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Abstract. For solving large-scale nonconvex problems, we propose inexact variants of
trust region and adaptive cubic regularization methods, which, to increase efficiency,
incorporate various approximations. In particular, in addition to inexact subproblem
solves, both the gradient and Hessian are suitably estimated. Using certain conditions on
such approximations, we show that our proposed inexact methods achieve similar optimal
worst-case iteration complexities as the exact counterparts. In the context of finite-sum
problems, we then explore randomized subsampling methods as ways to construct the
gradient and Hessian approximations and examine the empirical performance of our
algorithms on some model problems. We empirically demonstrate that our proposed
algorithms are practically implementable in that failure to precisely fine-tune the asso-
ciated hyperparameters is unlikely to result in unwanted behaviors, for example, diver-
gence or stagnation.
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1. Introduction
We consider the following generic optimization problem:

min
x∈Rd

F x( ), (1)
where F : Rd → R is a smooth but possibly nonconvex function. Over the last few decades, many optimization
algorithms have been developed to solve (1). The bulk of these efforts in the machine learning (ML) com-
munity has been on developing first-order methods, that is, those that solely rely on gradient information; see
the recent textbooks Beck (2017), Lan (2020), and Lin et al. (2020) for excellent and in-depth treatments of such
class of methods. Such algorithms, however, can generally be, at best, ensured to converge to first-order
stationary points, that is, x for which ‖∇F(x)‖ � 0, which include saddle points. It is argued that converging to
saddle points can be undesirable for obtaining good generalization errors with many nonconvex machine
learning models, such as deep neural networks (LeCun et al. 2012, Saxe et al. 2013, Dauphin et al. 2014,
Choromanska et al. 2015). In fact, it is also shown that, in certain settings, existence of “bad” local minima, that
is, suboptimal local minima with high training error, can significantly hurt the performance of the trained
model at test time (Fukumizu and Amari 2000, Swirszcz et al. 2016). Important cases have also been
demonstrated in which stochastic gradient descent, which is, nowadays, arguably the optimization method of
choice in ML, indeed stagnates at high training error (He et al. 2016a). As a result, scalable algorithms that
avoid saddle points and guarantee convergence to a local minimum are desired.

Second-order methods, on the other hand, that effectively employ the curvature information in the form of a
Hessian, have the potential for convergence to second-order stationary points, that is, x for which ‖∇F(x)‖ � 0
and ∇2F(x) � 0. However, the main challenge preventing the ubiquitous use of these methods is the com-
putational costs involving the application of the underlying matrices, for example, Hessian. In an effort to
address these computational challenges, for large-scale convex settings, stochastic variants of Newton’s
methods are shown not only to enjoy desirable theoretical properties, for example, fast convergence rates and
robustness to problem ill conditioning (Xu et al. 2016, Bollapragada et al. 2018, Roosta and Mahoney 2019), but
also to exhibit superior empirical performance (Berahas et al. 2017, Kylasa et al. 2019).
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For nonconvex optimization, however, the development of similar efficient methods lags significantly
behind. Indeed, designing efficient and Hessian-free variants of classic nonconvex Newton-type methods, such
as trust-region (TR) (Conn et al. 2000), cubic regularization (CR) (Nesterov and Polyak 2006), and its adaptive
variant (ARC) (Cartis et al. 2011a, b), can be an appropriate place to start bridging this gap. This is, in
particular, encouraging because Hessian-free methods only involve Hessian-vector products, which, in many
cases, including neural networks (Griewank 1993, Pearlmutter 1994), are computed as efficiently as evaluating
gradients. In this light, coupling stochastic approximation with Hessian-free techniques indeed holds promise for
many of the challenging ML problems of today, for example, Martens (2010), Xu et al. (2020), and
Regier et al. (2017).

In many applications, however, even accessing the exact gradient information can be very expensive. For
example, for finite-sum problems in high dimensions in which

F x( ) � 1
n

∑n
i�1

fi x( ), (2)

computing the exact gradient requires a pass over the entire data, which can be costly when n � 1. Inexact
access to both the gradient and Hessian information can usually help reduce the underlying computational
costs (Tripuraneni et al. 2018, Roosta and Mahoney 2019). Here, we aim to advance the developments in the
aforementioned directions.

The rest of this paper is organized as follows. We briefly highlight the main contributions of the present
paper in Section 1.1. A brief survey of the related work is gathered in Section 1.2. Notation and assumptions
used throughout the paper are introduced in Section 1.3. We present the detailed theoretical analysis of our
proposed methods in Section 2. In particular, analyses of TR and ARC are, respectively, given in Sections 2.1
and 2.2. Treatment of the finite-sum problem (2) is presented in Section 2.3. Section 3 contains some numerical
examples. Conclusions and further thoughts are gathered in Section 4.

1.1. Contributions
Here, we further these ideas by analyzing inexact variants of TR and ARC algorithms, which, to increase
efficiency, incorporate approximations of gradient and Hessian information as well as solutions of the underlying
subproblems. Our algorithms are motivated by the works of Cartis et al. (2012) and Xu et al. (2019), which
analyze the variants of TR and ARC in which Hessian is approximated but the accurate gradient information is
required. We show that, under mild conditions on approximations of the gradient, Hessian, as well as
subproblem solves, our proposed inexact TR and ARC algorithms can retain the same optimal worst-case
convergence guarantees as the exact counterparts (Cartis et al. 2011c, 2012). More specifically, to achieve
(εg, εH)-optimality (cf. Definition 1), we show the following:

i. Inexact TR (Algorithm 1) under Condition 1 on the gradient and Hessian approximation and Condition 2
on approximate subproblem solves requires the optimal iteration complexity of O(max{ε−2g ε−1H , ε−3H }). In
particular, we obtain convergence for a practical case in which the accuracy tolerances in gradient and Hessian
estimations, that is, (δg, δH) in Condition 1, are adaptively chosen; see Section 2.1 for more details.

ii. Inexact ARC (Algorithm 2) under Condition 3 on the gradient and Hessian approximation and Con-
dition 4 on approximate subproblem solves requires less than O(max{ε−2g , ε−3H }), which is suboptimal. These
conditions are described in Section 2.2.1. However, under respectively stronger Conditions 5 and 6, the
optimal iteration complexity of O(max{ε−3/2g , ε−3H }) is recovered. Unfortunately, we were unable to provide
convergence guarantees with adaptive tolerances, and as a result, (δg, δH) in Condition 3 are set fixed a priori
to a sufficiently small value. The details are given in Section 2.2.2.

