Geometric Rates of Convergence for Kernel-based Sampling Algorithms Supplementary material

Rajiv Khanna ${ }^{1}$
Liam Hodgkinson ${ }^{1,2}$
Michael W. Mahoney ${ }^{1,2}$
${ }^{1}$ Department of Statistics, UC Berkeley
${ }^{2}$ International Computer Science Institute (ICSI), Berkeley

A APPENDIX

A. 1 PROOF OF THEOREM 2

We begin by first proving Theorem 2, since the additional assumption of realizability makes it an easier read. For further ease of exposition, instead of directly working with $g(\cdot)$, we translate the function to remove any constants not dependent on the variable. We write,

$$
l(\mathbf{S}):=\left\|\mu_{\pi}\right\|_{k}^{2}-g(\mathbf{S})=\mathbf{z}^{\top} \mathbf{K}^{-1} \mathbf{z}
$$

Some auxiliary Lemmas are proved later in this section. We use $Z\left(\mathrm{~S}_{j}\right):=\sum_{j} w_{j} \phi\left(\mathbf{x}_{j}\right)$ Further, note that the Assumption 2, when applied for $h(\cdot)$, ensures that for any iterates considered in this proof we have that

$$
\begin{aligned}
-\frac{m_{\omega}}{2} & \left\|Z\left(\mathrm{~S}_{i}\right)-Z\left(\mathrm{~S}_{j}\right)\right\|_{k}^{2} \\
& \geq l\left(\mathrm{~S}_{i}\right)-l\left(\mathrm{~S}_{j}\right)-\left\langle\nabla l\left(\mathrm{~S}_{i}\right), Z\left(\mathrm{~S}_{i}\right)-Z\left(\mathrm{~S}_{j}\right)\right\rangle_{k} \\
& \geq-\frac{M_{\Omega}}{2}\left\|Z\left(\mathrm{~S}_{i}\right)-Z\left(\mathrm{~S}_{j}\right)\right\|_{k}^{2}
\end{aligned}
$$

Proof. Say $(i-1)$ steps of the Algorithm 1 have been performed to select the set S. Let $\mathbf{w} \in \mathbb{R}^{(\imath-1)}$ be the corresponding weight vector. Let $h(\mathbf{S}, \mathbf{u}):=\left\|\mu_{\pi}\right\|_{k}^{2}-$ $\left\|\mu_{\pi}-\sum_{j} u_{j} \phi\left(\mathbf{x}_{j}\right)\right\|_{k}^{2}$, so that $l(\mathrm{~S})=\min _{\mathbf{u}} h(\mathrm{~S}, \mathbf{u})$ (as per Lemma 11. Set weight vector $\mathbf{u} \in \mathbb{R}^{i}$ as follows. For $j \in[0, i-1], u_{i}=w_{i}$. Set $u_{i}=\alpha$, where α is an arbitrary scalar.

From weight optimality proved in Lemma 1 .

$$
l\left(\mathrm{~S} \cup\left\{\mathbf{x}_{i}\right\}\right)-l(\mathrm{~S}) \geq h\left(\mathrm{~S} \cup\left\{\mathbf{x}_{i}\right\}, \mathbf{u}\right)-l(\mathrm{~S})
$$

for an arbitrary $\alpha \in \mathbb{R}$. From Assumption 2 (smoothness),

$$
l\left(\mathrm{~S} \cup\left\{\mathbf{x}_{i}\right\}\right)-l(\mathrm{~S}) \geq \alpha\left\langle\nabla l(\mathrm{~S}), \phi\left(\mathbf{x}_{i}\right)\right\rangle_{k}-\alpha^{2} \frac{M_{\Omega}}{2}
$$

Let γ_{S} be the optimum value of the solution of the inner LMO problem. Since \mathbf{x}_{i} is the optimizing atom,

$$
l\left(\mathrm{~S} \cup\left\{\mathbf{x}_{i}\right\}\right)-l(\mathrm{~S}) \geq \alpha \gamma_{\mathrm{S}}-\alpha^{2} \frac{M_{\Omega}}{2}
$$

