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Abstract

A problem for many kernel-based methods is that the amount of computation required to
find the solution scales as O(n?®), where n is the number of training examples. We develop
and analyze an algorithm to compute an easily-interpretable low-rank approximation to an
n xn Gram matrix GG such that computations of interest may be performed more rapidly. The
approximation is of the form G}, = C W,j CT, where C is a matrix consisting of a small number
¢ of columns of G and Wy, is the best rank-k approximation to W, the matrix formed by the
intersection between those ¢ columns of G' and the corresponding ¢ rows of G. An important
aspect of the algorithm is the probability distribution used to randomly sample the columns;
we will use a judiciously-chosen and data-dependent nonuniform probability distribution. Let
|||l and [|-||z denote the spectral norm and the Frobenius norm, respectively, of a matrix, and
let G be the best rank-k approximation to G. We prove that by choosing O(k/e*) columns

n
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both in expectation and with high probability, for both ¢ = 2, F, and for all £ : 0 < k <
rank(W). This approximation can be computed using O(n) additional space and time, after
making two passes over the data from external storage. The relationships between this algo-
rithm, other related matrix decompositions, and the Nystrém method from integral equation
theory are discussed.

1 Introduction

1.1 Background

Given a collection X of data points, which are often but not necessarily elements of R, techniques
such as linear Support Vector Machines (SVMs), Gaussian Processes (GPs), Principle Compo-
nent Analysis (PCA), and the related Singular Value Decomposition (SVD), identify and extract
structure from A by computing linear functions, i.e., functions in the form of dot products, of the
data. For example, in PCA the subspace spanned by the first k£ eigenvectors is used to give a k
dimensional model of the data with minimal residual; thus, it provides a low-dimensional repre-
sentation of the data. Such spectral analysis has a rich theoretical foundation and has numerous
practical applications.
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In many cases, however, there is nonlinear structure in the data (or the data, e.g. text, may not
support the basic linear operations of addition and scalar multiplication). In these cases, kernel-
based learning methods have proved to be quite useful [9, 33]. Kernel-based learning methods
are a class of statistical learning algorithms, the best known examples of which are SVMs [9].
In this approach, data items are mapped into high-dimensional spaces, where information about
their mutual positions (in the form of inner products) is used for constructing classification,
regression, or clustering rules. Kernel-based algorithms exploit the information encoded in the
inner product between all pairs of data items and are successful in part because there is often an
efficient method to compute inner products between very complex or even infinite dimensional
vectors. Thus, kernel-based algorithms provide a way to deal with nonlinear structure by reducing
nonlinear algorithms to algorithms that are linear in some feature space F that is nonlinearly
related to the original input space.

More precisely, assume that the data consists of vectors X W, XM ¢ ¥ ¢ R™ and let
X € R™*" be the matrix whose i-th column is X (. In kernel-based methods, a set of features
is chosen that define a space F, where it is hoped relevant structure will be revealed, the data
X are then mapped to the feature space F using a mapping ® : X — F, and then classification,
regression, or clustering is performed in F using traditional methods such as linear SVMs, GPs,
or PCA. If F is chosen to be a dot product space and if one defines the kernel matrix, also known
as the Gram matrix, G € R**" as G;; = k(z;,zj) = (®(z;), ®(x;)), then any algorithm whose
operations can be expressed in the input space in terms of dot products can be generalized to
an algorithm which operates in the feature space by substituting a kernel function for the inner
product. In practice, this means presenting the Gram matrix G in place of the input covariance
matrix X7 X. Relatedly, using the kernel k instead of a dot product in the input space corresponds
to mapping the data set into a (usually) high-dimensional dot product space F by a (usually
nonlinear) mapping ® : R™ — F, and taking dot products there, i.e., k(z;, z;) = (®(z;), P(x;)).
Note that for the commonly-used Mercer kernels, G is a symmetric positive semidefinite (SPSD)
maftrix.

The generality of this framework should be emphasized. For example, there has been much
work recently on dimensionality reduction for nonlinear manifolds in high-dimensional spaces.
See, e.g., Isomap, local linear embedding, and graph Laplacian eigenmap [36, 32, 4] as well as
Hessian eigenmaps and semidefinite embedding [11, 37]. These methods first induce a local
neighborhood structure on the data and then use this local structure to find a global embedding
of the manifold in a lower dimensional space. The manner in which these different algorithms use
the local information to construct the global embedding is quite different, but in [26] they are
interpreted as kernel PCA applied to specially constructed Gram matrices.

This “kernel trick” has been quite successful for extracting nonlinear structure in large data
sets when the features are chosen such that the structure in the data is more manifest in the feature
space than in the original space. Although in many cases the features are chosen such that the
Gram maftrix is sparse, in which case sparse matrix computation methods may be used, in other
applications the Gram matrix is dense, but is well approximated by a low-rank matrix. In this
case, calculations of interest (such as the matrix inversion needed in GP prediction, the quadratic
programming problem for SVMs, and the computation of the eigendecomposition of the Gram
matrix) will still generally take space which is O(n?) and time which is O(n3). This is prohibitive if
n, the number of data points, is large. Recent work in the learning theory community has focused
on taking advantage of this low-rank structure in order to perform learning tasks of interest more
efficiently. For example, in [2], several randomized methods are used in order to speed up kernel
PCA. These methods have provable guarantees on the quality of their approximation and may
be viewed as replacing the kernel function £ by a “randomized kernel” which behaves like k£ in
expectation. Relatedly, in [40], uniform sampling without replacement is used to choose a small



set of basis training points, from which an approximation to the Gram matrix is constructed.
Although this algorithm does not come with provable performance guarantees, it may be viewed
as a special case of our main algorithm, and it was shown empirically to perform well on two
data sets for approximate GP classification and regression. It was also interpreted in terms of
the Nystrom method from integral equation theory; this method has also been applied recently
in the learning theory community to approximate the solution of spectral partitioning for image
and video segmentation [21] and to extend the eigenfunctions of a data-dependent kernel to new
data points [6, 28]. Related work taking advantage of low-rank structure includes [34, 20, 39, 8,
30, 38, 3.