To prove our results, we follow a similar line of reasoning as that in Xu et al. (2019). However, incorporating
gradient approximation introduces several new layers of technical difficulty. These difficulties arise as a result
of the discrepancy between the true objective function and its quadratic and cubic approximations within
inexact TR and ARC, respectively, which now involve an additional “bias” term. Properly controlling such an
added error term necessitates a much finer grained analysis. For example, one has to consider various
scenarios arising from large and small gradient norms. Among all of these, the case in which the true gradient
is small enough to be of similar magnitude as the approximation noise level requires a special treatment
and analysis.

We finally empirically demonstrate the advantages of our methods on several model problems in Section 3.
In addition to showing favorable performance, for example, in terms of efficiency, we also highlight some
additional features of our algorithms, such as robustness to hyperparameter tuning. Such properties amount
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to a practically implementable algorithm for which failure to fine-tune the hyperparameters is unlikely to result
in divergence or stagnation.

A snapshot of comparison among our proposed methods and other similar algorithms is given in Table 1.

1.2. Related Work
Because of the resurgence of deep learning, recently, there has been a rise of interest in efficient nonconvex
optimization algorithms. For nonconvex problems in which saddle points have been shown to give un-
derstandable generalization performance, several variants of stochastic gradient descent (SGD) have recently
been devised that promise to efficiently escape saddle points and, instead, converge to second-order stationary
points (Ge et al. 2015, Levy 2016, Jin et al. 2017).

As for second-order methods, there have been a few empirical studies of the application of inexact curvature
information for, mostly, deep-learning applications; for example, see the work of Martens (2010) and follow-
ups, for example, Wiesler et al. (2013), Vinyals and Povey (2012), He et al. (2016b), and Kiros (2013). However,
the theoretical understanding of these inexact methods remains largely understudied. Among a few related
theoretical prior works, most notable are the ones that study derivative-free and probabilistic models in
general and Hessian approximation in particular for trust-region methods (Conn et al. 2009, Bandeira et al.
2014, Chen et al. 2015, Larson and Billups 2016, Gratton et al. 2017, Shashaani et al. 2018, Blanchet et al. 2019).

For cubic regularization, the seminal works of Cartis et al. (2011a, b) are the first to study Hessian ap-
proximation, and the resulting algorithm is an adaptive variant of the cubic regularization, referred to as ARC.
In Cartis et al. (2012), similar Hessian inexactness is also extended to trust-region methods. However, to
guarantee optimal complexity, they require not only exact gradient information, but also progressively ac-
curate Hessian information, which can be difficulty to satisfy. More general treatment of line search and cubic
regularization methods based on probabilistic models are given in Cartis and Scheinberg (2018). For mini-
mization of a finite sum (2), a subsampled variant of ARC is proposed in Kohler and Lucchi (2017), which
directly relies on the analysis of Cartis et al. (2011a, b). A more refined analysis is given in Chen et al. (2018),
which incorporates subsampling strategies to develop both standard and accelerated ARC variants for convex
objectives. More recently, Tripuraneni et al. (2018) propose a stochastic variant of cubic regularization,
henceforth referred to as SCR, in which, in order to guarantee optimal performance, only the stochastic
gradient and Hessian are required. However, for the practical implementation of their algorithm, one must
either assume to know rather unknowable problem-related constants, for example, the Lipschitz continuity of
the gradient and Hessian, or perform an exhaustive grid search over the space of hyperparameters.

In the context of both TR and ARC, under milder Hessian approximation conditions than prior works, Xu
et al. (2019) analyze optimal complexity of variants in which the Hessian matrix is approximated but the exact
gradient is used. Our approach here builds upon the ideas in Xu et al. (2019).

1.3. Notation and Assumptions
1.3.1. Notation. Throughout the paper, vectors and matrices are denoted by bold lowercase and blackboard
bold uppercase letters, for example, v and V, respectively. We use regular lowercase and uppercase letters to
denote scalar constants, for example, c or K. The transpose of a real vector v is denoted by vT. The inner
product between two vectors v,w is denoted by 〈v,w〉. For a vector v and a matrix V, ‖v‖ and ‖V‖ denote
the vector �2 norm and the matrix spectral norm, respectively. The subscript, for example, xt, denotes the

Table 1. Comparison of OptimalWorst-Case Iteration Complexities for Convergence to a (ε, ̅̅
ε

√ )−Optimality (cf. Definition 1)
Among Different Second-Order Methods for Nonconvex Optimization

Method class Iteration complexity Inexact Hessian Inexact gradient Practically implementable

TR (Cartis et al. 2012) O(ε−2.5) 3 7 3

TR (Xu et al. 2019) O(ε−2.5) 3 7 3

TR (Algorithm 1) O(ε−2.5) 3 3 3

CR (Cartis et al. 2012) O(ε−1.5) 3 7 3

CR (Xu et al. 2019) O(ε−1.5) 3 7 3

CR (Tripuraneni et al. 2018) O(ε−1.5) 3 3 7

CR (Algorithm 2) O(ε−1.5) 3 3 3

Notes. TR and CR refer, respectively, to the class of trust region and cubic regularization methods. “Practically implementable” refers to an
algorithm that not only does not require exhaustive search over hyperparameter space for tuning, but also failure to precisely fine-tune is not
likely to result in unwanted behaviors, for example, divergence or stagnation.

156
Yao et al.: Inexact Nonconvex Newton-Type Methods

INFORMS Journal on Optimization, 2021, vol. 3, no. 2, pp. 154–182, © 2021 INFORMS

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

26
00

:1
70

0:
22

f5
:d

e0
0:

65
e5

:e
a9

a:
86

4f
:a

46
4]

 o
n 

12
 J

an
ua

ry
 2

02
4,

 a
t 1

4:
02

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



iteration counter. At iteration t, the approximations of the gradient and Hessian are written, respectively, as gt
and Ht. The smallest eigenvalue of matrix V is denoted by λmin(V).

