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Abstract. We describe using OpenMP to compute δ-hyperbolicity, a
quantity of interest in social and information network analysis, at a scale
that uses up to 1000 threads. By considering both OpenMP workshare
and tasking models to parallelize the computations, we find that multiple
task levels permits finer grained tasks at runtime and results in better
performance at scale than worksharing constructs. We also characterize
effects of task inflation, load balancing, and scheduling overhead in this
application, using both GNU and Intel compilers. Finally, we show how
OpenMP 3.1 tasking clauses can be used to mitigate overheads at scale.

1 Introduction

Many graph analytics problems present challenges for thread-centric computing
paradigms because the dynamic algorithms involve irregular loops, where special
attention is needed to satisfy data dependencies. Perhaps better suited is a task-
ing model, where independent units of work can be parceled out and scheduled at
runtime. OpenMP, the de facto standard in shared memory programming, origi-
nally targeted worksharing constructs to coordinate distribution of computation
between threads. In the OpenMP 3.0 specification, this model was extended to
include tasks, and additional tasking features, such as mergeable and final,
were added in 3.1. The task-based model allows asynchronous completion of
user-specified blocks of work, which are scheduled to the threads at runtime to
achieve good load balance. The tasking model of OpenMP also solves the prob-
lem of dealing with multiple levels of parallelism in the application. For example,
tasks may spawn child tasks in complex nested loops that cannot be parallelized
with OpenMP worksharing constructs. OpenMP 3.1 enables the programmer to
control task overhead via the task final and if clauses, and to reduce the
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data environment size with the mergeable clause. These features operate by
managing the overhead of creating tasks at runtime and can easily be used to
control the parallelism of the applications. Also, in OpenMP, the programmer
is responsible for laying out and placing the memory correctly for shared data
structures to achieve good data locality and avoid task inflation [1] overheads.

Clearly, it is of continuing interest to evaluate OpenMP tasking at scale in
the context of challenging real-world applications where loop-level parallelism
creates significant load-imbalances between threads. In this paper, we work with
one such application, the calculation of the δ-hyperbolicity of a graph. The δ-
hyperbolicity is a number that captures how “tree-like” a graph is in terms of its
metric structure; and thus it is of interest in internet routing, complex network
analysis, and other hyperbolic graph embedding applications [2–5]. The usual
algorithm to compute δ involves looping over all quadruplets of nodes; its Θ(n4)
running time presents scalability challenges, and its looping structure creates
serious load balancing problems.

Our main contribution is to describe challenges we encountered while using
OpenMP 3.1 to calculate exactly, on a large shared-memory machine, the δ-
hyperbolicity of real-world networks. The networks have thousands of nodes,
and the experiments used up to 1015 threads. We evaluate both worksharing and
tasking implementations of the algorithm, demonstrating improved performance
using multilevel tasking over OpenMP worksharing clauses. We also evaluate
and compare the performance of GNU and Intel compilers with regards to task
scheduling and load balance at scale. Finally, we show that performance gains can
be made at very large scale by improving data structures, adding tasking levels,
and using the task final, if, and mergeable clauses to manage overheads.

2 Background and Preliminaries

2.1 Gromov δ-hyperbolicity

The concept of δ-hyperbolicity was introduced by Gromov in the context of
geometric group theory [6], and has received attention in the analysis of networks
and informatics graphs. We refer the reader to [2–5, 7, 8], and references therein,
for details on the motivating network applications; but we note that our interest
arose as part of a project to characterize and exploit tree-like structure in large
informatics graphs [8]. Due to the Θ(n4) running time of the usual algorithm for
computing δ, previous work resorted to computing δ only for very small networks
(with up to hundreds of nodes [7]) or involved sampling triangles in networks
(of up to 10,000 nodes [4]). In our application, we needed to compute δ exactly
for networks that were as large as possible.

Let G = (V,E) be a graph with vertex set V and unordered edge set E ⊆
V ×V , and assume G has no self-loops, i.e., if u ∈ V , (u, u) /∈ E. We refer to |V |
as the size of the graph. A path of length l is an alternating sequence of vertices
and edges v1e1v2 . . . elvl+1 such that ek = (vk, vk+1) and no vertex is repeated. A
graph is connected (which we will always assume) if there exists a path between
all vertices. We define a function l : V × V → Z

+ that equals the length of the
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shortest path between u, v ∈ V . This function defines a metric on G, creating a
metric space (G, l), and a geodesic is a shortest path in G. A geodesic triangle
is composed of three vertices and a geodesic between each vertex pair.

