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Abstract—Parallel computing has played an important role
in speeding up convex optimization methods for big data
analytics and large-scale machine learning (ML). However,
the scalability of these optimization methods is inhibited by
the cost of communicating and synchronizing processors in a
parallel setting. Iterative ML methods are particularly sensitive
to communication cost since they often require communication
every iteration. In this work, we extend well-known techniques
from Communication-Avoiding Krylov subspace methods to
first-order, block coordinate descent methods for Support
Vector Machines and Proximal Least-Squares problems. Our
Synchronization-Avoiding (SA) variants reduce the latency cost
by a tunable factor of s at the expense of a factor of s increase
in flops and bandwidth costs. We show that the SA-variants
are numerically stable and can attain large speedups of up to
5.1× on a Cray XC30 supercomputer.

Keywords-Synchronization-Avoiding; Support Vector Ma-
chines; Proximal Least-Squares; Sparse Convex Optimization;
Coordinate Descent Methods;

I. INTRODUCTION

The running time of algorithms on a distributed-memory,
parallel machine depends on the number of arithmetic op-
erations F (computation) and the cost of data movement
(communication). In distributed-memory settings, commu-
nication cost includes the “message size cost,” i.e., the
amount, W , of data exchanged between processors over a
network (bandwidth cost) and the “synchronization cost,”
i.e., the number, L, of messages sent, where a message is
used for interprocessor synchronization (latency cost). On
modern parallel computer architectures, communicating data
often takes much longer than performing a floating-point
operation, and this gap is continuing to increase. Therefore,
it is important to design algorithms that minimize communi-
cation in order to attain high performance, and recent results
on communication-avoiding numerical linear algebra (CA-
NLA) [1] illustrate the potential for faster algorithms by
avoiding interprocessor communication.

Our goal in this work is to extend results from CA-NLA to
convex optimization [2] to accelerate machine learning (ML)

applications. In particular, we are interested in reducing
communication cost for iterative convex optimization on
distributed machines. Communication is a bottleneck for
these methods since they often require synchronization at
every iteration. Our goal in this paper is to avoid this
communication for s iterations, where s is a tuning pa-
rameter, without altering the convergence rates or numerical
stability of the existing methods. We will show how the
communication-avoiding technique developed for Krylov
subspace methods [1, Sec. 8] can be used to derive faster
convex optimization algorithms.

We are interested in solving the class of optimization
problems which take the form

arg min
x∈Rn

f(A, b, x) + g(x). (1)

where f(A, b, x) is a convex loss function with regulariza-
tion function, g(x), A ∈ Rm×n with m data points and
n features, labels b ∈ Rm, and the solution to the mini-
mization problem, x ∈ Rn. In particular, we would like to
focus on sparse convex optimization problems: sparse prox-
imal least-squares [3],

(
f(A, b, x) = 1

2n ||Ax− b||
2
2

)
with

sparsity-inducing regularization functions

Lasso [4]: g(x) = λ||x||1,
Elastic-Nets [5]: g(x) = λ||x||22 + (1− λ)||x||1,

Group Lasso [6]: g(x) = λ
∑G

g=1
||x̃g||2,

where {x̃1, x̃2, . . . , x̃G} are G disjoint blocks of x.
We also consider support vector machines (SVMs) [7]

f(A, b, x) = λ
∑m

i=1
max(1− biAix, 0)2,

where Ai is the i-th row of A, bi is the corresponding binary
label ({+1,−1}), and λ is a regularization parameter. We
present our results for proximal least-squares using Lasso-
regularization, but they hold more generally for other reg-
ularization functions with well-defined proximal operators
(Elastic-Nets, Group Lasso, etc.) [3]. By proximal operator

409

2018 IEEE International Parallel and Distributed Processing Symposium

1530-2075/18/$31.00 ©2018 IEEE
DOI 10.1109/IPDPS.2018.00051



.	.	.

Proc0
A0 r0

x

Procp
Ap rp

x

.	.	.

x

2. Randomly	
sample	𝜇
Coordinates	of	
𝐴.	(ex.	columns)

.	.	.

3. Compute	partial
dot-products

x

r0

rp

x

x
MPI_Allreduce

5. Compute	
𝜇	-dimensional	
solution	and	update	
coordinates	of	𝑥.

.	.	.

x

x

6. Repeat	until	termination	criterion	is	met.

.	.	.
4. Sum	reduce	

dot-products	
and	replicate	
on	all	
processors.	

.	.	.