1.3.2. Assumptions. Unlike convex problems in which tracking the first-order condition, that is, the norm of
the gradient, is sufficient to evaluate (approximate) optimality, in nonconvex settings, the situation is much
more involved; for example, see examples of Murty and Kabadi (1987) and Hillar and Lim (2013). In this light,
one typically sets out to design algorithms that can guarantee convergence to approximate second-
order optimality.

Definition 1. ((εg, εH)-Optimality). Given 0 < εg, εH < 1, x is an (εg, εH)-optimal solution of (1) if

‖∇F x( )‖ ≤ εg, and λmin ∇2F x( )( ) ≥ −εH. (3)
For our analysis throughout the paper, we make the following standard assumptions on the smoothness of
objective function F.

Assumption 1 (Hessian Regularity). F(x) is twice continuously differentiable. Furthermore, there are some constants 0 <
LF,KF < ∞ such that, for any x � xt + τst, τ ∈ [0, 1], we have

‖∇2F x( ) − ∇2F xt( )‖ ≤ LF‖x − xt‖, (4a)
‖∇2F xt( )‖ ≤ KF, (4b)

where xt and st are, respectively, the iterate and update direction at the tth iteration.

For our inexact algorithms, we require that the approximate gradient, gt, and the inexact Hessian, Ht, at each
iteration t, satisfy the following conditions.

Assumption 2 (Gradient and Hessian Approximation Error). For some 0 < δg, δH < 1, the approximations of the gradient
and Hessian tth iteration satisfy

‖gt − ∇F xt( )‖ ≤ δg,

‖Ht − ∇2F xt( )‖ ≤ δH .

Note that, by the triangle inequality, Assumptions 1 and 2 imply that ‖Ht‖ ≤ KH , where KH ≤ KF + δH.

2. Algorithms and Theoretical Analysis
In this section, we present our main algorithms as well as their respective analyses, that is, inexact variants of
TR (Algorithm 1) and ARC (Algorithm 2) in which the gradient, Hessian, and solution to the subproblems are
all approximated.

As can be seen from Algorithms 1 and 2, compared with the standard classical counterparts, the main
differences in iterations lie in using the approximations of the gradient, Hessian, and solution to the cor-
responding subproblems (6) and (13). Another notable difference is when the gradient estimate is small, that
is, ‖gt‖ ≤ εg, in which case our algorithm completely ignores the gradient; see step 5 of Algorithms 1 and 2.
This turns out to be crucial in obtaining the optimal iteration complexity for both algorithms. Intuitively, when
the gradient is too small, its approximation involves a great degree of noisy information. As a result, solving
the subproblems using such noisy gradient information can result in directions of ascent. In practice, however,
such unfortunate steps are usually simply corrected by the subsequent steps, and hence, one can always safely
employ the approximate gradient without any such safeguard. In this light, in our experiments, we never
needed to enforce this step and opted to retain the gradient term even when it was small.

It can also be seen that Algorithms 1 and 2 are highly similar in their corresponding steps. In particular, after
initialization, one computes a local model mt of F around xt and obtains a step that guarantees model re-
duction mt(st) < mt(0) � 0. Subsequently, one checks that the actual reduction in F is in accordance with what is
predicted using the local model. More specifically, at every iteration of Algorithms 1 and 2, by computing

ρt :� F xt + st( ) − F xt( )
mt st( ) , (5)

one checks whether F(xt) − F(xT + sT) is large enough relative to the reduction in the local model mt(st) −mt(0).
If ρt is larger than a preset threshold, the update st is accepted, and we set xt+1 � xt + st. In this case, local
models are “loosened” to allow for larger trial steps in the next iteration. However, a small value of ρt hints
at a large discrepancy between the predicted and the actual reduction in F, which implies that the local models
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mismatch the actual function. In this case, the step is rejected, and the local models are “tightened” by
adjusting the trust region or cubic regularization parameters.

At a high level, these similar algorithmic steps give rise to similar analytical steps as well. For example, the
notion of Cauchy and Eigen points plays a crucial role in the analysis of both algorithms. Generally, when the
gradient is large, both algorithms adopt the Cauchy point, otherwise the Eigen point is used as a trial step.
Furthermore, it is shown that, as long as Δt is small enough and σt is large enough, the trial steps generated,
respectively, by Algorithms 1 and 2 are accepted. This, in turn, implies that, after a fixed number of rejections,
both algorithms are guaranteed to eventually accept their trial steps and, hence, make progress toward
optimality. Because the overall number of rejected trial steps is upper-bounded, we are guaranteed to obtain
convergence for both algorithms. Although the high-level analyses have many common grounds, the analysis
of Algorithms 1 and 2 have distinctive technical features as well. In particular, obtaining optimal complexity of
Algorithm 2 requires more restrictive conditions on the solution of the subproblem than simple Cauchy or
Eigen points, and it also necessitates a more refined analysis and careful control over the size of the accepted
steps at each successful iteration.

Algorithm 1 (Inexact TR).
1: Input:

- Starting point: x0
- Initial trust-region radius: Δ0 > 0
- Other parameters: 0 ≤ εg, 0 ≤ εH, 0 < η ≤ 1, γ > 1.

2: t = 0
3: while ‖gt‖ ≥ εg, λmin(Ht) ≤ −εH , do
4: if ‖gt‖ ≤ εg, then
5: gt � 0
6: end if
7: Find st as in (6)
8: Set ρt as in (5) with mt as in (6b)
9: if ρt ≥ η, then

10: xt+1 � xt + st and Δt+1 � γΔt

11: else
12: xt+1 � xt and Δt+1 � Δt/γ
13: end if
14: t = t + 1
15: end while
16: Output: xt

Algorithm 2 (Inexact ARC).
1: Input:

- Starting point: x0
- Initial regularization parameter: σ0 > 0
• Other parameters: 0 ≤ εg, 0 ≤ εH, 0 < η ≤ 1, γ > 1.