1.2 Summary of Main Result

In this paper, we develop and analyze an algorithm to compute an easily-interpretable low-rank
approximation to an nxn Gram matrix G. Our main result, the MAIN APPROXIMATION algorithm
of Section 4.2, is an algorithm that, when given as input a SPSD matrix G € R"*"™, computes a
low-rank approximation to G of the form G}, = CW,;Ir CT, where C' € R"*¢ is a matrix formed by
randomly choosing a small number ¢ of columns (and thus rows) of G and W), € R®*¢ is the best
rank-k approximation to W, the matrix formed by the intersection between those ¢ columns of
G and the corresponding ¢ rows of G. The columns are chosen in ¢ independent random trials
(and thus with replacement) according to a judiciously-chosen and data-dependent nonuniform
probability distribution. The nonuniform probability distribution will be carefully chosen and will
be important for the provable bounds we obtain. Let ||-||, and ||-|| denote the spectral norm and
the Frobenius norm, respectively, and let Gy, be the best rank-k approximation to G. Our main
result, presented in a more precise form in Theorem 3, is that under appropriate assumptions:

|G = CWFCT||, < 116G = Gillg +€)_ G, (1)
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in both expectation and with high probability, for both £ = 2, F, for all k£ : 0 < k < rank(W).
This approximation can be computed in O(n) space and time after two passes over the data from
external storage.

In addition to developing and analyzing an algorithm which provides a provably good decom-
position of a Gram matrix, which may then be used to speed up kernel-based learning methods,
this paper makes several contributions. First, it extends related work of Williams and Seeger [40]
involving uniform sampling to a more natural general case and provides a discussion of when that
is necessary. Second, it provides rigorous proofs of sufficient conditions for the methods to be
applicable for any data set and discusses when other conditions may be more appropriate. Third,
it clarifies several potential misconceptions that have appeared in the literature regarding the
relationship between recent work on Nystrom-based kernel methods [40, 38, 21] and the low-rank
approximation algorithm of Frieze, Kannan, and Vempala [22, 16]. Finally, it extends random
sampling methodology of the authors to a new application domain and it extends the ability of
those methods from simply extracting linear structure of the data to extracting linear structure
while respecting nonlinear structures such as the SPSD property.

1.3 Outline of the Paper

After this introduction, in Section 2 we provide a review of relevant linear algebra. Then, in
Section 3 we review several aspects of our random sampling methodology of [15, 16, 17] that will
be useful for the proofs in this paper; see also [18, 19]. In Section 4 we present our main algorithm
and our main theorem, providing a brief discussion of the algorithm and a proof of the theorem.



Then, in Section 5 we discuss in detail several aspects of the algorithm and its relationship to
previous work, with a particular emphasis on the relationships between our main algorithm, the
Nystrom method of [40, 38, 21], and our previous randomized SVD and CUR algorithms [16, 17].
Finally, in Section 6 we provide a brief conclusion.

2 Review of Relevant Linear Algebra

This section contains a review of linear algebra that will be useful throughout the paper. For more
details about general linear algebra, see [23, 27, 7]; for more details about matrix perturbation
theory, see [35]; and for more details about generalized inverses, see [29, 5].

For a vector z € R" we let |z| = (31, |$i|2)1/2 denote its Euclidean length. For a matrix
A€ R™*" we let AU), j =1,...,n, denote the j-th column of A as a column vector and Ay
i =1,...,m, denote the i-th row of A as a row vector. We denote matrix norms by [|A||¢, using

subscripts to distinguish between various norms. Of particular interest will be the Frobenius
norm, the square of which is [|A[|7 = 327", > A%j, and the spectral norm, which is defined
by ||All; = sup,egn, 420 %. These norms are related to each other as: [[Al|, < [JA]p <

Vn||Ally. If A € R™<" | then there exist orthogonal matrices U = [ulu?...u™] € R™ ™ and
V = [v'o? ... v"] € RY" where {ut}z1 € R™ and {vt}?zl € R™ are such that

UTAV =% = diag(oy, .. .,0,),

where ¥ € R™ ", p = min{m,n} and 01 > 02 > ... > 0, > 0. Equivalently, A = UxvT,
The three matrices U, V, and ¥ constitute the Singular Value Decomposition (SVD) of A. If
k < r =rank(A) and we define Ay = Uy SV, = Zle outv!” then the distance (as measured by
both ||-||, and ||-||7) between A and any rank k approximation to A is minimized by Aj. Annxn
matrix A is a symmetric positive semidefinite (SPSD) matrix if A is symmetric and z7 Az > 0
for all nonzero vectors z. If A is a SPSD matrix, then its SVD may be written A = UXU”.

From the perturbation theory of matrices it is known that the size of the difference between
two matrices can be used to bound the difference between the singular value spectrum of the two
matrices [35, 7]. In particular, if A, E € R™*" m > n, then:

s [ov(A+ B) = o(A)] < B, )
and .

> (ok(A+ E) - ox(A)* < || B (3)

k=1

The latter inequality is known as the Hoffman-Wielandt inequality.
Let A € R™*" let W € R™™ and @) € R"*™ be symmetric positive definite matrices, and
consider the following generalization of the four Moore-Penrose conditions:

AXA = A
XAX = X
(WAX)" = WAX
Qx4 = Qx4

ot

—~ Y~ ~
(=]
~— — — ~—

i) = Al and is the

{W, Q}-weighted-{1, 2}-generalized inverse of A. It can be expressed in terms of the unweighted

The unique X that satisfies these four conditions is denoted X = A



generalized inverse of A as: AEFWQ) =Q /2 (WI/ZAQ*I/Z)—F W1/2. Note that if W = I,,, and Q =
I, then the unique X € R"*" satisfying these four conditions is the Moore-Penrose generalized
inverse AT, If r = rank(A), then in terms of the SVD the generalized inverse takes the following

form: At =VS T =" o7 wtul”.