Let $\mathrm{S}_{\perp}^{\star}$ be the set obtained by orthogonalizing S_{r}^{\star} with respect to S using the Gram-Schmidt procedure. Putting in $\alpha=\frac{\gamma_{\mathrm{s}}}{M_{\Omega}}$, we get,

$$
\begin{align*}
l\left(\mathrm{~S} \cup\left\{\mathbf{x}_{i}\right\}\right)-l(\mathrm{~S}) & \geq \frac{1}{2 M_{\Omega}} \gamma_{\mathrm{S}} \tag{1}\\
& \geq \frac{1}{2 r M_{\Omega}} \sum_{\mathbf{x}_{j} \in \mathrm{~S}_{\perp}^{\star}}\left\langle\phi\left(\mathbf{x}_{j}\right), \nabla l(\mathrm{~S})\right\rangle_{k}^{2} \\
& \geq \frac{m_{\omega}}{r M_{\Omega}}\left(l\left(\mathrm{~S} \cup \mathrm{~S}_{\perp}^{\star}\right)-l(\mathrm{~S})\right) \tag{2}\\
& \geq \frac{m_{\omega}}{r M_{\Omega}}\left(l\left(\mathrm{~S}_{r}^{\star}\right)-l(\mathrm{~S})\right) \\
& =\frac{m_{\omega}}{r M_{\Omega}}\left(\left\|\mu_{\pi}\right\|_{k}^{2}-l(\mathrm{~S})\right)
\end{align*}
$$

The second inequality is true because $\gamma_{\mathrm{S}}=\left\langle\nabla l(\mathrm{~S}), \mathbf{x}_{i}\right\rangle_{k}$ is the optimum value of the inner LMO problem in the $i^{\text {th }}$ iteration. The third inequality follows from Lemma 2 The fourth inequality is true because of monotonicity of $l(\cdot)$, and the final equality is true because of Assumption 1 (realizability).

Let $C:=\frac{m_{\omega}}{r M_{\Omega}}$. We have $l\left(\mathrm{~S} \cup\left\{\mathbf{x}_{i}\right\}\right)-l(\mathrm{~S})=g(\mathrm{~S})-g(\mathrm{~S} \cup$ $\left.\left\{\mathbf{x}_{i}\right\}\right) \geq C g(\mathrm{~S}) \Longrightarrow g\left(\mathrm{~S} \cup\left\{\mathbf{x}_{i}\right\}\right) \leq(1-C) g(\mathrm{~S})$. The result now follows.

A. 2 PROOF OF THEOREM 1

Proof. We proceed as in the proof of Theorem 2, but by replacing S_{r}^{\star} with T_{r}. From (2),

$$
l\left(\mathrm{~S} \cup\left\{\mathbf{x}_{i}\right\}\right)-l(\mathrm{~S}) \geq \frac{m_{\omega}}{r M_{\Omega}}\left(l\left(\mathrm{~T}_{r}\right)-l(\mathrm{~S})\right)
$$

Adding and subtracting $l\left(\mathrm{~T}_{r}\right)$ on the LHS and rearranging,

$$
l\left(\mathrm{~T}_{r}\right)-l\left(\mathrm{~S} \cup\left\{\mathbf{x}_{i}\right\}\right) \leq\left(1-\frac{m_{\omega}}{r M_{\Omega}}\right)\left(l\left(\mathrm{~T}_{r}\right)-l(\mathrm{~S})\right)
$$

Thus after k iterations,

$$
l\left(\mathrm{~T}_{r}\right)-l\left(\mathrm{~S}_{k}\right) \leq\left(1-\frac{m_{\omega}}{r M_{\Omega}}\right)^{k}\left(l\left(\mathrm{~T}_{r}\right)-l(\emptyset)\right)
$$

Rearranging,

$$
\begin{aligned}
l\left(\mathrm{~S}_{k}\right) & \geq\left(1-\left(1-\frac{m_{\omega}}{r M_{\Omega}}\right)^{k}\right) l\left(\mathrm{~T}_{r}\right) \\
& \geq\left(1-\exp \left(-\frac{k m_{\omega}}{r M_{\Omega}}\right)\right) l\left(\mathrm{~T}_{r}\right)
\end{aligned}
$$

With $k=\left(r \frac{M_{\Omega}}{m_{\omega}} \log \frac{1}{\epsilon}\right)$, we get,

$$
l\left(\mathrm{~S}_{k}\right) \geq(1-\epsilon) l\left(\mathrm{~T}_{r}\right)
$$

The result now follows.

A. 3 AUXILIARY LEMMAS

The following Lemma proves that the weights w_{i} in $g(\mathrm{~S})$ obtained using the posterior inference are an optimum choice that minimize the distance to μ_{π} in the RKHS over any set of weights Khanna et al. 2019.