2: t = 0
3: while ‖gt‖ ≥ εg, λmin(Ht) ≤ −εH , do
4: if ‖gt‖ ≤ εg, then
5: gt � 0
6: end if
7: Find st as in (13)
8: Set ρt as in (5) with mt as in (13b)
9: if ρt ≥ η, then

10: xt+1 � xt + st and σt+1 � σt/γ
11: else
12: xt+1 � xt and σt+1 � γσt
13: end if
14: t = t + 1
15: end while
16: Output: xt

158
Yao et al.: Inexact Nonconvex Newton-Type Methods

INFORMS Journal on Optimization, 2021, vol. 3, no. 2, pp. 154–182, © 2021 INFORMS

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

26
00

:1
70

0:
22

f5
:d

e0
0:

65
e5

:e
a9

a:
86

4f
:a

46
4]

 o
n 

12
 J

an
ua

ry
 2

02
4,

 a
t 1

4:
02

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



2.1. Inexact Trust Region
The inexact TR algorithm is depicted in Algorithm 1. Every iteration of Algorithm 1 involves an approximate
solution to a subproblem of the form

st ≈ argmin
‖s‖ ≤Δt

mt s( ), (6a)
where

mt s( )≜ 〈gt, s〉 +
1
2
〈s,Hts〉, ‖gt‖ ≥ εg

〈s,Hts〉, Otherwise
.

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (6b)

Classically, analysis of the TR method involves obtaining a minimum descent along two important directions,
namely negative gradient and (approximate) negative curvature. Updating the current point using these
directions gives, respectively, what are known as Cauchy and Eigen points (Conn et al. 2000). In other words,
the Cauchy and Eigen points, respectively, correspond to the optimal solution of (6) along the negative
gradient and the negative curvature direction (if it exists).

Definition 2 (Cauchy Point for Algorithm 1). When ‖gt‖ ≥ εg, the Cauchy point for Algorithm 1 is obtained from (6) as

sCt � − αC

‖gt‖
gt, αC � argmin

0≤α≤Δt

mt − α

‖gt‖
gt

( )
. (7a)

Definition 3 (Eigen Point for Algorithm 1). When λmin(Ht) ≤ −εH, the Eigen point for Algorithm 1 is obtained
from (6) as

sEt � αEut, αE � argmin
|α| ≤Δt

mt αut( ), (7b)

where ut is an approximation to the corresponding negative curvature direction; that is, for some 0 < ν < 1,

〈ut,Htut〉 ≤ νλmin Ht( ) and ‖ut‖ � 1.

The properties of Cauchy and Eigen points are studied in Cartis et al. (2011a, b) and Xu et al. (2019) and are
also stated in Lemmas 1 and 2.

We are now ready to give the convergence guarantee of Algorithm 1. For this, we first present sufficient
conditions (Condition 1) on the degree of inexactness of the gradient and Hessian. In other words, we now
give conditions on δg, δH in Assumption 2 that ensure convergence.

Condition 1 (Gradient and Hessian Approximation for Algorithm 1). Given the termination criteria, εg, εH, in Algorithm 1,
we require the inexact gradient and Hessian to satisfy

δg ≤ 1 − η

4

( )
max εg, ‖gt‖

{ }
and δH ≤ min max

1 − η
( )

νεH
2

,Δt

{ }
, 1

{ }
. (8)

Note that Condition 1 is adaptive, which can have desirable consequences in practice. For example, when Δt is
large (which is typically the case during the early stages of the algorithm), one can afford a cruder ap-
proximation of the Hessian by choosing larger δH . Similarly, the condition on δg, for large ‖gt‖, amounts to a
relative error condition. Although this latter condition on δg is perhaps not easily enforceable a priori (unless
one has a lower-bound estimate of ‖gt‖), it nonetheless qualitatively indicates that, when the true gradient is
large, one can very well employ loose approximations; see also Remark 1. As the algorithm progresses toward
convergence, Condition 1 implies that, ultimately, we must seek to have δg ∈ O(εg), δH ∈ O(εH). These bounds
are indeed the minimum requirements for the gradient and Hessian approximations to achieve (εg, εH)-op-
timality; see the termination step for Algorithm 1.

In Algorithm 1, subproblem (6) needs only be solved approximately. Indeed, in large-scale settings,
obtaining the exact solution of subproblem (6) is computationally prohibitive. For this, as has been classically
done, we require that an approximate solution of the subproblem satisfies what are known as Cauchy and
Eigen conditions (Conn et al. 2000, Cartis et al. 2010, Xu et al. 2019). In other words, we require that an
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approximate solution to (6) is at least as good as the Cauchy and Eigen points in Definitions 2 and 3, re-
spectively. Condition 2 makes this explicit.

Condition 2. (Approximate Solution of (6) for Algorithm 1). If ‖gt‖ ≥ εg, then we take the Cauchy point, that is, st � sCt ;
otherwise, we take the Eigen point, that is, st � sEt . Here, sCt and sEt are Cauchy and Eigen points as in Definitions 2 and 3,
respectively.

Under Assumptions 1 and 2, as well as assuming Conditions 1 and 2 hold, we are now ready to give the
optimal iteration complexity of Algorithm 1. We first give the following two standard lemmas regarding
Cauchy and Eigen points (Conn et al. 2000), which establish Condition 2.

Lemma 1. (Cauchy Points; Conn et al. 2000, Corollary 6.3.2). Suppose that sCt � argmin‖αgk‖≤Δt mt(−αgt). We have

−mt sCt
( ) ≥ 1

2
‖gt‖min

‖gt‖
1 + ‖Ht‖ ,Δt

{ }
. (9)

Lemma 2. (Eigen Points; Conn et al. 2000, Theorem 6.6.1). When λmin(Ht) is negative, suppose ut satisfies

〈gt,ut〉 ≤ 0, and 〈ut,Htut〉 ≤ −ν|λmin Ht( )|‖ut‖2, (10)
and let sEt � argmin‖st‖ ≤Δt mt(αut). We have

−mt sEt
( ) ≥ ν

2
|λmin Ht( )|Δ2

t . (11)

These two lemmas show the descent that can be obtained by Cauchy and Eigen points. The following lemma
bounds the difference between the actual decrement, that is, F(xt + st) − F(xt), and the one predicted by m(st).
The detailed proof is included in the appendix.

