \phi(\mathbf{x}_{i}) \rangle_{k} \\ &= \int k(\mathbf{x}, \mathbf{x}_{i}) d\pi(\mathbf{x}) - \langle \sum_{j} w_{j} \phi(\mathbf{x}_{j}), \phi(\mathbf{x}_{i}) \rangle_{k} \\ &= \mathbf{z}_{i} - \langle \sum_{j} w_{j} \phi(\mathbf{x}_{j}), \phi(\mathbf{x}_{i}) \rangle_{k} \\ &= \mathbf{z}_{i} - \sum_{j} w_{j} k(\mathbf{x}_{j}, \mathbf{x}_{i}) \\ &= \mathbf{z}_{i} - \sum_{j} \sum_{t} [\mathbf{K}^{-1}]_{tj} \mathbf{z}_{t} k(\mathbf{x}_{j}, \mathbf{x}_{i}) \\ &= \mathbf{z}_{i} - \sum_{t} \mathbf{z}_{t} \sum_{j} \mathbf{K}_{ji} [\mathbf{K}^{-1}]_{tj} \\ &= \mathbf{z}_{i} - \mathbf{z}_{i}, \end{split}$$

where the last equality follows by noting that $\sum_{j} \mathbf{K}_{ji} [\mathbf{K}^{-1}]_{tj}$ is inner product of row *i* of **K** and row *t* of \mathbf{K}^{-1} , which is 1 if t = i and 0 otherwise. This completes the proof.

Lemma 2. For any set of chosen samples S_1 , S_2 , let \mathcal{P} be the operator of projection onto $span(S_1 \cup S_2)$. Then, $l(S_1 \cup S_2) - l(S_1) \leq \frac{\mathcal{P}(\nabla l(S_1))}{2m_{\omega}}$.

Proof. Observe that

$$0 \leq l(\mathsf{S}_{1} \cup \mathsf{S}_{2}) - l(\mathsf{S}_{1})$$

$$\leq \langle \nabla l(\mathsf{S}_{1}), Z(\mathsf{S}_{1} \cup \mathsf{S}_{2}) - Z(\mathsf{S}_{1}) \rangle_{k}$$

$$- \frac{m_{\omega}}{2} \| Z(\mathsf{S}_{1} \cup \mathsf{S}_{2}) - Z(\mathsf{S}_{1}) \|_{k}^{2}$$

$$\leq \underset{X \in \text{span}(\mathsf{S}_{1} \cup \mathsf{S}_{2})}{\arg \max} \langle \nabla l(\mathsf{S}_{1}), X - Z(\mathsf{S}_{1}) \rangle_{k} - \frac{m_{\omega}}{2} \| X - Z(\mathsf{S}_{1}) \|_{k}^{2}$$

$$= \underset{X}{\arg \max} \langle \mathcal{P}(\nabla l(\mathsf{S}_{1})), X - Z(\mathsf{S}_{1}) \rangle_{k} - \frac{m_{\omega}}{2} \| X - Z(\mathsf{S}_{1}) \|_{k}^{2}$$

Solving the argmax problem on the RHS for X, we get the required result.

A.4 PROOF OF THEOREM 3

We next present some notation and few lemmas that lead up to the main result of this section (Theorem 3). The domain of candidate atoms \mathcal{X} is split into $\{\mathcal{X}_j, j \in [s]\}$ over smachines, where machine j runs WKH on \mathcal{X}_j . Let G_j be the k-sized solution returned by running Algorithm 1 on \mathcal{X}_j , i.e., $G_j = WKH(\mathcal{X}_j, k)$. Note that each \mathcal{X}_j induces a partition onto the optimal r-sized solution S_r^* as follows (r = 1 for this theorem):

$$\begin{aligned} \mathsf{T}_{j} &:= \{ x \in \mathsf{S}_{1}^{\star} : x \notin \mathsf{WKH}(\mathcal{X}_{j} \cup x, k) \}, \\ \mathsf{T}_{j}^{c} &:= \{ x \in \mathsf{S}_{1}^{\star} : x \in \mathsf{WKH}(\mathcal{X}_{j} \cup x, k) \}. \end{aligned}$$

In other words, $\mathsf{T}_j = \mathsf{S}_1^{\star}$ if the j^{th} machine running WKH on $\mathcal{X}_j \cup \mathsf{S}_1^{\star}$ will not select it as among its output, and it is empty otherwise, since S_1^{\star} is a singleton. We re-use the definition of $l(\cdot)$ used in Appendix A.1.

Before moving to the proof of the main theorem, we prove two prerequisites. Recall G_j is the set of iterates selected by machine j. In this mini-result, we lower bound the expected improvement in the loss at the aggregator machine.