.	.	.
1. Partition	A	

(ex.	rows).	
Replicate	or	
partition	all	
vectors	

Figure 1: A high-level depiction of the Block Coordinate Descent method (independent of the minimization problem being
solved). The matrix A is 1D-row partitioned and w.l.o.g. depicted as being dense. Vectors in the partitioned dimension are
also partitioned (in this case residual vector, r). Vectors in the non-partitioned dimension and all scalars are replicated (in
this case x). Each processor selects the same column indices (by using the same random generator seed). Computation of
(partial) dot-products is a local GEMM operation. After that, the results are combined using an Allreduce with summation.
Due to data replication all processors can independently compute this iteration’s solution and perform vector updates.

we mean that the non-linearity due to the regularization
function, for example with Lasso, can be defined for a
constant, α, and element-wise on vector, β, as:

Sα(βi) := sign(βi) max(|βi| − α, 0), (2)

where Sα(β) is the well-know soft-thresholding operator for
Lasso [4], [8], [9]. Proximal operators, similar to (2), can be
defined for other non-linear regularizers (i.e. Elastic-Nets,
Group Lasso, etc.). Lasso creates solution sparsity during
the optimization process by setting elements of the solution
vector, x, exactly to zero. SVM [7] introduces sparsity (by
its loss function definition) since we seek a small number of
support vectors which separate data belonging to different
classes. The sparsity-inducing nature of both optimization
problems is important (and widely used) when dealing with
high-dimensional data. In the case of high-dimensional and
large-scale data, it becomes equally important to parallelize
the computations in order to quickly and efficiently solve
these Lasso and SVM problems.

There exist many algorithms to solve proximal least-
squares [10]–[14] and SVM problems [15]–[19]. In this pa-
per we focus on randomized variants of accelerated and non-
accelerated Coordinate Descent (CD) and Block Coordinate
Descent (BCD) since they have optimal convergence rates
among the class of first-order methods [10]–[13], [16], [19].

CD [20] is a popular ML technique for solving optimiza-
tion problems which updates a single element (i.e., coor-
dinate) of x by minimizing a one-dimensional subproblem.
BCD generalizes CD with a tunable block size parameter,
µ, by updating µ coordinates of x and minimizing a µ-
dimensional subproblem. This process is repeated until a

termination criterion is met. Solving the subproblem initially
requires the computation of several dot-products with a sub-
set of rows or columns of the data matrix, A, its transpose,
and residual vectors. Once they are computed the remaining
computations are scalar and vector operations which update
the solution and residual vectors (and scalar quantities) for
the next iteration.

Figure 1 illustrates the computations in parallel BCD. We
assume that A is partitioned so that the dot-products can
be computed in parallel by all processors (in this case row-
partitioned). Vectors in Rm are similarly partitioned (in this
case residual, r), but vectors in Rn are replicated (in this case
solution, x). For µ > 1 the dot-products become GEMM
(GEneralized Matrix-Multiplication) computations. After the
dot-product/GEMM computations an MPI Allreduce with
summation combines each processor’s contributions. Since
Allreduce redundantly stores results on all processors, com-
puting the solution to the subproblem and updating all
vectors can be performed without communication. Finally,
this process is repeated until a termination criterion is met.
The mathematical details (and complexity) of solving the
subproblem and updating vectors might vary based on the
optimization problem (proximal least-squares, SVM, etc.).
However, the parallel BCD methods we consider in this pa-
per can be summarized by Figure 1. Each iteration requires
synchronization, therefore, avoiding these synchronization
costs could lead to faster and more scalable BCD methods
for proximal least-squares and SVM.

Main Contributions: We present synchronization-
avoiding (SA) derivations of existing accelerated and non-
accelerated CD/BCD through mathematical re-formulation.
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We call these methods synchronization-avoiding since they
trade-off additional bandwidth and flops for fewer synchro-
nizations. We show that our methods avoid synchronization
for s iterations without altering the numerical stability or
convergence behavior in exact arithmetic. We implement
the SA-methods in C++ using MPI [21] and show that our
methods perform 1.2× - 5.1× faster and are more scalable
on up to 12k cores of a Cray XC30 supercomputer on
LIBSVM [22] datasets.

The rest of the paper is organized as follows: Section II
discusses related approaches and how ours differs. Section
IV derives SA-Lasso and shows experimental results in Sec-
tion IV. Section IV derives SA-SVM and shows experimental
results in Section V-B. Finally, we summarize and discuss
future work in Section VI.

II. RELATED WORK

Communication-Avoiding in Linear Algebra: This pa-
per extends the s-step iterative methods work in NLA and
subsequent work on CA iterative linear algebra surveyed by
Ballard et. al. [1]. We extend these results to widely used and
important problems in ML, namely proximal least-squares
and SVM. Our work expands upon and generalizes CA-NLA
results to the field of convex optimization.

Communication-Efficient Machine Learning: Recent
work along these lines, like proxCoCoA+ [23] propose
frameworks that reduce the communication bottleneck. Prox-
CoCoA+ perform computation on only locally stored data
and then combine contributions from all processors. The
communication benefits of proxCoCoA+ are inherited from
the iteration complexity of performing Newton-type steps on
locally stored data.

DUAL-LOCO [24] introduces a framework which reduces
communication between processors by communicating a
small matrix of randomly projected features. While DUAL-
LOCO requires just one communication round, it does not
apply to proximal least-squares problems (i.e., Lasso, elastic-
net, etc.) and introduces an (additive) approximation error.