Lemma 1. The residual $\mu_{\pi}-\sum_{j} w_{j} \phi\left(\mathbf{x}_{j}\right)$ is orthogonal to $\mathbf{x}_{i} \in \mathrm{~S} \forall$ i. In other words, for any set of samples S , $g(S)=\min _{\mathbf{u}}\left\|\mu_{\pi}-\sum_{i} u_{i} \phi\left(\mathbf{x}_{i}\right)\right\|_{k}$.

Proof. Recall that $w_{i}=\sum_{j}\left[\mathbf{K}^{-1}\right]_{i j} \mathbf{z}_{j}$, and $\mathbf{z}_{i}=$ $\int k\left(\mathbf{x}, \mathbf{x}_{i}\right) d \pi(\mathbf{x})$. For an arbitrary index i,

$$
\begin{aligned}
\left\langle\mu_{\pi}\right. & \left.-\sum_{j} w_{j} \phi\left(\mathbf{x}_{j}\right), \phi\left(\mathbf{x}_{i}\right)\right\rangle_{k} \\
& =\int k\left(\mathbf{x}, \mathbf{x}_{i}\right) d \pi(\mathbf{x})-\left\langle\sum_{j} w_{j} \phi\left(\mathbf{x}_{j}\right), \phi\left(\mathbf{x}_{i}\right)\right\rangle_{k} \\
& =\mathbf{z}_{i}-\left\langle\sum_{j} w_{j} \phi\left(\mathbf{x}_{j}\right), \phi\left(\mathbf{x}_{i}\right)\right\rangle_{k} \\
& =\mathbf{z}_{i}-\sum_{j} w_{j} k\left(\mathbf{x}_{j}, \mathbf{x}_{i}\right) \\
& =\mathbf{z}_{i}-\sum_{j} \sum_{t}\left[\mathbf{K}^{-1}\right]_{t j} \mathbf{z}_{t} k\left(\mathbf{x}_{j}, \mathbf{x}_{i}\right) \\
& =\mathbf{z}_{i}-\sum_{t} \mathbf{z}_{t} \sum_{j} \mathbf{K}_{j i}\left[\mathbf{K}^{-1}\right]_{t j} \\
& =\mathbf{z}_{i}-\mathbf{z}_{i}
\end{aligned}
$$

where the last equality follows by noting that $\sum_{j} \mathbf{K}_{j i}\left[\mathbf{K}^{-1}\right]_{t j}$ is inner product of row i of \mathbf{K} and row t of \mathbf{K}^{-1}, which is 1 if $t=i$ and 0 otherwise. This completes the proof.

Lemma 2. For any set of chosen samples $\mathrm{S}_{1}, \mathrm{~S}_{2}$, let \mathcal{P} be the operator of projection onto $\operatorname{span}\left(\mathrm{S}_{1} \cup \mathrm{~S}_{2}\right)$. Then, $l\left(\mathrm{~S}_{1} \cup \mathrm{~S}_{2}\right)-l\left(\mathrm{~S}_{1}\right) \leq \frac{\mathcal{P}\left(\nabla l\left(\mathrm{~S}_{1}\right)\right)}{2 m_{\omega}}$.

Proof. Observe that

$$
\begin{aligned}
0 \leq & l\left(\mathrm{~S}_{1} \cup \mathrm{~S}_{2}\right)-l\left(\mathrm{~S}_{1}\right) \\
\leq & \left\langle\nabla l\left(\mathrm{~S}_{1}\right), Z\left(\mathrm{~S}_{1} \cup \mathrm{~S}_{2}\right)-Z\left(\mathrm{~S}_{1}\right)\right\rangle_{k} \\
& -\frac{m_{\omega}}{2}\left\|Z\left(\mathrm{~S}_{1} \cup \mathrm{~S}_{2}\right)-Z\left(\mathrm{~S}_{1}\right)\right\|_{k}^{2} \\
\leq & \underset{X \in \operatorname{span}\left(\mathrm{~S}_{1} \cup \mathrm{~S}_{2}\right)}{\arg \max }\left\langle\nabla l\left(\mathrm{~S}_{1}\right), X-Z\left(\mathrm{~S}_{1}\right)\right\rangle_{k}-\frac{m_{\omega}}{2}\left\|X-Z\left(\mathrm{~S}_{1}\right)\right\|_{k}^{2} \\
= & \underset{X}{\arg \max \left\langle\mathcal{P}\left(\nabla l\left(\mathrm{~S}_{1}\right)\right), X-Z\left(\mathrm{~S}_{1}\right)\right\rangle_{k}-\frac{m_{\omega}}{2}\left\|X-Z\left(\mathrm{~S}_{1}\right)\right\|_{k}^{2}}
\end{aligned}
$$

Solving the argmax problem on the RHS for X, we get the required result.