3 Review of Our Random Sampling Methodology

Recent work in the theory of randomized algorithms has focused on matrix problems [22, 12, 1,
2, 13, 14, 15, 16, 17, 18, 19, 31]. In particular, our previous work has applied random sampling
methods to the approximation of several common matrix computations such as matrix multipli-
cation [15], the computation of low-rank approximations to a matrix [16], the computation of the
CUR matrix decomposition [17], and approximating the feasibility of linear programs [18, 19]. In
this section, we review two results that will be used in this paper.

3.1 Review of Approximate Matrix Multiplication

The BASICMATRIXMULTIPLICATION algorithm to approximate the product of two matrices is
presented and analyzed in [15]. When this algorithm is given as input a matrix, A € R™*" a
probability distribution {p;};_,, and a number ¢ < n, it returns as output a matrix C € R™*¢
(such that CCT ~ AAT) whose columns are ¢ randomly-chosen and suitably-rescaled columns of
A. An important aspect of this algorithm is the probability distribution {p;};" ; used to choose
columns of A. Although one could always use a uniform distribution to choose the columns
to form the matrix C, superior results are obtained if the probabilities are chosen judiciously.
Sampling probabilities of the form (8), that depend on the lengths squared of the columns of A,
are the optimal sampling probabilities for approximating AA”T by CCT, in a sense made precise
in [15]. Note that if these probabilities are relaxed such that p, > ‘A(k)f / ||A||% for some
positive § < 1, then bounds similar to those in the following theorem will be obtained, with a
small g-dependent loss in accuracy. Note also that although we studied random sampling with
replacement for ease of analysis, it is not known how to compute efficiently optimal nonuniform
sampling probabilities when the sampling is performed without replacement. In [15] we prove a
more general version of the following theorem.

Theorem 1 Suppose A € R™*" ¢ € Z* such that 1 < ¢ <n, and {p;}_, are such that

AW
AT

(8)

Pr =

Construct C with the BASICMATRIXMULTIPLICATION algorithm of [15], and let CCT be an ap-
prozimation to AAT. Then,

1
B[[447 - 0CT|;] < Z I4llp- (9)

Furthermore, let § € (0,1) and n =1+ +/8log(1/68). Then, with probability at least 1 — 4,

|4AT —cCT|, < % IA]I%.. (10)



3.2 Review of Approximate Singular Value Decomposition

The LINEARTIMESVD algorithm is presented in [16]. It is an algorithm which, when given a
matrix A € R™*" uses O(m + n) additional space and time to compute an approximation to the
top k singular values and the corresponding left singular vectors of A. It does so by randomly
choosing ¢ columns of A and rescaling each appropriately to construct a matrix C € R™*¢
computing the top k singular values and corresponding right singular vectors of C' by performing
an eigendecomposition of C”C, and using this information to construct a matrix Hy € R™*F
consisting of approximations to the top k left singular vectors of A. A minor modification of the
result from [16] yields the following theorem in which the additional error is stated with respect to
the best rank k& approximation for any k£ < rank(C'). This theorem holds for any set of sampling
probabilities, but the best bounds are obtained when probabilities of the form (8) are used, in
which case Theorem 2 may be combined with Theorem 1.

Theorem 2 Suppose A € R™*" and let Hy, be the m x k matriz whose columns consist of the top
k singular vectors of the m x ¢ matriz C, as constructed from the LINEARTIMESVD algorithm
of [16]. Then, for every k : 0 < k < rank(C),

|A - HHTA|} < 1A A% +2Vk[|AAT — cCT|, (11)
|A - mEFA|, < ||A- A% +2][AAT - CCT],. (12)

In addition, if k = r = rank(C) then,
|A - HHTA|) < ||AAT - cCT|, . (13)

4 Approximating a Gram Matrix

Consider a set of n points in R™, denoted by X1, ..., X(™ and let X be the m x n matrix whose
i-th column is X(. These points may be either the original data or the data after they have
been mapped into the feature space. Then, define the n x n Gram matrix G as G = X7 X. Thus,
G is a SPSD matrix and G;; = (X®, X)) is the dot product between the data vectors X and
XU), If G is dense but has good linear structure, i.e., is well-approximated by a low-rank matrix,
then a computation of a easily-computable and easily-interpretable low-rank approximation to
G, with provable error bounds, is of interest.

In this section, two algorithms are presented that compute such an approximation to a Gram
matrix G. In Section 4.1, a preliminary algorithm is presented; it is a modification of an algorithm
in the literature and is a special case of our main algorithm. Then, in Section 4.2, our main
algorithm and our main theorem are presented. Finally, in Section 4.3, the proof of our main
theorem is presented.

4.1 A Preliminary Nystrom-Based Algorithm

In [40], a method to approximate G was proposed that, in our notation, chooses ¢ columns
from G uniformly at random and without replacement, and constructs an approximation of the
form G = CW~'CT, where the n x ¢ matrix C consists of the ¢ chosen columns and W is a
matrix consisting of the intersection of those ¢ columns with the corresponding ¢ rows. Analysis
of this algorithm and issues such as the existence of the inverse were not addressed in [40], but
computational experiments were performed and the procedure was shown to work well empirically
on two data sets [40]. This method has been referred to as the Nystrom method [40, 38, 21] since



it has an interpretation in terms of the Nystrom technique for solving linear integral equations
[10]. See Section 5 for a full discussion.

In Algorithm 1, the PRELIMINARY APPROXIMATION algorithm is presented. It is an algorithm
that takes as input an n x n Gram matrix G and returns as output an approximate decomposition
of the form G = CW+CT, where C and W are as in [40], and where W+ is the Moore-Penrose
generalized inverse of W. The ¢ columns are chosen uniformly at random and with replacement.
Thus, the PRELIMINARY APPROXIMATION algorithm is quite similar to the algorithm of [40],
except that we sample with replacement and that we do not assume the existence of W~!. Rather
than analyzing this algorithm (which could be done by combining the analysis of Section 4.3 with
the uniform sampling bounds of [15]), we present and analyze a more general form of it, for which
we can obtain improved bounds, in Section 4.2. Note, however, that if the uniform sampling
probabilities are nearly optimal, in the sense that 1/n > SG%/>°" | G2 for some positive 8 < 1
and for every ¢ = 1,...,n, then bounds similar to those in Theorem 3 will be obtained for this
algorithm, with a small S-dependent loss in accuracy.