Lemma 3. For the aggregator machine that runs WKH over $\cup_j G_j$ (step 6 of Algorithm 2), we have, at selection of next sample point \mathbf{x}_i after having selected S, \exists machine j such that

$$\mathbb{E}[l(\mathsf{S} \cup \{\mathbf{x}_i\}) - l(\mathsf{S})] \ge \frac{m_{\omega}}{M_{\Omega}} \mathbb{E}\left(l(\mathsf{T}_j^c) - l(\mathsf{S})\right).$$

Proof. The expectation is over the random split of \mathcal{X} into \mathcal{X}_j for $j \in [s]$. We denote T_j^c to be the complement of T_j . Then, we have that

$$\begin{split} \mathbb{E}[l(\mathsf{S} \cup \{\mathbf{x}_i\}) - l(\mathsf{S})] \\ &\geq \mathbb{E}[\frac{1}{2M_{\Omega}}\gamma_{\mathsf{S}}] \\ &\geq \frac{1}{2M_{\Omega}}\sum_{\mathbf{x}\in\mathsf{S}_1^\star} \mathbb{P}(\mathbf{x}\in\cup_j\mathsf{G}_j)\mathbb{E}\langle\phi(\mathbf{x}),\nabla l(\mathsf{S})\rangle_k^2 \\ &= \frac{1}{2sM_{\Omega}}\sum_{\mathbf{x}\in\mathsf{S}_1^\star} \left[\sum_{b=1}^s \mathbb{P}(\mathbf{x}\in\mathsf{T}_b^c)\right] \mathbb{E}\langle\phi(\mathbf{x}),\nabla l(\mathsf{S})\rangle_k^2 \\ &= \frac{1}{2sM_{\Omega}}\sum_{b=1}^s\sum_{\mathbf{x}\in\mathsf{T}_b^c} \mathbb{E}\langle\phi(\mathbf{x}),\nabla l(\mathsf{S})\rangle_k^2 \\ &\geq \frac{m_{\omega}}{sM_{\Omega}}\sum_{b=1}^s \mathbb{E}\left(l(\mathsf{S}\cup\mathsf{T}_b^c) - l(\mathsf{S})\right) \\ &\geq \frac{m_{\omega}}{M_{\Omega}}\sum_{b=1}^s \mathbb{E}\left(l(\mathsf{T}_b^c) - l(\mathsf{S})\right) \\ &\geq \frac{m_{\omega}}{M_{\Omega}}\min_{b\in[s]} \mathbb{E}\left(l(\mathsf{T}_b^c) - l(\mathsf{S})\right). \end{split}$$

The equality in step 3 above is because of Lemma 5. \Box

In the following lemma, we lower bound the greedy improvement in the loss on each machine.

Lemma 4. For any individual worker machine j running local WKH, if S is the set of (i - 1) iterates already chosen, then at the selection of next sample point \mathbf{x}_i , $l(S \cup {\mathbf{x}_i}) \ge (l(\mathsf{T}_j) - l(\mathsf{S}))$.

Proof. We proceed as in proof of Theorem 2 in Appendix A.1. From (1), we have,

$$\begin{split} l(\mathsf{S} \cup \{\mathbf{x}\}) - l(\mathsf{S}) &\geq \frac{1}{2M_{\Omega}}\gamma_{\mathsf{S}} \\ &\geq \frac{1}{2M_{\Omega}}\sum_{\mathbf{x}_{j} \in \mathsf{T}_{j}} \langle \phi(\mathbf{x}_{j}), \nabla l(\mathsf{S}) \rangle_{k}^{2} \\ &\geq \frac{m_{\omega}}{M_{\Omega}} \left(l(\mathsf{S} \cup \mathsf{T}_{j}) - l(\mathsf{S}) \right) \\ &\geq \frac{m_{\omega}}{M_{\Omega}} \left(l(\mathsf{T}_{j}) - l(\mathsf{S}) \right). \end{split}$$

We are now ready to prove Theorem 3.

Proof of Theorem 3. If, for a random split of \mathcal{X} , for any $j \in [s], \mathsf{T}_j = \mathsf{S}_1^*$, then the given rate follows from Lemma 4, after following the straightforward steps covered in proof of Theorem 2 for proving the rate from the given condition

on $l(\cdot)$. On the other hand, if none of $j \in [s]$, $\mathsf{T}_j = \mathsf{S}_1^\star$, then $\forall j \in [s], \mathsf{T}_j = \emptyset \implies \mathsf{T}_j^c = \mathsf{S}_1^\star$. In this case, the given rate follows from Lemma 3.

Finally, here is the statement and proof of an auxiliary lemma that was used above.

Lemma 5. For any $x \in \mathcal{X}$, $\mathbb{P}(x \in \bigcup_j G_j) = \frac{1}{s} \sum_j \mathbb{P}(x \in \mathsf{T}_j^c)$.

Proof. We have

$$\begin{split} \mathbb{P}(x \in \cup_{j} \mathsf{G}_{j}) \\ &= \sum_{j} \mathbb{P}(x \in \mathcal{X}_{j} \cap x \in \mathrm{WKH}(\mathcal{X}_{j}, k)) \\ &= \sum_{j} \mathbb{P}(x \in \mathcal{X}_{j}) \mathbb{P}(x \in \mathrm{WKH}(\mathcal{X}_{j}, k) | x \in \mathcal{X}_{j}) \\ &= \sum_{j} \mathbb{P}(x \in \mathcal{X}_{j}) \mathbb{P}(x \in \mathsf{T}_{j}^{c}) \\ &= \frac{1}{s} \mathbb{P}(x \in \mathsf{T}_{j}^{c}). \end{split}$$