CA-SVM [25] eliminates communication in SVM by
performing an initial K-means clustering as a pre-processing
step to partition the data and subsequently training SVM
classifiers locally on each processor. Communication is
reduced significantly, but at the cost of accuracy. Like
proxCoCoA+, CA-SVM uses a local SVM solver which can
be replaced with our SA-variant.

P-packSVM [26] applies a similar approach to ours and
derives a SA version of SVM using Stochastic Gradient De-
scent (SGD) as the optimization method. Our work extends
this SA approach further to different methods (accelerated
and non-accelerated CD/BCD) and extend it to other non-
linear optimization problems (proximal least-squares).

Devarakonda et al. [27] derive SA-variants of primal and
dual BCD methods for L2 regularized least-squares. Our

Algorithm 1 Accelerated Block Coordinate Descent (ac-
cBCD) for Lasso

1: Input: A ∈ Rm×n, b ∈ Rm, H > 1, y0 ∈ Rn, z0 ∈ Rn,
λ ∈ R, µ ∈ Z+ s.t. µ ≤ n

2: θ0 = µ/n, ỹ0 = Ay0, z̃0 = Az0 − b
3: q = dn/µe
4: for h = 1, 2, · · · , H do
5: choose {il ∈ [n]|l = 1, 2, . . . , µ} uniformly at

random without replacement.
6: Ih =

[
ei1 , ei2 , · · · , eiµ

]
7: Let Ah = AIh

Communication: Lines 8 and 9.
8: G = AThAh
9: rh = ATh

(
θ2h−1ỹh−1 + z̃h−1

)
10: v = largest eigenvalue of G
11: ηh = 1

qθh−1eTh v

12: gh = ITihzh−1 − ηhrh
13: ∆zh = Sληh(gh)− ITh zh−1
14: zh = zh−1 + Ih∆zh
15: z̃h = z̃h−1 + Ah∆zh
16: yh = yh−1 − 1−qθh−1

θ2h−1
Ih∆zh

17: ỹh = ỹh−1 − 1−qθh−1

θ2h−1
Ah∆zh

18: θh =

√
θ4h−1+4θ2h−1−θ

2
h−1

2

19: Output θ2HyH + zH

work extends their results to non-linear problems and to
sparse convex optimization.

Soori et al. [28] derive CA-variants of novel stochastic
FISTA (SFISTA) and stochastic Newton (SPNM) methods
for the proximal least squares problem. They illustrate
that standard loop unrolling techniques can be applied to
SFISTA and SPNM to obtain communication-avoiding vari-
ants. However, it should be noted that SFISTA and SPNM
have communication costs which scale quadratically with
the dimensions of the input matrix. On the other hand,
BCD methods use a tunable blocksize parameter which has
smaller bandwidth and flops requirements. Furthermore, our
work solves the proximal least-squares and SVM problems
on accelerated and non-accelerated BCD methods. Further-
more, the synchronization-avoiding technique is adapted
from CA-Krylov [1, Sec. 8] and s-step Krylov subspace
methods [29]–[32] work.

Our SA technique derives alternate forms of existing
proximal least-squares and SVM methods by re-arranging
the computations to obtain s solution updates per communi-
cation round. This allows us to obtain an algorithm whose
convergence behavior and sequence of solution updates are
equivalent to the original algorithm.
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III. SYNCHRONIZATION-AVOIDING LASSO

In this section, we derive a SA version of the accelerated
block coordinate descent (accBCD) algorithm for the Lasso
problem. The derivation of SA-accBCD (Synchronization-
Avoiding accBCD) relies on unrolling the vector update
recurrences s times and re-arranging the updates and de-
pendent computations to avoid synchronization.

Given a matrix A ∈ Rm×n with m data points and n
features, a vector of labels b ∈ Rm, and regularization
parameter λ ∈ R, the Lasso problem aims to find the
solution x ∈ Rn that solves the optimization problem:

arg min
x∈Rn

1

2
‖Ax− b‖22 + λ||x||1

This problem can be solved with many iterative algorithms.
We consider the accelerated BCD (accBCD) algorithm de-
scribed in [11, Algorithm 2] (see Algorithm 1 in this paper).
Nesterov’s acceleration [33] is adapted to BCD [11] through
the introduction of additional vectors (yh, zh, ỹh, and z̃h) and
scalar (θh) updates. The solution vector at each iteration h
is implicitly computed since xh = θhyh + zh, but need not
be explicitly computed until termination. Aside from com-
plications due to acceleration, the remaining computations
follow the BCD steps illustrated in Figure 1.