Data :n xn Gram matrix G and ¢ < n.

Result : n x n matrix G.

e Pick ¢ columns of G in i.i.d. trials, uniformly at random with replacement; let Z be the
set of indices of the sampled columns.

e Let C be the n x ¢ matrix containing the sampled columns.

e Let W be the ¢ x ¢ submatrix of G' whose entries are G;j,1 € Z,5 € .

e Return G = CW*CT.

Algorithm 1: The PRELIMINARY APPROXIMATION algorithm.

4.2 The Main Algorithm and the Main Theorem

In [15, 16, 17, 18, 19], we showed the importance of sampling columns and /or rows of a matrix with
carefully chosen nonuniform probability distributions in order to obtain provable error bounds for
a variety of common matrix operations. In Algorithm 2, the MAIN APPROXIMATION algorithm is
presented. It is a generalization of the PRELIMINARY APPROXIMATION algorithm that allows the
column sample to be formed using arbitrary sampling probabilities. The MAIN APPROXIMATION
algorithm takes as input an n x n Gram matrix G, a probability distribution {p;}? ;, a number
¢ < n of columns to choose, and a rank parameter £ < c¢. It returns as output an approximate
decomposition of the form G, = C’W,;" CT, where C is an n X ¢ matrix consisting of the chosen
columns of GG, each rescaled in an appropriate manner, and where Wy, is a ¢ X ¢ matrix that is the
best rank-%k approximation to the matrix W, which is a matrix whose elements consist of those
elements in G in the intersection of the chosen columns and the corresponding rows, each rescaled
in an appropriate manner.

To implement this algorithm, two passes over the Gram matrix G from external storage and
O(n), i.e. sublinear in O(n?), additional space and time are sufficient (assuming that the sampling

probabilities of the form, e.g., p; = G%/>" | GZ or p; = ‘G(i)‘Z /Gl or p; = 1/n are used).
Thus, this algorithm is efficient within the framework of the Pass-Efficient model; see [15] for
more details. Note that if the sampling probabilities of the form p; = GZ,/ Y"1 | GZ are used, as
in Theorem 3 below, then one may store the m x n data matrix X in external storage, in which
case only those elements of G that are used in the approximation need to be computed.

In the simplest application of this algorithm, one could choose k = ¢, in which case Wy, = W,



Data :n xn Gram matrix G, {p;}_, such that . ;p;=1,¢<n,and k <ec.

Result : n x n matrix G.

e Pick ¢ columns of G in i.i.d. trials, with replacement and with respect to the probabilities
{pi}i1; let Z be the set of indices of the sampled columns.

e Scale each sampled column (whose index is 7 € 7) by dividing its elements by ,/cp;; let
C be the n x ¢ matrix containing the sampled columns rescaled in this manner.

e Let W be the ¢ x c submatrix of G whose entries are G;;/(c,/pip;),i € Z,j € L.

e Compute Wy, the best rank-k approximation to W.

e Return G, = CW,:“CT.

Algorithm 2: The MAIN APPROXIMATION algorithm.

and the decomposition is of the form G = CW*CT, where W is the exact Moore-Penrose
generalized inverse of the matrix W. In certain cases, however, computing the generalized inverse
may be problematic since, e.g., it may amplify noise present in the low singular values. Note that,
as a function of increasing k, the Frobenius norm bound (11) of Theorem 2 is not necessarily
optimal for k& = rank(C). Also, although the bounds of Theorem 3 for the spectral norm for
k < rank(W) are in general worse than those for k£ = rank(W), the former are of interest since
our algorithms hold for any input Gram matrix and we make no assumptions about a model for
the noise in the data.

The sampling matrix formalism of [15] is used in the proofs of Theorem 3 in Section 4.3,
and thus we introduce it here. Let us define the sampling matrix S € R"*¢ to be the zero-one
matrix where S;; = 1 if the i-th column of A is chosen in the j-th independent random trial and
Si; = 0 otherwise. Similarly, define the rescaling matrix D € R°*¢ to be the diagonal matrix with
Dy = 1/,/cpi,- Then, the n x ¢ matrix

C=GSD

consists of the chosen columns of G, each of which has been rescaled by 1/, /cp;,, where i, is the
label of the column chosen in the ¢-th independent trial. Similarly, the ¢ X ¢ matrix

W = (SD)'GSD = DSTGSD

consists of the intersection between the chosen columns and the corresponding rows, each element
of which has been rescaled by with 1/c,/p;,pj,. (This can also be viewed as forming W by sam-
pling a number ¢ of rows of C' and rescaling. Note, however, that in this case the columns of A
and the rows of C' are sampled using the same probabilities.) In Algorithm 3, the MAIN APPROX-
IMATION is restated using this sampling matrix formalism. It should be clear that Algorithm 3
and Algorithm 2 yield identical results.

Before stating our main theorem, we wish to emphasize the structural simplicity of our main

result. If, e.g., we choose k = ¢, then our main algorithm provides a decomposition of the form
G=CwtcT:

G G =l c | (w)( ¢ ). (14)

Q

Up to rescaling, the MAIN APPROXIMATION algorithm returns an approximation G which is
created from two submatrices of G, namely C' and W. In the uniform sampling case, p; = 1/n, the



Data :n xn Gram matrix G, {p;}_, such that . ;p;=1,¢<n,and k <ec.

Result : n x n matrix G.
e Define the (n x ¢) matrix S = 0y, x;
e Define the (¢ X ¢) matrix D = O.x;
efort=1,...,cdo
Pick i; € [n], where Pr(i; = 1) = p;;
Dy = (cpy,) Y%
Sitt = ]_;
end
e Let C=GSD and W = DSTGSD.
e Compute Wy, the best rank-k approximation to W.
e Return Gy, = CW;CT.