There are several characterizations of δ-hyperbolic spaces, all of which are
equivalent up to a constant factor [6]. We tested the computation of three such
definitions as candidates for parallelization: δ-slim triangles [6], δ-fat triangles [7],
and the 4-point condition [6]. Except for a brief discussion in Section 4.1 of other
notions of δ, in this paper we will only consider the following definition.

Definition 1. Let (X, l) be a metric space, and let 0 ≤ δ < ∞. (X, l) is called 4-
point δ-hyperbolic if and only if for all x, y, u, v ∈ X, ordered such that l(x, y)+
l(u, v) ≥ l(x, u) + l(y, v) ≥ l(x, v) + l(y, u), the following condition holds:

(l(x, y) + l(u, v))− (l(x, u) + l(y, v)) ≤ 2δ.

Thus, the 4-point condition requires sets of four points (called quadruplets) to
have certain properties, and these can be checked by looping over all quadruplets.

2.2 OpenMP and Parallel Computations

There are several task parallel languages and runtime libraries that have been
used to parallelize graph applications [9]. OpenMP task parallelism is a profitable
approach for dynamic applications because it provides a mechanism to express
parallelism on irregular regions of code where dependencies can be satisfied at
runtime. Studies [10–12] have shown that OpenMP tasks are often more efficient
for parallelizing graph-based applications than thread-level parallelism because
it is easier to express the parallelism on unstructured regions while leaving the
task scheduling decisions to the runtime. However, such studies do not include
applications with large numbers of threads on production codes. Additional work
has shown that load imbalances, scheduling overheads and work inflation (due to
data locality) can adversely affect the efficiency of task parallelism at scale [1].
These sources of overhead need to be mitigated carefully in applications, espe-
cially at large scale. OpenMP 3.1 provides mechanisms to manage some of these
overheads by allowing work stealing with the untied clause to improve load
balance, reducing the memory overheads by merging the data environment of
tasks with the mergeable clause, and by reducing the task overhead with the
specification of undeferred and included tasks via the if and final clauses.

In dynamic and irregular applications, it is difficult to know the total number
of tasks and granularity generated at runtime and how this affects synchroniza-
tion points and overheads. Controlling task granularity is important to reduce
runtime overhead and improve load balance — e.g. if the tasks generated are too
fine grained, the application will lose parallel efficiency due to runtime overheads.
Few studies [13] have evaluated the use of the final and mergeable clauses to
manage runtime overheads on large graph-based applications running on hun-
dreds of threads. These can further be combined with the task cutoff technique:
when the cutoff threshold is exceeded, newly generated tasks are serialized.
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Different techniques have been explored [12], including the use of adaptive cut-
off schemes [14] and iterative chunking [15].

3 Algorithm for Computing δ and Its Implementation

3.1 The Four-Point Algorithm

To describe the algorithm for computing δ on a graph G = (V,E) of size n, we
represent V as a set of integers, i.e., V = {0, 1, 2, . . . , n− 1}. We precompute the
distance matrix l using a breadth first search and store it in memory; the graph
itself is not needed after l is constructed. We then let δ(i, j, k, p) represent the
hyperbolicity of a quadruplet and Δ be a vector where Δ[δ] is the number of
quadruplets with hyperbolicity δ. Given an ordered tuple of vertices (i, j, k, p),
we let φ be a function re-labelling them as (x, y, u, v) so that l(x, y) + l(u, v) ≥
l(x, u) + l(y, v) ≥ l(x, v) + l(y, u). Then, to calculate the 4-point δ-hyperbolicity
of G, we use a set of nested for loops and loop over all vertices satisfying
0 ≤ i < j < k < p < n to find

δ(i, j, k, p) = (l(x, y)+l(u, v))−(l(x, u)+l(y, v)) s.t. (x, y, u, v) = φ(i, j, k, p). (1)