Lemma 3. Under Assumptions 1 and 2, we have

F xt + st( ) − F xt( ) −mt st( ) ≤
δgΔt + 1

2
δHΔt

2 + 1
2
LFΔt

3, ‖gt‖ ≥ εg,

〈st,∇F xt( )〉 + 1
2
δHΔt

2 + 1
2
LFΔt

3, ‖gt‖ < εg.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (12)

By combining Lemmas 1 and 3, Lemma 4 guarantees that, in case ‖gt‖ ≥ εg, the iteration is successful and the
update is accepted.

Lemma 4. Suppose Assumptions 1 and 2 as well as Conditions 1 and 2 hold. Furthermore, suppose, at iteration t, we have
‖gt‖ ≥ εg and

Δt ≤ min
‖gt‖

1 + KH
,

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − η
( )‖gt‖

12LF

√
,
1 − η
( )‖gt‖

3

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎫⎪⎪⎪⎬⎪⎪⎪⎭.

Then the iteration t is successful; that is, Δt+1 � γΔt.

Proof. First, because ‖gt‖ ≥ εg and Δt ≤ ‖gt‖/(1 + KH), by Condition 2, we have st � sCt and

−mt st( ) ≥ 1
2
‖gt‖min

‖gt‖
1 + ‖Ht‖ ,Δt

{ }
� 1
2
‖gt‖Δt.

Now according to Lemma 3, we have

1 − ρt � F xt + st( ) − F xt( ) −mt st( )
−mt st( ) ≤ δgΔt + 1

2 δHΔ
2
t + 1

2 LFΔt
3

1
2 ‖gt‖Δt

� 2
δg
‖gt‖

+ δH
‖gt‖

Δt + LF
‖gt‖

Δt
2 ≤ 1 − η

2
+ δH
‖gt‖

Δt + LF
‖gt‖

Δt
2.
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Let

r t( ) � LF
‖gt‖

t2 + δH
‖gt‖

t − 1 − η

2
.

It is not hard to see that −δH + ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
δ2H + 2LF(1 − η)‖gt‖

√
/(2LF) is the positive root of r(t). Then, by the fact that

−y + ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
y2 + 2LF(1 − η‖g‖t)

√
/(2LF) is monotonically decreasing for y ≥ 0 and Condition 1 (δH < 1), it follows that

−δH +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
δ2H + 2LF 1 − η

( )‖gt‖
√

2LF
≥
−1 +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + 2LF 1 − η

( )‖gt‖
√

2LF
.

Now, we consider two cases. If 2LF(1 − η)‖gt‖ ≤ 1, it is not hard to show that

−1 +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + 2LF 1 − η

( )‖gt‖
√

≥ 2LF 1 − η
( )‖gt‖

3
.

Otherwise, if 2LF(1 − η)‖gt‖ > 1, then it can be shown that

−1 +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + 2LF 1 − η

( )‖gt‖
√

≥
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
LF 1 − η
( )‖gt‖

3

√
.

By assumption Δt ≤ min{ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(1 − η)‖gt‖/(12LF)
√

, (1 − η)‖gt‖/3}, so

Δt ≤ −1 +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + 2LF 1 − η

( )‖gt‖
√

/ 2LF( ),
and r(Δt) ≤ 0. Therefore, it follows that

1 − ρt ≤ 1 − η

2
+ δH
‖gt‖

Δt + LF
‖gt‖

Δt
2 ≤ 1 − η

( ) + r Δt( ) ≤ 1 − η,

which implies that the iteration t is successful.

Remark 1. It can be easily seen that, if δg ≤ 3Δt/4, the lemma still holds. Indeed,

δg ≤ 3
4
Δt ≤ 3

4
min

‖gt‖
1 + KH

,

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − η
( )‖gt‖

12LF

√
,
1 − η
( )‖gt‖

3

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎫⎪⎪⎪⎬⎪⎪⎪⎭ ≤ 1 − η

( )‖gt‖
4

.

Although δg ≤ 3Δt/4 can be looser than what Condition 1 requires, it nonetheless can be used in practice as a
rough bound for gradient approximations.

Now, we consider the case when ‖gt‖ ≤ εg. As alluded to earlier in this section, in this case, we have to rely
on the negative curvature of the Hessian because dealing with the first-order term in (12) is particularly
challenging when ‖gt‖ < εg. Hence, by solely considering the negative eigenvectors of the Hessian, we drop the
first-order term 〈st,∇F(xt)〉 in the quadratic model. Lemma 5 gives the corresponding details.

Lemma 5. Suppose Assumptions 1 and 2 as well as Conditions 1 and 2 hold. Further, suppose, at iteration t, we have
‖gt‖ < εg, λmin(Ht) < −εH and

Δt ≤ 1 − η

2

( )
ν|λmin Ht( )|
LF + 1

( )
.

Then, the tth is successful; that is, Δt+1 � γΔt.

Proof. Here, by Condition 2, we have st � sEt , which, by (11), implies −mt(st) ≥ ν|λmin(Ht)|Δt
2/2. Hence, recalling

(12), we have

F xt + st( ) − F xt( ) −mt st( ) ≤ 〈st,∇F xt( )〉 + 1
2
δH‖st‖2 + 1

2
LF‖st‖3.
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Because either st or −st could be a searching direction, at least one of

〈st,∇F xt( )〉 ≤ 0 or 〈−st,∇F xt( )〉 ≤ 0,

is true. Without loss of generality, assume 〈st,∇F(xt)〉 ≤ 0. Hence,

F xt + st( ) − F xt( ) −mt st( ) ≤ 1
2
δH‖st‖2 + 1

2
LF‖st‖3.

Next, suppose Δt ≤ (1 − η)νεH/2, which, from (8), implies that δH ≤ (1 − η)νεH/2. We have

1 − ρt � F xt + st( ) − F xt( ) −mt st( )
−mt st( ) ≤ δHΔt

2/2 + LFΔt
3/2

ν|λmin Ht( )|Δt
2/2

� δH + LFΔt

ν|λmin Ht( )|
≤ 1 − η
( )

νεH/2 + LF 1 − η
( )

ν|λmin Ht( )|/ 2 LF + 1( )( )
ν|λmin Ht( )| < 1 − η.