Algorithm 3: The MAIN APPROXIMATION algorithm, restated.

diagonal elements of the rescaling matrix D are all n/c, and these all cancel out of the expression.
In the nonuniform sampling case, C' is a rescaled version of the columns of G and W is a rescaled
version of the intersection of those columns with the corresponding rows. Alternatively, one
can view C as consisting of the actual columns of GG, without rescaling, and W as consisting of
the intersection of those columns with the corresponding rows, again without rescaling, in the
following manner. Let C =GS, let W = STGS, and let

o o ~ +
W* =W, , . =D(DWD) D (15)

be the {D?, D~?}-weighted-{1, 2}-generalized inverse of W. Then, G ~ G = CW+C7.
The following theorem states our main result regarding the MAIN APPROXIMATION algorithm.

Its proof may be found in Section 4.3.

Theorem 3 Suppose G is an n X n. SPSD matriz, let k < ¢ be a rank parameter, and let G}, =
CW;CT be constructed from the MAIN APPROXIMATION algorithm of Algorithm 2 by sampling
c columns of G with probabilities {p;}}'_, such that

n
pi=G%/ Y GE. (16)
i=1

Let v = rank(W') and let Gy, be the best rank-k approzimation to G. In addition, let € > 0 and

n=1++/8log(1/0). If c > 64k/e*, then
Bl|6-G| ]| < I6-Gulr+e) 62 (17)
=1
and if ¢ > 64kn?/e* then with probability at least 1 — &

o -G, < 16~ Gullp +3 "% 18)
1=1



In addition, if ¢ > 4/€ then
E[|6-G|] < lle—Gul,+e> 64 (19)
i=1
and if ¢ > 4n?/e? then with probability at least 1 — &
le-ac < IG = Gully +¢ 3 G (20)
Several things should be noted about this result. First, if & > r = rank(W) then W), = W,

‘2 < e G
in expectation and with high probability. Second, the sampling probabilities used in Thoerem

and an application of (13) of Theorem 2 leads to bounds of the form HG -G,

3 may be written as p; = ‘X(i)‘Q / ||X||%, which only depend on dot products from the data
matrix X. This is useful if X consists of the data after it has been mapped to the feature space
F. Finally, if the sampling probabilities were of the form p; = ‘G’(i) ‘2 /|G ||?J then they would
preferentially choose data points that are more informative (in the sense of being longer) and/or
more representative of the data (in the sense that they tend to be more well correlated with more
data points). Instead the probabilities (16) ignore the correlations. As discussed in Sections 5
and 6, this leads to somewhat worse error bounds. To the best of our knowledge, it is not known
how to sample with respect to correlations while respecting the SPSD property and obtaining
provably good bounds with improved error bounds. This is of interest since in many applications
it is likely that the data are approximately normalized by the way the data are generated, and
it is the correlations that are of interest. Intuitively, this difficulty arises since it is difficult to
identify structure in a matrix to ensure the SPSD property, unless, e.g., the matrix is diagonally
dominant or given in the form X7 X. As will be seen in Section 4.3, the proof of Theorem 3
depends crucially on the decomposition of G as G = X7 X.

4.3 Proof of Theorem 3

Since G = X7 X it follows that both the left and the right singular vectors of G' are equal to the
right singular vectors of X and that the singular values of G are the squares of the singular values
of X. More formally, let the SVD of X be X = USV”. Then,

G=vy*vl =xvUuTx", (21)

Now, let us consider Cx = XSD € R™*¢, i.e., the column sampled and rescaled version of X,
and let the SVD of Cx be Cx = ULV, Thus, in particular, U contains the left singular vectors
of C'x. We do not specify the dimensions of U (and in particular how many columns U has) since
we do not know the rank of C'x. Let Uy, be the m x k matrix whose columns consist of the singular
vectors of C'x corresponding to the top k singular values. Instead of exactly computing the left
singular vectors U of X, we can approximate them by Uy, computed from a column sample of
X, and use this to compute an approximation G to G.

We first establish the following lemma, which provides a bound on HG — éng for¢ =2, F.

Lemma 1 If G, = CW;CT then

lo-a = |xx-x"o0.x], )
~ A A 2
lo-ad, =[x -oa0tx]; @)
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Proof: Recall that C = GSD and W = (SD)'GSD = CLCx. Thus, W = V2V and W}, =
Vf]%VT, where 3, is the diagonal matrix with the top k singular values of C'x on the diagonal
and the remainder set to 0. Then since Cx = XSD = USVT and W,;" = VXAII;QVT

Gy = GSD (W)™ (GSD)" (24)
PPN PPN + A

— xTosyT (VE%VT) VSOt X (25)

= XT0,0fx, (26)

where UkUkT is a projection onto the space spanned by the top k singular vectors of W. (22) then
follows immediately, and (23) follows since
A A T A
XTx - XT0,07 X = (X - UkUkTX> (X - UkU,{X)
and since ||Q||5 = HQTQH2 for any matrix (.

By combining (23) with Theorem 2, we see that
HG - ékH2 <X = X2 + 2| x X7 — oxC%|l,
< |G =Gil, +2|| XX - CxCX,-

Since the sampling probabilities (16) are of the form p; = ‘X(i) ‘2 /1 X||%, this may be combined
with Theorem 1, from which, by choosing ¢ appropriately, the spectral norm bounds (19) and
(20) of Theorem 3 follow.