We assume that A is 1D-row partitioned so partial dot-
products (lines 8 and 9 in Alg. 1) can be computed on
each processor. Lines 4-7 in Alg. 1 randomly select µ
column indices and extract them from A. Lines 8-9 in Alg.
1 compute dot-products. Lines 11-17 Alg. 1 compute the
solution to the subproblem and update scalars and vectors
for the next iteration. We assume that H iterations of
the algorithm are performed (where H depends on the
termination criterion). Line 12 in Alg. 1 applies the soft-
thresholding function defined in (2) required for Lasso. At
each iteration we compute v, the optimal Lipschitz constant,
which is the largest eigenvalue of the, small, µ × µ Gram
matrix (line 10 in Alg 1). Since G is replicated on all
processors (after the MPI Allreduce [21]), line 10 does not
require communication. An approximate Lipschitz constant
can be used but we compute the optimal constant for fast
convergence. The recurrences in lines 9–17 of Alg. 1 can
be unrolled to avoid synchronization. We begin the SA
derivation by changing the loop index from h to sk + j
where k is the outer loop index, s is the recurrence unrolling
parameter, and j is the inner loop index. Let us assume
that we are at iteration sk + 1 and have just computed the
vectors zsk, z̃sk, ysk, and ỹsk. From this ∆zsk+1 can be
computed by1

1We ignore scalar updates since they can be redundantly stored and
computed on all processors.

Algorithm 2 Synchronization-Avoiding Accelerated Block
Coordinate Descent (SA-accBCD) for Lasso

1: Input: A ∈ Rm×n, b ∈ Rm, H > 1, y0 ∈ Rn, z0 ∈ Rn,
λ ∈ R, µ ∈ Z+ s.t. µ ≤ n

2: θ0 = µ/n, ỹ0 = Ay0, z̃0 = Az0 − b
3: q = dn/µe
4: for k = 1, 2, · · · , Hs do
5: for j = 1, 2, · · · , s do
6: choose {il ∈ [n]|l = 1, 2, . . . , µ} uniformly at

random without replacement.
7: Isk+j =

[
ei1 , ei2 , · · · , eiµ

]
8: Let Ask+j = AIsk+j
9: θsk+j =

√
θ4sk+j−1+4θ2sk+j−1−θ

2
sk+j−1

2

Communication: Lines 11 and 12.
10: Let Y =

[
Ask+1,Ask+2, · · · ,Ask+s

]
.

11: G = Y TY .

12:

[
ỹ′sk+1 ỹ′sk+2 . . . ỹ′sk+s
z̃′sk+1 z̃′sk+2 . . . z̃′sk+s

]T
= Y T [ỹsk z̃sk].

13: for j = 1, 2, · · · , s do
14: v = large eigenvalue of ATsk+jAsk+j .
15: ηsk+j = 1

qθsk+j−1eTsk+jv

16: Compute rsk+j by equation2(3)
17: Compute gsk+j by equation (4)
18: Compute ∆zsk+j by equation (5)
19: zsk+j = zsk+j−1 + Isk+j∆zsk+j
20: z̃sk+j = z̃sk+j−1 + Ask+j∆zsk+j
21: ysk+j = ysk+j−1 − 1−qθsk+j−1

θ2sk+j−1
Isk+j∆zsk+j

22: ỹsk+j = ỹsk+j−1 − 1−qθsk+j−1

θ2sk+j−1
Ask+j∆zsk+j

23: Output θ2HyH + zH

rsk+1 = ATsk+1

(
θ2skỹsk + z̃sk

)
,

gsk+1 = ITsk+1zsk − ηsk+1rsk+1,

∆zsk+1 = Sληsk+1
(gsk+1)− ITsk+1zsk.

By unrolling the vector update recurrences for zsk+1, ỹsk+1,
and z̃sk+1 (lines 14, 15, and 17), we can compute rsk+2,
gsk+2, and ∆zsk+2 in terms of zsk, z̃sk, and ỹsk

rsk+2 = ATsk+2

(
θ2sk+1ỹsk − θ2sk+1

1− qθsk
θ2sk

Ask+1∆zsk+1

+ z̃sk + Ask+1∆zsk+1

)
,

= θ2sk+1ATsk+2ỹsk + ATsk+2z̃sk

−
(
θ2sk+1

1− qθsk
θ2sk

− 1

)
ATsk+2Ask+1∆zsk+1,

gsk+2 = ITsk+2zsk + ITsk+2Isk+1∆zsk+1 − ηsk+2rsk+2,

∆zsk+2 = Sληsk+2
(gsk+2)− ITsk+2zsk − ITsk+2Isk+1∆zsk+1.
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By induction we can show that rsk+j , gsk+j , and ∆zsk+j
can be computed in terms of zsk, z̃sk, and ỹsk

rsk+j = θ2sk+j−1ATsk+j ỹsk + ATsk+j z̃sk

−
j−1∑
t=1

(
θ2sk+j−1

1− qθsk+t−1
θ2sk+t−1

− 1

)
ATsk+jAsk+t∆zsk+t

(3)

gsk+j = ITsk+jzsk − ηsk+jrsk+j +

j−1∑
t=1

ITsk+jIsk+t∆zsk+t

(4)