A. 4 PROOF OF THEOREM 3

We next present some notation and few lemmas that lead up to the main result of this section (Theorem 3). The domain of candidate atoms \mathcal{X} is split into $\left\{\mathcal{X}_{j}, j \in[s]\right\}$ over s machines, where machine j runs WKH on \mathcal{X}. Let G_{j} be the k-sized solution returned by running Algorithm 1 on \mathcal{X}_{j}, i.e., $\mathrm{G}_{j}=\operatorname{WKH}\left(\mathcal{X}_{j}, k\right)$. Note that each \mathcal{X}_{j} induces a partition onto the optimal r-sized solution S_{r}^{\star} as follows ($r=1$ for this theorem):

$$
\begin{aligned}
\mathrm{T}_{j} & :=\left\{x \in \mathrm{~S}_{1}^{\star}: x \notin \mathrm{WKH}\left(\mathcal{X}_{j} \cup x, k\right)\right\}, \\
\mathrm{T}_{j}^{c} & :=\left\{x \in \mathrm{~S}_{1}^{\star}: x \in \mathrm{WKH}\left(\mathcal{X}_{j} \cup x, k\right)\right\} .
\end{aligned}
$$

In other words, $\mathrm{T}_{j}=\mathrm{S}_{1}^{\star}$ if the $j^{\text {th }}$ machine running WKH on $\mathcal{X}_{j} \cup \mathrm{~S}_{1}^{\star}$ will not select it as among its output, and it is empty otherwise, since S_{1}^{\star} is a singleton. We re-use the definition of $l(\cdot)$ used in Appendix A. 1 .
Before moving to the proof of the main theorem, we prove two prerequisites. Recall G_{j} is the set of iterates selected by machine j. In this mini-result, we lower bound the expected improvement in the loss at the aggregator machine.

Lemma 3. For the aggregator machine that runs WKH over $\cup_{j} \mathrm{G}_{j}$ (step 6 of Algorithm 2), we have, at selection of next sample point \mathbf{x}_{i} after having selected S, \exists machine j such that

$$
\mathbb{E}\left[l\left(\mathrm{~S} \cup\left\{\mathbf{x}_{i}\right\}\right)-l(\mathrm{~S})\right] \geq \frac{m_{\omega}}{M_{\Omega}} \mathbb{E}\left(l\left(\mathrm{~T}_{j}^{c}\right)-l(\mathrm{~S})\right)
$$

Proof. The expectation is over the random split of \mathcal{X} into \mathcal{X}_{j} for $j \in[s]$. We denote T_{j}^{c} to be the complement of T_{j}. Then, we have that

$$
\begin{aligned}
& \mathbb{E}\left[l\left(\mathrm{~S} \cup\left\{\mathbf{x}_{i}\right\}\right)-l(\mathrm{~S})\right] \\
& \geq \mathbb{E}\left[\frac{1}{2 M_{\Omega}} \gamma_{\mathrm{S}}\right] \\
& \geq \frac{1}{2 M_{\Omega}} \sum_{\mathbf{x} \in \mathrm{S}_{1}^{\star}} \mathbb{P}\left(\mathbf{x} \in \cup_{j} \mathrm{G}_{j}\right) \mathbb{E}\langle\phi(\mathbf{x}), \nabla l(\mathrm{~S})\rangle_{k}^{2} \\
&=\frac{1}{2 s M_{\Omega}} \sum_{\mathbf{x} \in \mathrm{S}_{1}^{\star}}\left[\sum_{b=1}^{s} \mathbb{P}\left(\mathbf{x} \in \mathrm{~T}_{b}^{c}\right)\right] \mathbb{E}\langle\phi(\mathbf{x}), \nabla l(\mathrm{~S})\rangle_{k}^{2} \\
&=\frac{1}{2 s M_{\Omega}} \sum_{b=1}^{s} \sum_{\mathbf{x} \in \mathbf{T}_{b}^{c}} \mathbb{E}\langle\phi(\mathbf{x}), \nabla l(\mathrm{~S})\rangle_{k}^{2} \\
& \geq \frac{m_{\omega}}{s M_{\Omega}} \sum_{b=1}^{s} \mathbb{E}\left(l\left(\mathrm{~S} \cup \mathrm{~T}_{b}^{c}\right)-l(\mathrm{~S})\right) \\
& \geq \frac{m_{\omega}}{s M_{\Omega}} \sum_{b=1}^{s} \mathbb{E}\left(l\left(\mathrm{~T}_{b}^{c}\right)-l(\mathrm{~S})\right) \\
& \geq \frac{m_{\omega}}{M_{\Omega}} \min _{b \in[s]} \mathbb{E}\left(l\left(\mathrm{~T}_{b}^{c}\right)-l(\mathrm{~S})\right)
\end{aligned}
$$