To establish the Frobenius norm bounds, define £ = X XTXXT — CXC):GCXC)T(. Then, we
have that:

ol = pxtp - fxaf, « Jorxxra .
k k
< XX -2 (zaf«:X) . \/EHEIIF) LS o)+ VEIEL, (8)
t=1 t=1
k
— | xTx|% =S ok(Cx) + 3VE Bl (20)
t=1
5 k
< XTX| =)ol (XTX) + aVE Bl g, (30)
t=1

where (27) follows by Lemmas 1 and 2, (28) follows by Lemmas 3 and 4, and (30) follows by
Lemma 5. Since

k k
IXTX|5 =Y 0P (XTX) = |GI% Y 02(G) = |G~ Gyl
t=1 t=1

it follows that
o2
HG - GkHF <G = Gyl% + 4VE | X XTXXT — CxCECXCE| .. (31)
Since the sampling probabilities (16) are of the form p; = ‘X(i) ‘2 /|1 X ||%, this may be combined
with Lemma 6 and Theorem 1. Since (a2—|—52)1/ 2 < a+pfor a, B > 0, by using Jensen’s inequality,

and by choosing ¢ appropriately, the Frobenius norm bounds (17) and (18) of Theorem 3 follow.
The next four lemmas are used to bound the right hand side of (22).

11



Lemma 2 For every k: 0 < k < rank(W) we have that:
PPN 2 ~ 112 N ~ |12
|x7x - xTOOEX ||| = XX - 2| X X0+ [0FxxT0|
Proof: Define Y = X — ka]kTX Then,
PN 2
|x"x -xTo0r x| = Y'Y
F
= Tr(Y'YY"Y)
= | XTX|; - 2T (XXTOOFXXT) + Te (OF XXT 0T XXTT )

where the last line follows by multiplying out terms and since the trace is symmetric under cyclic
permutations. The lemma, follows since [|Q2]|% = Tr (QQ7) for any matrix €.
o

Lemma 3 For every k: 0 < k < rank(W) we have that:

k
‘ HXXTUkHi — Y o} (Cx)| < VE|XXTXXT - CxCECxCE |,
t=1

Proof: Since 0¢(CxC%) = 0?(Cx) and since U is a matrix consisting of the singular vectors of
Cx = XSD, we have that

k
N 2
e - $oten
t=1

k k
z:prwﬂf—E:k&O@ﬁﬂ1
t=1 t=1

k
S0 (xxTxXT - cxofoxo) u®
t=1

k 1/2
< vk (Z (00" (XXTXXT - OxChOxC) U<t>)2> ,

t=1

where the last line follows from the Cauchy-Schwartz inequality. The lemma then follows.

Lemma 4 For every k: 0 < k < rank(W) we have that:
. 2 k
|OFXXT0| =2 ot (Cx) < VE|IXXTXXT — CxCECxCE |,
t=1

Proof: Recall that if a matrix U has orthonormal columns then HUTQH 7 < ||| for any matrix
Q. Thus, we have that
2

k
PELATY

k
~ |12
[ERET e
t=1

IN

HXXT(?k

k
R R 2
HU,?XXTU,CHF _ ; o (Cy)

IA

The remainder of the proof follows that of Lemma 3.
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Lemma 5 For every k: 0 < k < rank(W) we have that:

k
S0t (Cx) — oH(XTX)
t=1

<Vk||xx"xx" - cxcfCx k||,

Proof:
k k 1/2
S o () - az<xTX>‘ < VE(Y tehon) -t
t=1 t;l 1/2
- vk (Z (o/(CxCECXxCE) - at(XXTXXT))2>
t=1

< VE|xxTxxT - cxcfexCt||,,

where the first inequality follows from the Cauchy-Schwartz inequality and the second inequality
follows from the matrix perturbation result (3).
o
The following is a result of the BASICM ATRIXMULTIPLICATION algorithm that is not found
n [15], but that will be useful for bounding the additional error in (31). We state this result for
a general m X n matrix A.

Lemma 6 Suppose A € R™*", ¢ € ZT such that 1 < ¢ < n, and {p;};_, are such that p; =
‘A(k)‘Q /| All%. Construct C' with the BASICMATRIXMULTIPLICATION algorithm of [15]. Then,

2
T 4 AT T AT 4
E[|AA"AA" —cchec| ] < %HAHF. (32)
Furthermore, let 6 € (0,1) and n =1+ +/8log(1/d). Then, with probability at least 1 — ¢,
2
T A AT T AT n 4
|AAT 44T —cct e, < %HAHF. (33)

Proof: First note that:
AATAAT —coToct = AATAAT — AATccT + AATcceT —cctec™
= AA" (AAT —cC™) + (A4 —ccT) e
Thus, by submultiplicitivity and subadditivity we have that for £ = 2, F:
|AATAAT — ccTect||, < Al ||AAT — ||, + |[AAT —ccT ||, ICII%

The lemma follows since ||C||% = ||A||% when py = ‘A(k) ‘2 / || A||%, and by applying Theorem 1.
o

5 Discussion Section

One motivation for the present work was to provide a firm theoretical basis for the Nystrom-based
algorithm of [40]. A second motivation was to clarify the relationships between our randomized
SVD algorithms [16], our randomized CUR algorithms [17], and the Nystrom-based methods of
[40, 38, 21]. A third motivation was to extend our random sampling methodology to extract
linear structure from matrices while preserving important nonlinear structure. In this section,
we discuss these issues. Note that our CONSTANTTIMESVD algorithm of [16] is the algorithm
originally analyzed by Frieze, Kannan, and Vempala [22], and thus a discussion of it corresponds
also to a discussion of their algorithm of [22].