Now, consider Δt ≥ (1 − η)νεH/2, which, from (8), implies that δH ≤ Δt. Similarly, we have

1 − ρt � F xt + st( ) − F xt( ) −mt st( )
−mt st( ) ≤ δHΔt

2/2 + LFΔt
3/2

ν|λmin Ht( )|Δt
2/2

� LF + 1( )Δt

ν|λmin Ht( )| < 1 − η
( )

/2 < 1 − η.

Hence, in both cases, we have ρt ≥ η, and the iteration is successful. ■
Based on Lemmas 4 and 5, the following lemma helps to get the lower bound of Δt, whose proof can be

found in Xu et al. (2019).

Lemma 6. Under Assumptions 1 and 2 and Conditions 1 and 2, for Algorithm 1 and for all t, we have

Δt ≥ 1
γ
min

εg
1 + KH

,

̅̅̅̅̅̅̅̅̅̅̅̅
1 − η
( )

εg
12LH

√
,
1 − η
( )

εg
3

,
1 − η
( )

νεH
2 LF + 1( )

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎫⎪⎪⎪⎬⎪⎪⎪⎭.

As a consequence, we now can give the upper bound on the number of successful iterations.

Lemma 7 (Successful Iterations). Let Tsucc denote the set of all the successful iterations before Algorithm 1 stops. Under
Assumptions 1 and 2 and Conditions 1 and 2, the number of successful iterations is upper-bounded by

|Tsucc| ≤ F x0( ) − F x∗( )
CεH min εg2, εH2

{ } ,
where C is a constant depending on LF,KH, η, ν.

Proof. Suppose Algorithm 1 doesn’t terminate at iteration t. Then, either ‖gt‖ ≥ εg or λmin(Ht) ≤ −εH. If ‖gt‖ ≥ εg,
according to (9), we have

−mt st( ) ≥ 1
2
‖gt‖min

‖gt‖
1 + ‖Ht‖ ,Δt

{ }
≥ 1
2
εg min

εg
1 + KH

,C0εg,C1εH

{ }
≥ C2εg min εg, εH

{ }
.

Similarly, in the second case λmin(Ht) ≤ −εH, from (11),

−mt st( ) ≥ 1
2
ν‖λmin Ht( )‖Δt

2 ≥ C3εH min εg
2, εH

2{ }
.

Because F(xt) is monotonically decreasing as t increases, we have

F x0( ) − F x∗( ) ≥ ∑∞
t�0

F xt( ) − F xt+1( ) ≥ ∑
t∈Tsucc

F xt( ) − F xt+1( )

≥ η
∑

t ∈Tsucc

min C2εg min εg, εH
{ }

,C3εH min εg
2, εH

2{ }{ }

≥ ‖Tsucc‖CεH min εg
2, εH

2{ }
.

162
Yao et al.: Inexact Nonconvex Newton-Type Methods

INFORMS Journal on Optimization, 2021, vol. 3, no. 2, pp. 154–182, © 2021 INFORMS

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

26
00

:1
70

0:
22

f5
:d

e0
0:

65
e5

:e
a9

a:
86

4f
:a

46
4]

 o
n 

12
 J

an
ua

ry
 2

02
4,

 a
t 1

4:
02

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Because one of these cases must happen for a successful iteration, it follows that

‖Tsucc‖ ≤ F x0( ) − F x∗( )
CεH min εg2, εH2

{ } .
■

Using the preceding lemma, the proof of following theorem can be found in Xu et al. (2019).

Theorem 1 (Optimal Complexity of Algorithm 1). Let Assumption 1 hold and suppose that gt and Ht satisfy Assumption 2
with δg and δH under Condition 1. If the approximate solution to the subproblem (6) satisfies Condition 2, then Algorithm 1
terminates after at most

T ∈ O max εg
−2εH−1, εH−3{ }( )

,

iterations

The worst iteration complexity of Theorem 1 matches the bound obtained in Conn et al. (2000), Cartis
et al. (2012), and Xu et al. (2019), which is known to be optimal in the worst-case sense (Cartis et al. 2012).
Further, it follows immediately that the terminating points of Algorithm 1 satisfy ‖gT‖ ≤ εg + δg and
λmin(HT) ≥ −εH − δh; that is, xT is a (εg + δg, εH + δh)-optimal solution of (1).

2.2. Inexact ARC
The inexact ARC algorithm is given in Algorithm 2. Every iteration of Algorithm 2 involves an approximate
solution to the following subproblem:

st ≈ argmin
s∈Rd

mt s( ), (13a)
where

mt s( )≜
〈gt, s〉 +

1
2
〈s,Hts〉 + σt

3
‖s‖3, ‖gt‖ ≥ εg

1
2
〈s,Hts〉 + σt

3
‖s‖3, Otherwise

.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩ (13b)

Similar to Section 2.1, our analysis for inexact ARC also involves Cauchy and Eigen points obtained from (13)
as follows.

Definition 4 (Cauchy Point for Algorithm 2). When ‖gt‖ ≥ εg, the Cauchy point for Algorithm 2 is obtained from (13) as

sCt � −αCgt, αC � argmin
α≥0

mt −αgt
( )

. (14a)

Definition 5 (Eigen Point for Algorithm 2). When λmin(Ht) ≤ −εH , the Eigen point for Algorithm 2 is obtained
from (13) as

sEt � αEut, αE � argmin
α∈R

mt αut( ), (14b)

where ut is an approximation to the corresponding negative curvature direction; that is, for some 0 < ν < 1,

〈ut,Htut〉 ≤ νλmin Ht( ) and ‖ut‖ � 1.