The equality in step 3 above is because of Lemma 5 .

In the following lemma, we lower bound the greedy improvement in the loss on each machine.

Lemma 4. For any individual worker machine j running local WKH, if S is the set of $(i-1)$ iterates already chosen, then at the selection of next sample point $\mathbf{x}_{i}, l\left(\mathrm{~S} \cup\left\{\mathbf{x}_{i}\right\}\right) \geq$ $\left(l\left(\mathrm{~T}_{j}\right)-l(\mathrm{~S})\right)$.

Proof. We proceed as in proof of Theorem 2 in Appendix A. 1 From (1), we have,

$$
\begin{aligned}
l(\mathrm{~S} \cup\{\mathbf{x}\})-l(\mathrm{~S}) & \geq \frac{1}{2 M_{\Omega}} \gamma_{\mathrm{S}} \\
& \geq \frac{1}{2 M_{\Omega}} \sum_{\mathbf{x}_{j} \in \mathrm{~T}_{j}}\left\langle\phi\left(\mathbf{x}_{j}\right), \nabla l(\mathrm{~S})\right\rangle_{k}^{2} \\
& \geq \frac{m_{\omega}}{M_{\Omega}}\left(l\left(\mathrm{~S} \cup \mathrm{~T}_{j}\right)-l(\mathrm{~S})\right) \\
& \geq \frac{m_{\omega}}{M_{\Omega}}\left(l\left(\mathbf{T}_{j}\right)-l(\mathrm{~S})\right) .
\end{aligned}
$$

We are now ready to prove Theorem 3

Proof of Theorem 3. If, for a random split of \mathcal{X}, for any $j \in[s], \mathrm{T}_{j}=\mathrm{S}_{1}^{\star}$, then the given rate follows from Lemma 4 , after following the straightforward steps covered in proof of Theorem 2 for proving the rate from the given condition
on $l(\cdot)$. On the other hand, if none of $j \in[s], \mathrm{T}_{j}=\mathrm{S}_{1}^{\star}$, then $\forall j \in[s], \mathrm{T}_{j}=\emptyset \Longrightarrow \mathrm{T}_{j}^{c}=\mathrm{S}_{1}^{\star}$. In this case, the given rate follows from Lemma 3

Finally, here is the statement and proof of an auxiliary lemma that was used above.

Lemma 5. For any $x \in \mathcal{X}, \mathbb{P}\left(x \in \cup_{j} \mathrm{G}_{j}\right)=\frac{1}{s} \sum_{j} \mathbb{P}(x \in$ T_{j}^{c}.

Proof. We have

$$
\begin{aligned}
\mathbb{P}(x & \left.\in \cup_{j} \mathrm{G}_{j}\right) \\
& =\sum_{j} \mathbb{P}\left(x \in \mathcal{X}_{j} \cap x \in \mathrm{WKH}\left(\mathcal{X}_{j}, k\right)\right) \\
& =\sum_{j} \mathbb{P}\left(x \in \mathcal{X}_{j}\right) \mathbb{P}\left(x \in \operatorname{WKH}\left(\mathcal{X}_{j}, k\right) \mid x \in \mathcal{X}_{j}\right) \\
& =\sum_{j} \mathbb{P}\left(x \in \mathcal{X}_{j}\right) \mathbb{P}\left(x \in \mathrm{~T}_{j}^{c}\right) \\
& =\frac{1}{s} \mathbb{P}\left(x \in \mathrm{~T}_{j}^{c}\right)
\end{aligned}
$$