13



5.1 Summary of the Nystrom Method

The Nystrom method was originally introduced to handle approximations based on the numerical
integration of the integral operator in integral equations, and it is well known for its simplicity
and accuracy [10]. To illustrate the Nystrom method, consider the eigenfunction problem:

/ K(t,5)®(s)ds = AD(t) t € D. (34)
D

The resulting solution is first found at the set of quadrature node points, and then it is extended
to all points in D by means of a special interpolation formula (see (39) below). This method
requires the use of a quadrature rule. Assume that D = [a,b] C R and that the quadrature rule
is the following:

b n
/y@ﬁzzwmw, (35)
a j=1

where {w;} are the weights and {s;} are the quadrature points that are determined by the
particular quadrature rule. If this rule is used to compute the integral occurring in (34), we have:

b n N
/ K(z,s)®(s)ds ~ ijk(w,sj-)(;ﬁ(sj-), (36)
a ]:1
and the integral equation (34) leads to an eigenvalue problem of the form:
Y wik(z,55)$(s5) = A(a). (37)

Solving (37) leads to an approximate eigenvalue A and an approximate eigenfunction ¢(z) and
may be done via the Nystrom method as follows. First, set z = z;, i« = 1,...,n in (37). This
leads to an system of n algebraic equations:

> wik(zi, 5;)p(s;) = (i), (38)
i—1

that depend on the set {x;} of Nystrom points. Although it is by no means necessary that the
set of Nystrom points is coincident with the set of quadrature points, they are often chosen to be
so since in that case if the kernel K (-,-) is symmetric then the matrix k(-,-) in (38) is symmetric.
Then, if A, # 0 the exact eigenvectors qu on the Nystrom points can be extended to a function
¢m(z) on the full domain by substituting it into (37):

() = 5= 3 w3kl 57) (5. (39)

The function ¢,,(x) is the Nystrom extension of the eigenvector qgm, and in the present con-
text may be thought of as being an approximation to the exact eigenfunction ®,, computed by
extending a function computed on a (small) number n of points to the full (large) domain D.

In the applications we are considering, the data points are vectors in R"®. Thus, consider an
m X n matrix A consisting of m such vectors. Let ¢ columns and r rows be chosen (without
replacement) in some manner, and let A be partitioned as:

Apn A ]
A= , 40
[ Ay Ago (40)
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where Aj; € R®" represents the subblock of matrix elements common to the sampled columns
and the sampled rows, Ao; and A1s are rectangular matrices consisting of elements with a sampled
column label (exclusive) or sampled row label, respectively, and Ay € R™=9*("=7) consists of
the remaining elements. If ¢,r = O(1) then Aj; is small and Ay, is large. To be consistent
with the notation of [16, 17], we let C' = [AT; AL|]T and R = [A11A12]. Let the SVD of Ay be
Ay = UV, and let the rank of A;; be k.

Assume, for the moment, that A is a SPSD matrix and that the chosen rows are the same as
the chosen columns. Then, A7 is also a SPSD matrix; in addition, V = U are the elgenvalues of
Aq1 and S consists of the eigenvectors of Aq;. In this case, the Nystrom extension of U gives the
following approximation for the eigenvectors of the full matrix A:

- s A | gt _ U
=CUx ' = Us~ s : 41
U=CU [ Ao ] Ao, T51 (41)
Note that this Nystrom extension of the restricted solution to the full set of data points is of the
same form as (39).

More generally, if A is an arbitrary m X n matrix, then the Nystrom extension of U and V
gives the following approximation for the singular vectors of the full matrix A:

- U
U = |: A21‘7271 :| , and (42)
. v
v = Lagos ] .

If both U and V have been computed then the Nystrom extensions (42)-(43) also have an inter-
pretation in terms of matrix completion. To see this, set A = ULV then we have:

- [ U ~ o~ o -
A= | v |BLVT S04, ] (44)
_ Ay UUT Ay (45)
| AnVVT Ag Af Ars
[ A
- [ ]ATI[AH A ] (46)

Note that if A;; is nonsingular, then (45) becomes:

X An Ajg

A4 = [ Aoy A21Af11A12 ] ’ (47)
In this case, the Nystrom extension implicitly approximates Agy using A21Af11A12, and the qual-
ity of the approximation of A by A can be quantified by the norm of the Schur complement
HA22 — A21Af11A12‘| , € = 2, F. The size of this error norm is governed, e.g., by the extent to
which the columns o% Aoy provide a good basis for the columns of Agy. If Ayq is rectangular or
square and singular then other terms in the matrix A also contribute to the error. Note that (46)
is of the form A~ A = CAER . If A is a SPSD matrix and the chosen rows are the same as the
chosen columns then (45) is modified appropriately and (46) is of the form A ~ A = CW+C7,
which is the form of our main decomposition for a Gram matrix G. Note, however, that neither
U nor U are actually computed by our main approximation algorithm. In Sections 5.2 and 5.3,
we discuss these issues further.
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5.2 Relationship to the Randomized SVD Decompositions

Recall that the LINEARTIMESVD of [16] computes exactly the low-dimensional singular vectors
of C. Let the SVD of C be C = HXZ". Then, the high-dimensional singular vectors of C' are
computed by extending the low-dimensional singular vectors as:

H=CzZx!, (48)

and it is these that are taken as approximations of the left singular vectors of the original matrix
A, in the sense that under appropriate assumptions:

|A—HHTA||, < ||A - Agll + | All 49)

in expectation and with high probability, for both & = 2, F'. This is not a Nystrom extension in
the sense of Section 5.1 since although sampling is used to construct the matrix C a second level
of sampling is never performed to construct Aq;.

On the other hand, the CONSTANTTIMESVD algorithm of [16] (and thus the algorithm of
Frieze, Kannan, and Vempala [22]) is similar except that it approzimates the low-dimensional
singular vectors of C. It does this by randomly sampling w rows of C' and rescaling each appro-
priately to form a w X ¢ matrix Aq; (this matrix is called W in [16, 17], but it is constructed
with different sampling probabilities than the W defined in this paper) and computing the eigen-
vectors of AT, A1;. These eigenvectors are then Nystrom-extended via (42) to vectors U (de-
noted by H in [16]) that approximate the left singular vectors of A. In this case, the projection
HH" = C(CTC)*CT of the LINEARTIMESVD algorithm is replaced by an approximate pro-
jection onto the column space of C of the form UU = C(AF{IAH)J“CT. From this perspective,
since CTC ~ AT, A1, we may view the LINEARTIMESVD of [16] as performing a Nystrom-based
extension of approximations of the eigenvectors of AT} Ay;.