These quantities are recorded by incrementing Δ[δ(i, j, k, p)].
Clearly, this algorithm is naturally parallelizable, since for each set of four

vertices, the δ calculation (which occurs in the inner-most loop) depends only
on the distances between the nodes (and not on the calculated δ of any other
quadruplet). One must be slightly careful to avoid conflicts or contention when
storing values in the Δ vector, but this can be alleviated by allocating thread-
local storage for Δ and summing on completion to achieve the final distribution.
It is important to note that we require 0 ≤ i < j < k < p < n to reduce total
work by a factor of 24 (since δ of a quadruplet is independent of the ordering).
This, however, has a significant effect on the load balancing of the loops. The
number of iterations of each for loop is dependent on the index in the previous
loop, and decreases as we progress through the calculation. With four levels of
nested loops, this effect becomes very pronounced for later iterations.

3.2 OpenMP Implementations

We implemented two versions of this algorithm in OpenMP, both using the
Boost Graph Library to store the graph as an adjacency list. The first approach
(Code 1.1) makes use of the omp for workshare construct on the outer loop. The
innermost loop consists of a straightforward retrieval of the distances between
the six different pairings of each quadruplet and the calculation of Eqn (1). Due
to the load balancing issues described previously, we obtain a significant speedup
using dynamic (instead of static) scheduling, especially with smaller chunksizes
(see Table 1(b)). After the loop, we use a short critical region to collate the local
Δ vectors into a single master Δ.

The second approach (Code 1.2) implements parallelization using multiple
levels of tasking to split the computations into smaller chunks (with the intent
of balancing the load given to each processor). We determined two levels of
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tasking was optimal—three or more resulted in massive overheads for generat-
ing/maintaining the tasks, increasing time by an order of magnitude. Figure 1
shows the task graph associated with this approach, when processing a network
with n nodes, and it illustrates why load balancing is such a challenge. Each
task is labelled with the vertices it sweeps over in the network and, e.g., the 1st
level task (1, ∗, ∗, ∗) (on the left) has n− 1 child tasks, which in total has O(n3)
iterations of computation, but its sibling task (n − 3, ∗, ∗, ∗) (on the far right)
generates only a single child which has a single iteration of work.

1 /∗Distance matrix p r e c a l cu l a t ed ∗/
#pragma omp p a r a l l e l shared ( Delta [ ] )

3 {
/∗ Var iab le i n i t i a l i z a t i o n s ∗/

5 #pragma omp f o r schedu le ( dynamic , 1 )
f o r ( s i z e t i =0; i<s i z e ; ++i )

7 f o r ( s i z e t j=i +1; j<s i z e ; ++j )
f o r ( s i z e t k=j +1; k<s i z e ; ++k )

9 f o r ( s i z e t p=k+1; p<s i z e ; ++p)
/∗ c a l c u l a t e d e l t a ( i , j , k , p) as in Eq . ( 1 ) ∗/

11 #pragma omp c r i t i c a l
/∗ Co l l a t e l o c a l De l tas ∗/

13 }

Code 1.1. Parallelization using the for construct

The critical region in these implementations may seem to be a bottleneck for
the computation, but because of the complexity of the main loop, the small size
of the δ vectors (on the order of graph diameter), and the linear nature of the
collation, the runtime of this region is small relative to the total runtime. Our
empirical results support this analysis—e.g., the critical region took less than
one second on all runs using 1015 threads.

1 /∗Distance matrix p r e c a l cu l a t ed ∗/
#pragma omp p a r a l l e l shared ( Delta , De l t a p t r )

3 {
/∗ Var iab le i n i t i a l i z a t i o n s ∗/

5 vector<double> De l ta l o c ( diam of network , 0 ) ;
i n t th r e ad id = omp get thread num () ;

7 De l ta p t r [ th r e ad id ] = &De l t a l o c ;
#pragma omp s i n g l e

9 {
f o r ( s i z e t i =0; i<s i z e ; ++i ) //Task l e v e l 1

11 #pragma omp task shared ( De l ta ptr , d i s t an c e mat r i x )
f o r ( s i z e t j=i +1; j<s i z e ; ++j ) //Task l e v e l 2

13 #pragma omp task shared ( De l ta ptr , d i s t an c e mat r i x )
f o r ( s i z e t k=j +1; k<s i z e ; ++k )

15 f o r ( s i z e t p=k+1; p<s i z e ; ++p)
/∗Get l o c a l Delta vec tor ∗/

17 i n t tn = omp get thread num () ;
vector<double> &loc De l t a = ∗De l ta p t r [ tn ] ;