∆zsk+j = Sληsk+j (gsk+j)− ITsk+jzsk

−
j−1∑
t=1

ITsk+jIsk+t∆zsk+t
(5)

for j = 1, 2, . . . , s. Notice that due to the recurrence
unrolling we can defer the updates to zsk, ysk,
z̃sk, and ỹsk for s iterations. The summation in (3)
computes the Gram-like matrices, ATsk+jAsk+t, for
t = 1, 2, · · · , j−1. Synchronization can be avoided in these
computations by computing the sµ× sµ Gram matrix G =
[Ask+1,Ask+2, · · · ,Ask+s]T [Ask+1,Ask+2, · · · ,Ask+s]
once before the inner loop3 and redundantly storing it
on all processors. Synchronization can be avoided in
the summation in (4) by initializing the random number
generator on all processors to the same seed. Finally, at
the end of the s inner loop iterations we can perform the
vector updates

zsk+s = zsk +

s∑
t=1

Iisk+t∆zsk+t (6)

z̃sk+s = z̃sk +

s∑
t=1

Ask+t∆zsk+t (7)

ysk+s = ysk −
s∑
t=1

1− qθsk+t−1
θ2sk+t−1

Isk+t∆zsk+t (8)

ỹsk+s = ỹsk −
s∑
t=1

1− qθsk+t−1
θ2sk+t−1

Ask+t∆zsk+t. (9)

The resulting Synchronization-Avoiding accBCD (SA-
accBCD) algorithm is shown in Algorithm 2. Since our
SA technique relies on rearranging the computations, the
convergence rates and behavior of the standard accelerated
BCD algorithm (Alg. 1) is the same (in exact arithmetic).

SA-accBCD computes a larger sµ×sµ Gram matrix every
s iterations, which results in a computation-communication
tradeoff where SA-accBCD increases the flops and message
size in order to reduce the latency by s. If the latency cost
is the dominant term then SA-accBCD can attain s-fold

2Since ATsk+j ỹsk = ỹ′sk and ATsk+j ỹsk = z̃′sk , no additional
computation or communication is needed to form those vectors.

3G is symmetric so computing just the upper/lower triangular part
reduces flops and message size by 2×.

Algorithm 3 Dual Coordinate Descent for Linear SVM
(SVM)

1: Input: A ∈ Rm×n, b ∈ Rm, H > 1, λ ∈ R, α0 ∈ Rm
2: x0 =

∑m
j=1 yiαiA

T
i

3: for h = 1 . . . H do
4: ih ∈ [m], chosen uniformly at random.
5: Ih = [eih ]
6: Let Ah = IThA

Communication: Lines 7 and 8.
7: ηh = AhATh + γ
8: gh = ITh bAhxh−1 − 1 + γIThαh−1
9: g̃h = |min(max(IThαh−1 − gh, 0), ν)− IThαh−1|

10: if g̃h 6= 0 then
11: θh = min(max(IThαh−1 −

gh
ηh
, 0), ν)− IThαh−1

12: else
13: θh = 0

14: αh = αh−1 + θhIh
15: xh = xh−1 + θhITh bATh
16: Output: xH

speedup over accBCD. In general there exists a tradeoff
between s and the speedups attainable. Table I summarizes
the operational, storage, and communication costs of the SA
and non-SA methods.

IV. SYNCHRONIZATION-AVOIDING SVM

We are given a matrix A ∈ Rm×n, labels b ∈ Rm where
bi are binary labels {−1,+1} for each observation Ai (i-
th row of A). Support Vector Machines (SVM) solve the
optimization problem:

arg min
x∈Rn

1

2
||x||22 + λ

m∑
i=1

F (Ai, bi, x) (10)

wher F (Ai, bi, x) is a loss function and λ > 0 is the penalty
parameter. In this work, we consider the two loss functions:

max(1− biAix, 0) and max(1− biAix, 0)2. (11)

We refer to the first as SVM-L1 and the second as SVM-
L2 (consistent with [19]). Recent work [19] has shown that
both variants of SVM can be solved efficiently using dual
coordinate descent. Therefore, in this work we will consider
the dual optimization problem:

arg min
α∈Rm

1

2
αT Q̄α− eTα (12)

subject to 0 ≤ αi ≤ ν, ∀i, (13)

where Q̄ = Q+D, where D = γIm and Qij = bibjAiA
T
j .

For SVM-L1, γ = 0 and ν = λ and for SVM-L2 γ = .5
λ

and ν =∞. The dual problem can be solved efficiently by
CD [19] and is shown in Algorithm 3. Note that, unlike
Lasso, SVM requires 1D-column partitioning in order to
compute dot-products in parallel. The recurrences defined
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Table I: Ops (F), Latency (L), Bandwidth (W) and Memory per processor (M) costs comparison along the critical path of
classical accBCD and SA-accBCD. H is the number of iterations and we assume that A ∈ Rm×n is sparse with fmn
non-zeros that are uniformly distributed, 0 < f ≤ 1 is the density of A (i.e. f = nnz(A)

mn ), P is the number of processors
and s is the recurrence unrolling parameter. fµm is the non-zeros of the µ×m matrix with µ sampled columns from A at
each iteration. We assume that the µ× µ and Gram matrix computed at each iteration are dense.