We emphasize these points since we would like to clarify several potential misunderstandings
in the literature regarding the relationship between the Nystrom-based algorithm of [40] and
the approximate SVD algorithm of Frieze, Kannan, and Vempala [22]. For example, in [40, 38,
21] it is claimed that their Nystrom-based methods are a special case of [22] and thus of the
CONSTANTTIMESVD algorithm of [16]. Although the SVD algorithms of [16, 22] do represent
a Nystrom-based extension in the sense just described, several things should be noted. First,
in order to obtain provable performance guarantees, the CONSTANTTIMESV D algorithm used in
[16, 22] approximates the left (or right, but not both) singular vectors in a single Nystrom-like
extension of the form (42) (or (43) for the right singular vectors). This algorithm makes no
assumptions about the symmetry or positive definiteness of the input matrix, and it does not
take advantage of this structure if it exists. Second, and relatedly, in this algorithm there are
two levels of sampling, and only the first depends directly on the elements of the matrix A; the
second depends on the lengths of the rows of C'. Thus, in general, the matrix A1; does not consist
of the same rows as columns, even if A is a SPSD matrix. If A is a SPSD matrix, then one
could approximate A as A= USUT, but the error associated with this is not the error that the
theorems of [16, 22] bound. Third, the structure of the approximation obtained by [16, 22] is
quite different from that of the approximation of [40] and (14). In the latter case it is of the form
CW*CT, while in the former case it is of the form PcA, where P¢ is an exact or approximate
projection onto the column space of C.

5.3 Relationship to the Randomized CUR Decompositions

To shed further light on the relationship between the CONSTANTTIMESVD algorithm used in
[16, 22] and the Nystrom-based methods of [40, 38, 21], it is worth considering the CUR decom-
positions of [17], which are structurally a generalization of our main matrix decomposition. A
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CUR decomposition is a low-rank matrix decomposition of the form A ~ CUR, where C is a
matrix consisting of a small number of columns of A, R is a matrix consisting of a small number
of rows of A, and U is an appropriately-defined low-dimensional matrix. Examples may be found
in [17], and also in [25, 24]. In particular, the LINEARTIMECUR and CONSTANTTIMECUR
algorithms of [17] (so named due to their relationship with the correspondingly-named SVD al-
gorithms of [16]) compute an approximation to a matrix A € R™*" by sampling ¢ columns and
r rows of the matrix A to form matrices C € R™*¢ and R € R"™*", respectively. The matrices
C and R are constructed with carefully-chosen and data-dependent nonuniform probability dis-
tributions, and from C and R a matrix U € R“*" is constructed such that under appropriate
assumptions:

|A—CUR|, < | A— Agll + |l Al (50)

with high probability, for both £ = 2, F. Although these algorithms apply to any matrix, and
thus to a SPSD matrix, the computed approximation CUR (with the provable error bounds
of the form (50)) is neither symmetric nor positive semidefinite in the latter case. The SPSD
property is an important property in many applications, and thus it is desirable to obtain a
low-rank approximation that respects this property. The analysis of the MAIN APPROXIMATION
algorithm shows that if G is a SPSD matrix then we can choose R = CT and U = A]; and
obtain a SPSD approximation of the form G ~ G = C’W,;" CT with provable error bounds of
the form (1). Note that this bound is worse than that of (50) since the scale of the additional
error is larger. Although it may not be surprising that the bound is somewhat worse since we
are requiring that the approximation is not just low rank but that in addition it respects the
nonlinear SPSD property, the worse bound is likely due simply to the sampling probabilities that
were used to obtain provable performance guarantees.

Since the CUR algorithms of [17] rely for their proofs of correctness on the corresponding
SVD algorithms of [16], the Nystrom discussion about the SVD algorithms is relevant to them.
In addition, to understand the CUR algorithm in terms of matrix completion, consider an m x n
matrix A with ¢ columns and r rows chosen in some manner which is partitioned as in (40). Let
U € R°" be an appropriately defined matrix as in [17], and let us decompose the original matrix
A of (40) as A~ CUR:

A
U| A A 51
Ay, ] [ A Asg ] (51)

[AIIUAII A11UA12]
AnUAy AnUAg |7

CUR = [
(52)

In [17] U # A1, but we provide a definition for U such that U ~ Aj,, in which case the structural
similarity between (51) and (46) should be clear, as should the similarity between (52) and (45).
For general matrices A, the CUR decomposition approximates Ass by Age = As U Aqe, but it
also approximates A21 by A21UA11, A12 by A11UA12, and A11 by A11UA11. Thus, the quality
of the approximation of the full matrix can not be quantified simply by the norm of the Schur
complement HA22 — AglAf'lAleg, and in [17] we bound ||A — C’URHg directly. Relatedly, the
quality of the approximation is determined, e.g., by how well a basis the chosen columns of C' are
for the remaining columns of A.

6 Conclusion

We have presented and analyzed an algorithm that provides an approximate decomposition of an
n X n Gram matrix G which is of the form G ~ G}, = C’W,;" CT and which has provable error
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bounds of the form (1). A crucial feature of this algorithm is the probability distribution used
to randomly sample columns. We conclude with two open problems related to the choice of this
distribution.

First, it would be desirable to choose the probabilities in Theorem 3 to be p; = ‘G(i) ‘2 /1G5
and to establish bounds of the form (1) in which the scale of the additional error was ||G||p =
HX Tx HF rather than > 1, G% = || X |%. This would entail extracting linear structure while
simultaneously respecting the SPSD property and obtaining improved scale of error. This would
likely be a corollary of a CUR. decomposition for a general m x m matrix A with error bounds
of the form (50) in which U = W,", where W is now the matrix consisting of the intersection of
the chosen columns and (in general different) rows. This would simplify considerably the form of
U found in [17] and would lead to improved interpretability. Second, we should also note that if
capturing coarse statistics over the data is not of interest, but instead one is interested in other
properties of the data, e.g., identifying outliers, then probabilities that depend on the data in
some other manner, e.g., inversely with respect to their lengths squared, may be appropriate. We
do not have provable bounds in this case.
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