19 /∗ c a l c u l a t e d e l t a ( i , j , k , p ) as in Eq . ( 1 ) ∗/
}

21 #pragma omp c r i t i c a l
/∗ Co l l a t e l o c a l De l tas ∗/

23 }

Code 1.2. Parallelization using two levels of tasking

In the worksharing case, the details of writing/collating the Δ vectors are
straightforward. With tasking, the situation is more complex, as the thread that
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Fig. 1. The task graph of a network with n nodes

generates the first task may not be the same thread that executes the subsequent
levels of tasking. As each lower level task takes on the memory space of the task
above it, we would have threads writing to the local Δ vector of other threads
(i.e., the threads that generated the upper level tasks). Related to this locality
issue, multiple threads could be writing to the same local Δ vector, depending
on how the tasks are passed to the threads. To avoid this, we create a shared
array of N pointers, where N is the number of threads and pointer i points to
a local copy of Δ for thread i. Then, when we write out δ values, we first check
which thread is executing the task and use the shared pointer array to find the
appropriate Δ to update.

4 Empirical Evaluation and Main Results

In this section, we describe the results of our implementation of the algorithms
of Section 3. We considered four networks (Polblogs, CA-GrQc, as20000102, and
Gnutella09; the last three are from http://snap.stanford.edu, and the first
is from [16]) of interest in social network analysis. These networks were chosen
to represent a range of sizes (1222 to 8104 vertices) where Θ(n4) is feasible in a
parallel environment, but too large for serial codes.

Our computations were performed using Nautilus, an SGI Altix UV 1000
system at the National Institute for Computational Science (NICS) consisting
of 1024 Intel Nehalem EX processor cores and 4 terabytes of shared memory.
Each core has a speed of 2.0 GHz and the machine’s peak performance is 8.2
Teraflops. As eight of the cores are reserved for system operations, only 1016
cores can be used for a single job. We performed our experiments up to 1015
threads, leaving one core for helper threads or the operating system. The system
runs on SUSE 11.1 and Propack 7SP1. The Altix dplace command was used
to bind threads to cores. We used Intel 11.1 and GNU 4.6.3 to evaluate task
scalability, and the newer GNU 4.7.3 to evaluate the new OpenMP 3.1 tasking
features at the end of Section 4.3. Newer versions of the Intel compiler (12.1
and 13.x) experienced a massive runtime slowdown which prevented completion
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Table 1. Representative Running Times (in seconds)

(a) Timing of Three δ Definitions

Definition of δ Time (96 threads)

δ-slim 2910
δ-fat 1187

4-point δ 111

(b) Timing of Scheduling Policies

Dynamic Static
Chunksize 1 10 1 10

128 threads 23851 19901 34854 46384
256 threads 17359 20705 22456 25546

of jobs using even the smallest of our test networks, which we believe can be
attributed to calls to the Boost Graph Library.

4.1 An Aside: Comparison of Different δ Definitions

Both the δ-slim and δ-fat triangle-based definitions of δ (see [6, 7] for precise
definitions) restrict computations to triplets of nodes, but they require us to
compute, store, and then check the distances between nodes on each side of a
geodesic triangle. Representative timings for computations based on all three
definitions using straightforward worksharing implementations are presented in
Table 1(a). The more than an order of magnitude improvement for computations
based on the 4-point condition are largely because the data structures needed to
track all of the shortest paths between points, as required by the triangle-based
definitions of δ, are not needed for the 4-point condition.