Summary of theoretical costs
Algorithm Ops cost (F) Memory cost (M) Latency cost (L) Message Size cost (W)

accBCD O
(
Hµ2fm

P
+Hµ3

)
O

(
fmn+m

P
+ µ2 + n

)
O (H logP ) O

(
Hµ2 logP

)
SA-accBCD O

(
Hµ2sfm

P
+Hµ3

)
O

(
fmn+m

P
+ µ2s2 + n

)
O

(
H
s
logP

)
O

(
Hsµ2 logP

)

in lines 7-11, 13, and 14 of Alg. 3 can be unrolled to avoid
synchornization. We begin the SA derivation by changing
the loop index from h to sk + j where k is the outer loop
index, s is the (tunable) recurrence unrolling parameter, and
j is the inner loop index. Let us assume that we are at
iteration sk+ 1 and have just computed the vectors xsk and
αsk. From this the next update, θsk+1, can be computed by

gsk+1 = ITsk+1bAsk+1xsk − 1 + γITsk+1αsk,

g̃sk+1 = |min(max(ITsk+1αsk − gsk+1, 0), ν)− ITsk+1αsk|,

θsk+1 =


min(max(ITsk+1αsk −

gsk+1

ηsk+1
, 0), ν)− ITsk+1αsk,

when g̃sk+1 6= 0
0, otherwise.

Finally, αsk+1 and xsk+1 can be computed by

αsk+1 = αsk + θsk+1Isk+1,

xsk+1 = xsk + θsk+1ITsk+1bATsk+1.

By unrolling the vector update recurrences for αsk+1 and
xsk+1, we can compute gsk+2, g̃sk+2, and θsk+2 in terms
of αsk and xsk. We will ignore the quantities g̃sk+j and
θsk+j in the subsequent derivations for brevity. We introduce
an auxiliary scalar, βsk+j = ITsk+jαsk+j−1, for notational
convenience.

βsk+2 = ITsk+2αsk + θsk+1ITsk+2Isk+1,

gsk+2 = ITsk+2bAsk+2xsk − 1 + γβsk+2

+ θsk+1ITsk+2bITsk+1bAsk+2ATsk+1.

By induction we can show that gsk+j can be computed
in terms of αsk and xsk such that

βsk+j = ITsk+jαsk +

j−1∑
t=1

θsk+tITsk+jIsk+t, (14)

gsk+j = ITsk+jbAsk+jxsk − 1 + γβsk+j

+

j−1∑
t=1

θsk+tITsk+jbITsk+tbAsk+jATsk+t,
(15)

Algorithm 4 Synchronization-Avoiding Dual Coordinate
Descent for Linear SVM (SA-SVM)

1: Input: A ∈ Rm×n, b ∈ Rm, H > 1, λ ∈ R, s ∈ Z+

α0 ∈ Rm,

γ =

{
0, for SVM-L1
.5
λ , for SVM-L2 , ν =

{
λ, for SVM-L1
∞, for SVM-L2

2: x0 =
∑m
i=1 yiαiA

T
i

3: for k = 0, . . . , Hs do
4: for j = 1 . . . s do
5: isk+j ∈ [m], chosen uniformly at random.
6: Let Isk+j =

[
eisk+j

]
7: Let Ask+j = ITsk+jA
8: Let Y =

[
ATsk+1,ATsk+2, . . . ,ATsk+j

]
.

Communication: Lines 9 and 10.
9: G = Y TY + γIs.

10: [x′sk+1, . . . , x
′
sk+s]

T = Y Txsk
11: [ηsk+1, . . . , ηsk+s]

T = diag(G)
12: for j = 1, . . . , s do
13: Compute βsk+j according to equation (14).
14: Compute gsk+j according to equation4(15).
15: g̃h = |min(max(βsk+j − gsk+j , 0), ν)− βsk+j |
16: if g̃h 6= 0 then
17: θsk+j = min(max(βsk+j − gsk+j

ηsk+j
, 0), ν)

−βsk+j
18: else
19: θsk+j = 0

20: αsk+j = αsk+j−1 + θsk+jIsk+j
21: xsk+j = xsk+j−1 + θsk+jITsk+jbATsk+j
22: Output: xH

for j = 1, 2, . . . , s. Due to the recurrence unrolling, we
can defer updates to αsk and xsk for s iterations. The
summation in (14) adds a previous update θsk+t if the
coordinate chosen for update at iteration sk+t is the same as
iteration sk+j. Synchronization can be avoided in the steps
of this algorithm in much the same way as SA-accBCD for

4Since Ask+jxsk+j = x′sk+j , no additional computation or communi-
cation is needed to form the vector.
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Table II: Properties of the LIBSVM datasets used in Lasso
numerical and performance experiments.