Note that, because both sCt and sEt are line minimizers of mt(s) along the directions −gt and ut, respectively,
they satisfy

〈−gt,∇mt sCt
( )〉 � 〈sCt ,∇mt sCt

( )〉 � 0,

〈ut,∇mt sEt
( )〉 � 〈sEt ,∇mt sEt

( )〉 � 0.

Further properties of Cauchy and Eigen points for the cubic problem can be found in Lemmas 9 and 10.
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As we show, the worst-case iteration complexity of inexact ARC depends on how accurately we ap-
proximate the gradient and Hessian as well as the problem solves. In Section 2.2.1, we show that under nearly
minimum requirement of the gradient and Hessian approximation (Condition 3), the inexact ARC can achieve
suboptimal complexity O(max{ε−2g , ε−3H }). In Section 2.2.2, we then show that, under the more restricted ap-
proximation condition (Condition 5), the optimal worst-case complexity O(max{ε−1.5g , ε−3H }) can be recovered.

2.2.1. Suboptimal Complexity for Algorithm 2. In this section, we provide sufficient conditions on approximating
the gradient and Hessian as well as the subproblem solves for inexact ARC to achieve the suboptimal
complexity O(max{ε−2g , ε−3H }).

First, similar to Section 2.1, we require that the estimates of the gradient and Hessian satisfy the fol-
lowing condition.

Condition 3 (Gradient and Hessian Approximation for Algorithm 2). Given the termination criteria, εg, εH, in Algorithm 2,
we require the inexact gradient and Hessian to satisfy

δg ≤ 1 − η

12

( )
max εg, ‖gt‖

{ }
, and δH ≤ 1 − η

6

( )
min νmax −λmin Ht( ), εH{ }, ̅̅̅̅̅̅̅̅

2LFεg
√{ }

. (15)

It is easy to see that δg ∈ O(εg), δH ∈ O(min{ ̅̅̅
εg

√
, εH}). Similar constraints on δH have appeared in several

previous works, for example, Tripuraneni et al. (2018) and Xu et al. (2019). These are nearly minimum re-
quirements for the approximation to determine whether the iteration satisfies (εg, εH)-optimality (Definition 1).
In the case when εH � O( ̅̅̅

εg
√ ), Condition 3 is indeed the minimum requirement. We note that the conditions

on δg and δH are adaptive in that, for large ‖gt‖ and −λmin(Ht), they amount to relative error conditions on the
approximate gradient and Hessian, respectively. In fact the condition on δg is very similar to that in Con-
dition 1. Of course, in such cases, these conditions cannot be a priori enforced in a straightforward manner.
Nonetheless, they qualitatively indicate that, in regions with large gradient and negative curvature, one can
rely on loose approximations of the gradient and Hessian, respectively. As the algorithm progresses toward
convergence, Condition 3 implies that, ultimately, we must seek to have δg ∈ O(εg) and δH ∈ O(min{ ̅̅̅

εg
√

, εH}).
As for solving the subproblem, we require the following.

Condition 4. (Approximate Solution of (13) for Algorithm 2). We use the same trial steps as in Condition 2 but with sCt
and sEt as in Definitions 4 and 5, respectively.

Condition 4 implies that, when the gradient is large enough, we take the Cauchy step. Otherwise, we update
along the Eigen point direction.

Under Assumptions 1 and 2 as well as Conditions 3 and 4, we now present the proof of suboptimal
complexity of Algorithm 2. First let’s denote Tsucc as the set of all the successful iterations and Tfail as the set
of all the failure iterations. Now we upper bound the iteration complexity T :� ‖Tsucc‖ + ‖Tfail‖. First, we
present the following lemma that gives an upper bound of ‖Tfail‖.
Lemma 8. In Algorithm 2, suppose we have σt ≤ C, where C is some constant, for all the iterations t before it stops. Then, we
have ‖Tfail‖ ≤ ‖Tsucc‖ +O(1).
Proof. Because σt ≤ C, then σT � σ0γ‖Tsucc‖−‖Tfail‖ ≤ C. Then, we immediately obtain

‖Tfail‖ ≤ log C/σ0( )/ logγ + ‖Tfail‖ � ‖Tsucc‖ +O 1( ).
■

Now, for the rest of the analysis, we first show that there is a uniform upper bound for all σt and,
subsequently, we obtain a bound on the number of all the successful iterations.

We now present Lemma 9, which is very similar to Xu et al. (2019, lemma 6), but is slightly more refined.
The main difference lies in the quantity Kt defined in Lemma 9. In Xu et al. (2019, lemma 6), a simple global
upper bound of this quantity is used. However, here, we retain its local nature, which is found to be crucial in
proving Lemma 12. This is a subtle distinction that arises as a result of using gradient approximations here
compared with exact gradients in Xu et al. (2019).

Lemma 9 (Cauchy Point). When ‖gt‖ ≥ εg, let

sCt � argmin
α≥0 mt −αgt

( )
.
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Then, we have

‖sCt ‖ �
1
2σt

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
K2
t + 4σt‖gt‖

√
− Kt

( )
, (16a)

−mt sCt
( ) ≥ max

1
12

‖sCt ‖2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
K2
t + 4σt‖gt‖

√
− Kt

( )
,
‖gt‖
2

̅̅
3

√ min
‖gt‖
|Kt| ,

‖gt‖̅̅̅̅̅̅̅̅
σt‖gt‖

√
{ }{ }

, (16b)

where Kt � 〈Htgt, gt〉/‖gt‖2.
Proof. The proof is organized as follows.We first use the definition of Cauchy point to get an expression in terms of
sCt . Subsequently, we use the fact thatmt(sCt ) ≤ mt(αgt), ∀α ≥ 0 to boundmt(sCt ) by leveraging the quadratic form of
mt(αgt) in terms of α. First, we have

gt, s
C
t

〈 〉 + sCt ,HtsCt
〈 〉 + σt sCt

⃦⃦ ⃦⃦3 � 0.

Because sCt � −αgt for some α > 0,

−α‖gt‖2 + α2〈gt,Htgt〉 + σtα
3‖gt‖3 � 0.