4.2 Comparison of Tasking versus Worksharing

Our initial evaluation of the tasking feature of OpenMP pitted it against the
worksharing approach on the GNU compiler. For each of the four networks, we
ran the algorithms in Codes 1.1 and 1.2 repeatedly, starting with a single thread,
repeatedly doubling the number of threads until we reached the hardware limit.
The results are presented in Figure 2 and Table 2, where missing values are due
to a wall-clock limit of 24 hours on Nautilus, preventing completion of jobs. Since
the single thread job did not complete for all networks, in Figure 2, we present
scaling relative to the “first run,” meaning the timing of the execution with the
smallest number of threads which completed in under 24 hours (e.g., Gnutella
is relative to a 512 thread run). Smaller numbers in the table correspond to
faster timings, and these results clearly indicate that—as a general rule, e.g.,
aside from a performance degradation on the smallest network when using the
largest number of threads—tasking is better than worksharing. In addition, for
the worksharing implementation, we tested the impact of choosing static versus
dynamic scheduling with the omp for directive, again varying the chunksize. Our
timings, a representative sample of which are presented in Table 1(b), indicate
that the best results are generally achieved using the dynamic clause with a
chunksize of one. Our profiling data indicate this is most likely caused by the
increased imbalances in the amount of work associated with each chunk as the
chunksize increases.
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Fig. 2. Comparison of tasking (T) and workshare (WS) implementations

Table 2. Computation time (in seconds) of tasking versus workshare

Number of CPUs
Network n 32 64 128 256 512 1015

Polblogs 1222 tasking 70 42 42 69 137 269
workshare 71 47 46 70 132 292

CA-GrQc 4158 tasking 8989 4933 2723 2053 1916 3691
workshare 10433 5749 5012 3260 2688 3136

as20000102 6474 tasking 50002 37417 15308 9851 9039 11419
workshare 47197 29309 23851 17359 12231 11491

Gnutella09 8104 tasking - - - - 26888 13295
workshare - - - - 28564 21456

4.3 Comparison of Tasking Performance on Different Compilers

Next, we compare the task scheduling and load balancing strategies of the GNU
and Intel compilers. In doing so, we illustrate differences in challenges encoun-
tered on problems with small versus large numbers of threads and tasks. Pro-
filing runs that calculate the δ-hyperbolicity of CA-GrQc (4158 nodes) allow us
to evaluate the number of tasks per thread, amount of task switching, and load
balancing up to 1015 threads. Comparison with runs on Polblogs (1222 nodes)
provides perspective on the scaling behavior of each compiler’s scheduler.

The first characteristic considered is the number of tasks (at each level) that
are executed per thread. At the first level, each task is primarily concerned with
spawning its child tasks (distributing the work of task creation). As shown in
Figures 3(a) and 3(b), the GNU compiler has a relatively equitable distribution
on first level tasks, but the Intel compiler has “outlier” threads that execute
an order of magnitude more first level tasks than the other threads. Further
investigation revealed that, when using Intel, the thread creating the first level
of tasks (in the single directive region) schedules more first level tasks to itself.
For both compilers, the distribution becomes more imbalanced at higher thread
counts—we suspect this is due to either the variability in the numbers of children
spawned by each first level task (recall Figure 1) or the imbalance in the amount
of computation (i.e., number of iterations) in each of these children. For second
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Fig. 3. Number of first and second level tasks executed per thread in CA-GrQc

level tasks, Figures 3(c) and 3(d) illustrate a relatively uniform distribution for
the GNU compiler, with imbalances appearing at 1015 thread count, as well as
an outlier thread with the Intel compiler, but only at small thread counts.

Given these data, a natural question to ask is how many tasks are “switching”
threads between creation and execution. Figure 4 shows this count for second
level tasks, and it clearly highlights a difference in task scheduling strategy be-
tween the compilers—which differ by two orders of magnitude at all thread
counts. In particular, Intel’s runtime scheduler seems to do more aggressive load
balancing, leading to higher switch counts. Also note the order of magnitude
increase in switching for the GNU compiler when we reach 1015 threads which
starts to do more aggressive load balancing at this scale. Analysis of the data re-
veals the number of tasks switching is not uniformly distributed across threads,
and we suspect load imbalances are occurring at this size scale.

The remaining evaluations use both CA-GrQc and Polblogs, whose sizes differ
by a factor of approximately 4. Figure 5 shows the time spent executing tasks
by each thread, sorted in decreasing order to illustrate more clearly the load
imbalances.1 For CA-GrQc, the work is well-balanced among the threads on
both compilers when using 64 and 128 threads. Figure 5(a) shows that, with the

1 While Figure 5 shows that the Intel compiler has a higher average execution time
than the GNU compiler, note that this task inflation is due to the way that Intel
load balancing is affecting locality and the way it is optimizing calls to the C++
Boost library.
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Fig. 4. Number of tasks created by one thread and executed by another one

Table 3. Performance ratio (original runtime / optimized runtime) on GNU-compiled
code