Summary of datasets
Name m (Data Points) n (Features) NNZ%

url 2, 396, 130 3, 231, 961 0.0036
covtype 581, 012 54 22
epsilon 400, 000 2, 000 100
news20 15, 935 62, 061 0.13
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Figure 2: We compare the convergence of accCD, CD,
accBCD, BCD against their SA variants (with s = 1000).
λ = 100σmin, where σmin is the smallest singular value.
µ = 1 for accCD and CD. µ = 8 for accBCD and BCD.

Lasso. The resulting SA-SVM algorithm is shown in Alg.
4. The derivation we present in this section only rearranges
the algebra. Hence, the convergence rates and behavior of
SVM (Alg. 3) do not change (in exact arithmetic).

V. EXPERIMENTAL RESULTS

In this section we present experimental results for our SA
variant and explore the numerical and performance tradeoffs.
The recurrence unrolling we propose requires computation
of Gram-like matrices whose condition numbers may ad-
versely affect the numerical stability of SA-accBCD and SA-
SVM. We also re-order the sequence of updates of the solu-
tion and residual vectors, which could also lead to numerical
instability. We begin in Section V-A with experiments that
illustrate that our SA-variants are numerically stable.

A. Convergence behavior

We explore the tradeoff between convergence behavior,
block size, and s (the recurrence unrolling parameter) for
the SA-accBCD algorithm and compare it to the behavior
of the standard accBCD algorithm. All numerical stability

Table III: Final relative objective error of the SA vs. non-SA
methods (from Figure 2). Machine precision is 2.2e-16.

Relative objective error
url covtype news20

SA-accCD 2.2176e-16 2.1514e-16 6.6324e-17
SA-CD 2.2204e-16 1.4203e-16 3.2567e-17
SA-accBCD 2.2204e-16 2.2616e-16 5.6153e-17
SA-BCD 2.2204e-16 2.6451e-16 8.8625e-17

Table IV: Properties of the LIBSVM datasets used in the
SVM numerical and performance experiments.

Summary of datasets
Name m (Data Points) n (Features) NNZ%

news20.binary 1, 355, 191 19, 996 0.03
rcv1.binary 47, 236 20, 242 0.16
gisette 5, 000 6, 000 99
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Figure 3: Duality gap vs. iterations of SVM-L1, and its SA
variants with s = 500.

experiments were performed in C++ on a Cray XC30 plat-
form using MPI for parallel processing. The datasets used in
our experiments were obtained from the LIBSVM repository
[22] and are summarized in Table II. The datasets were
chosen such that we tested our methods against a variety
sparse/dense, small/large, and well/ill-conditioned problems.
We measure the convergence behavior by plotting the objec-
tive function value: f(A, b, xh) = 1

2‖Axh − b‖
2
2 + λ‖xh‖1

at each iteration. For all experiments, we set λ = 100σmin.
We report the convergence vs. iterations to illustrate any
differences in convergence behavior.

Figure 2 shows the convergence behavior of the datasets
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Figure 4: We compare SA vs non-SA running times vs. convergence of CD, accCD (top row), BCD, accBCD (bottom row).

in Table II for several blocksizes and with s = 1000
for SA-accBCD. The results show that larger blocksizes
converge faster than µ = 1, but at the expense of more
computation (and larger message sizes in the distributed-
memory setting). Comparing SA-accBCD and accBCD we
observe no numerical stability issues for s as large as 1000
for all datasets tested (in theory we can avoid communica-
tion for 1000 iterations). Table III shows the final relative
objective error of the SA-methods compared to the non-SA
methods: |f(.)non-SA−f(.)SA|

f(.)non-SA
. This suggests that the additional

computation and message size costs are the performance
limiting factors and not numerical instability.

We conduct similar numerical stability experiments for
SA-SVM and use binary classification datasets (summarized
in Table IV) from the LIBSVM [22] repository. We measure
the convergence behavior by plotting the duality gap, P (x)−
D(α), where P (x) is the primal objective value5 and D(α)
is the dual objective value (as in [19]). Note that duality
gap is a stronger criterion than the relative objective error
used in Sec. V-B. Due to strong convexity, primal and dual
linear SVM have the same optimal function value [15], [19].
We set λ = 1 for all experiments (same as [19]) and show
results for the harder (non-smooth), SVM-L1 problem.

Figure 3 illustrates that the SA-variants with s = 500
are numerically stable and converge in the same way their
non-SA variants. Similar to the Lasso stability experiments
we found that the relative error in the duality gap was
close to machine precision. These experiments illustrate the
numerical stability of our approach. Next, we explore the
performance trade-offs of the SA methods.

5We can compute this without running the primal SVM algorithm (as in
[19]).

B. Performance results

In this section, we present experimental results to show
that the SA-methods in Section V-A are faster than their
non-SA variants. We consider the datasets in Table II which
were chosen to illustrate performance and speedups on
over/under-determined, sparse and dense datasets to illus-
trate that speedups are independent of those factors.

We implement the algorithms in C++ using the Mes-
sage Passing Interface (MPI) [21] for high-performance,
distributed-memory parallel processing. The local linear
algebra computations are performed using the Intel MKL
library for Sparse and Dense BLAS [34] routines. All
methods were tested on a Cray XC30 supercomputer at
NERSC which has 24 processors per node and 128GB of
memory. The implementation divides the dataset row-wise,
however, the SA-methods generalize to other data layout
schemes. We choose row-wise since it results in the lowest
per iteration communication cost of O(logP ) [27]. All
datasets are stored using Compressed Sparse Row format (3-
array variant). Vectors in Rn are replicated on all processors
and vectors in Rm are partitioned (similar to A).

Convergence vs. Running Time: Figure 4 shows the
convergence vs. running time for the datasets in Table II. We
present experiments on CD, accCD, BCD, accBCD and their
SA variants. In all plots, we can observe that the accelerated
methods converge faster than the non-accelerated methods.
The BCD methods converge faster than the CD methods as
expected. Since the SA-methods do not alter the convergence
rates they are faster per iteration.

For the SA methods, we plot two values of s, one
value (in blue) where we observed the best speedups and
a larger value (in red) where we observed less speedups.
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Table V: Strong scaling performance of SA and non-SA variants of accCD.

Running Times (s)
news20 url covtype epsilon

accCD P = 192, 62.9s P = 3072, 172.7s P = 768, 1.5s P = 3072, 6.3s
P = 384, 51.6s P = 6144, 162.1s P = 1536, 0.9s P = 6144, 3.7s
P = 768, 43.5s P = 12288, 108.5s P = 3072, 1.07s P = 12288, 2.97s

SA-accCD P = 192, 36.7s, s = 32 P = 3072, 110.3s, s = 256 P = 768, 0.328s, s = 16 P = 3072, 3.58s, s = 32
P = 384, 20.8s, s = 32 P = 6144, 69.2s, s = 256 P = 1536, 0.234s, s = 32 P = 6144, 2.0s, s = 32
P = 768, 15.7s, s = 16 P = 12288, 40.6s, s = 128 P = 3072, 0.210s, s = 32 P = 12288, 1.08s, s = 64

Table VI: SA-SVM-L1 speedups over SVM-L1. s = 64 was
the best setting for rcv1 and news20 datasets; s = 128 was
best for gisette. We use a duality gap tolerance of 1e−1.

SA-SVM Speedups
Dataset Processors Algorithm Running Time (speedup)

news20.binary P = 576 SVM-L1 258 sec.
SA-SVM-L1 121 sec. (2.1×)

rcv1.binary P = 240 SVM-L1 208 sec.
SA-SVM-L1 149 sec. (1.4×)

gisette P = 3072 SVM-L1 230 sec.
SA-SVM-L1 57 sec. (4×)

Note that this decrease in speedup for certain values of s is
expected since the SA-methods tradeoff additional message
size and computation for a decrease in latency cost. We
see SA-accCD speedups of 2.8×, 5.1×, 2.8×, and 2.7× for
news20, url, covtype, and epsilon, respectively. For SA-
accBCD the speedups decrease to 1.2×, 2.1×, 4.4×, and
1.8×, respectively.

Performance Scaling and Speedups: Table V shows
the performance strong scaling (problem size is fixed and
number of processors is increased) of the accCD vs. SA-
accCD methods for different ranges of processors for the
datasets tested. We can observe that SA-accCD is faster
for all datasets and for all processor ranges. Notice that the
running time gap between accCD and SA-accCD increases
with the number of processors.

Table VI shows speedups of SA-SVM-L1 over SVM-
L1. SVM-L1 and SVM-L2 are initialized with different
scalar quantities. All else remains the same, so we solve the
(harder) SVM-L1 problem and report performance results.
Note that we perform offline strong scaling experiments for
each dataset and report the best processors and running
time combinations. We observed speedups of 1.4× for
rcv1.binary, 2.1× for news20.binary and 4× for gisette.
These speedups were attained despite load balancing is-
sues for rcv1.binary and news20.binary when transforming
datasets stored row-wise on disk to 1D-column partitioned
matrices in DRAM (Lasso experiments do not have these
issues). Eliminating this overhead in future work would fur-
ther improve speedups and scalability (since load imbalance
decreases the effective flops rate due to stragglers). Gisette
is nearly dense hence load balance was not a problem. We

were able to strong scale SA-SVM-L1 to 3072 cores and
attain a 4× speedup.

VI. CONCLUSION

We showed in this paper that existing work in CA-NLA
can be extended to important ML problems. We derived SA
variants of BCD methods and illustrated that our methods
are faster and more scalable without altering convergence
rates. The SA-variants attain running time speedups of 1.2×
- 5.1× over the standard algorithms. While we did not
explore other parallel environments, our methods would
attain greater speedups on frameworks like Spark [35] due
to the large latency costs [36].
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