Dataset Polblogs CA-GrQc

Threads 64 128 256 256 512 1015

PSD 0.990 0.694 0.926 0.709 0.813 1.410

PSD-CM 1.010 0.840 0.800 0.794 0.862 1.370

PSD-CMF 0.500 0.758 0.746 0.775 0.952 1.450

GNU compiler, by the time one reaches 512 threads, the variability has grown
so that 10% of the task region overhead is attributable to load imbalance (at
1015 threads, this balloons to 27%). In contrast, Figure 5(b) shows that the
Intel compiler limits this overhead contribution to 3% and 9% for 512 and 1015
threads, respectively. This is unlikely to be independent of the increased Intel
task switching seen in Figure 4(b). Figures 5(a) and 5(b) also show that there
is a significant performance loss due to task inflation at higher thread counts.
When one decreases the size of the network by a factor of 4 (and thus the number
of tasks by approximately 28), load imbalance occurs at a lower thread count,
but the effects of task inflation are limited because data locality impacts the
performance less at smaller thread counts. Figure 5(c) and 5(d) suggest that,
independent of task inflation, Intel may have a better OpenMP load balancing
strategy than GNU at this scale.

Finally, in Figure 6, we break down the overhead of the task region into that
attributable to load imbalance and that caused by task creation and scheduling.
For the smaller Polblogs network, most of the overhead is due to load imbalance,
although at 256 threads we see the balance begin to shift for the GNU compiler.
When considering the larger CA-GrQc network, large thread counts correspond
to significant load imbalance with the GNU compiler. In contrast, the Intel
compiler maintains a low load imbalance, but at the expense of a drastically
higher task creation and scheduling overhead for large numbers of threads.

Table 3 gives the running time performance ratio under various optimizations
(larger numbers are better) using the new OpenMP 3.1 tasking features; we note
that statistics are given only for the GNU compiler, as in some cases the Intel-
compiled code slows down to the point of timing out under similar optimizations
(even on the Polblogs network). First, to mitigate the cost of task inflation
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(b) Intel CA-GrQc
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(c) GNU Polblogs
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(d) Intel Polblogs

Fig. 5. Time spent executing tasks per thread

seen in CA-GrQc, we padded the task-shared data structures (PSD) with an
extra dimension of the size of a memory page (4096 bytes). Once shared data
structures were restructured, we tried to address load imbalance seen at high
thread counts by adding an additional level of tasking with a cutoff at .8*size
of the k iteration space, and using the mergeable clause to merge the data
environment with that of the second level task (denoted as PSD-CM). Finally,
we inserted a final clause that applies to the last two iterations of the second
level task (denoted PSD-CMF). In most cases, these optimizations did not reduce
the running time until the number of threads became very large, which highlights
the importance of testing these OpenMP features at scale. In particular, padding
shared data structures might make them less cache friendly when page migration
costs are not as expensive at small thread counts, but it drastically improves the
locality when significant task switching occurs for load balance at high thread
counts. Furthermore, adding the third level of tasking in PSD-CM allowed better
load balancing at high thread counts, but it could not overcome the increased
overhead of task creation, without the additional control exerted by the final

clause. We will still need to investigate why the mergeable clause only decreases
the performance of the application at scale, but one possible reason is that
sharing the data environment among tasks may stress the memory interconnect
when two tasks are executed on different cores. When applying the final clause,
this issue may be resolved because the second and third level of tasks become
un-deferred and may execute on the same core. This would allow the tasks to
benefit from the data locality of the merged data environment.
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(a) Polblogs
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(b) Ca-GrQc

Fig. 6. Overhead of the task region

5 Conclusions

We have found that algorithms with multiple levels of tasking give improved
performance over the OpenMP workshare construct since they allow us to par-
allelize irregular loops by splitting the work into smaller chunks, and enable
better load balancing among threads. We have also used performance tools to
analyze and compare the GCC 4.6.3 and Intel 11.1 compilers, finding that the
two compilers use different task scheduling and load balancing strategies whose
differences emerge when performing moderately large-scale versus very large-
scale computations; and we have used new tasking features in OpenMP 3.1 to
mitigate the cost of task creation and scheduling overheads. We expect that our
conclusions will be useful in other applications that require hundreds or thou-
sands of threads.
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