We can find an explicit formula for such α by finding the roots of the quadratic function

r α( ) � −‖gt‖2 + α〈gt,Htgt〉 + σtα
2‖gt‖3.

We have

α �
−〈gt,Htgt〉 +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
〈gt,Htgt〉2 + 4σt‖gt‖5

√
2σt‖gt‖3

,

and

2ασt‖gt‖ �
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
K2
t + 4σt‖gt‖

√
− Kt.

Hence, it follows that

‖sCt ‖ � α‖gt‖ �
1
2σt

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
K2
t + 4σt‖gt‖

√
− Kt

( )
.

Now, from Cartis et al. (2012, lemma 2.1), we get

−mt sCt
( ) ≥ 1

6
σt‖sCt ‖3 �

1
6
σt‖sCt ‖2α‖gt‖ �

1
12

‖sCt ‖2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
K2
t + 4σt‖gt‖

√
− Kt

( )
.

Alternatively, we have

mt sCt
( ) ≤ mt −αgt

( ) � −α‖gt‖2 +
1
2
α2〈gt,Htgt〉 +

α3

3
σt‖gt‖3

� α‖gt‖2
6

−6 + 3αKt + 2α2σt‖gt‖
( )

.

Consider the quadratic part,

r α( ) � −6 + 3αKt + 2α2σt‖gt‖.
We have r(α) ≤ 0 for α ∈ [0, ᾱ], where

ᾱ � −3Kt +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
9K2

t + 48σt‖gt‖
√
4σt‖gt‖

.
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We can express ᾱ as

ᾱ � 12

3Kt +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
9K2

t + 48σt‖gt‖
√ .

Note that
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
9K2

t + 48σt‖gt‖
√

≤ 3|Kt| + 4
̅̅̅̅̅̅̅̅̅̅
3σt‖gt‖

√
≤ 8

̅̅
3

√
max |Kt|,

̅̅̅̅̅̅̅̅
σt‖gt‖

√{ }
.

Also,

3Kt ≤ 2
̅̅
3

√
max |Kt|,

̅̅̅̅̅̅̅̅
σt‖gt‖

√{ }
≤ 4

̅̅
3

√
max |Kt|,

̅̅̅̅̅̅̅̅
σt‖gt‖

√{ }
.

Hence, defining

α0 � 1̅̅
3

√
max |Kt|,

̅̅̅̅̅̅̅̅
σt‖gt‖

√{ } ,

it is clear that 0 ≤ α0 ≤ ᾱ. With α0, we have

r α0( ) ≤ 2/3 + 3/
̅̅
3

√ − 6 ≤ −3.
So, finally, we get

mt sCt
( ) ≤ −3‖gt‖2

6
̅̅
3

√ 1

max |Kt|,
̅̅̅̅̅̅̅̅
σt‖gt‖

√{ } � −‖gt‖2
2

̅̅
3

√ min
1
|Kt| ,

1̅̅̅̅̅̅̅̅
σt‖gt‖

√
{ }

� −‖gt‖
2

̅̅
3

√ min
‖gt‖
|Kt| ,

‖gt‖̅̅̅̅̅̅̅̅
σt‖gt‖

√
{ }

.

■
When Ht has a negative eigenvalue, the Eigen point has the following properties.

Lemma 10 (Eigen Point). Suppose λmin(Ht) < 0, and for some ν ∈ (0, 1], let
sEt � argmin

α∈R mt αut( ),

where ut is the approximate most negative eigenvector defined as

〈ut,Htut〉 ≤ νλmin Ht( )‖ut‖2 ≤ 0.

We have

‖sEt ‖ ≥
ν‖λmin Ht( )‖

σt
, (17a)

−mt sEt
( ) ≥ ν|λmin Ht( )|

6
‖sEt ‖2. (17b)

Proof. Again, we know that

gt, s
E
t

〈 〉 + sEt ,HtsEt
〈 〉 + σt sEt

⃦⃦ ⃦⃦3 � 0.

Meanwhile, because −st would keep the last two terms as the same value, without loss of generality, we could
assume 〈gt, sEt 〉 ≤ 0, which means

sEt ,HtsEt
〈 〉 + σt sEt

⃦⃦ ⃦⃦3 ≥ 0.
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Now, from Cartis et al. (2012, lemma 2.1),

−mt st( ) ≥ 1
6
σt‖st‖3 ≥ − 1

6
〈sEt ,HtsEt 〉 ≥

1
6
ν|λmin Ht( )|‖sEt ‖2.

■
The following lemma gives a bound on the difference between the decrease of the objective function and the

value of the quadratic model m(st). This lemma can be easily obtained by the smoothness assumption of the
objective function; the detailed proof is included in the appendix.

Lemma 11. Under Assumptions 1 and 2, we have

F xt + st( ) − F xt( ) −mt st( ) ≤
δg‖st‖ + 1

2
δH‖st‖2 + LF

2
− σt

3

( )
‖st‖3, ‖gt‖ ≥ εg,

〈st,∇F xt( )〉 + 1
2
δH‖st‖2 + LF

2
− σt

3

( )
‖st‖3, ‖gt‖ < εg.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(18)

Based on these lemmas, the following lemma shows that iteration t is successful when ‖gt‖ ≥ εg.

Lemma 12. Suppose Assumptions 1 and 2 and Condition 3 hold. Further, suppose at iteration t, we have ‖gt‖ ≥ εg and
σt ≥ 2LF. Then, the iteration t is successful; that is, σt+1 � σt/γ.

Proof. Using Lemma 11, we get

F xt + sCt
( ) − F xt( ) −mt sCt

( ) ≤ δg‖sCt ‖ +
1
2
δH‖sCt ‖2 +

LF
2
− σt

3

( )
‖sCt ‖3

≤ δg‖sCt ‖ +
1
2
δH‖sCt ‖2,

because σt ≥ 2LF. We divide it into two cases.
First, if Kt � 〈Htgt, gt〉/‖gt‖2 ≤ 0, then, from (16a), it follows that

‖sCt ‖ ≥
1
2σt

̅̅̅̅̅̅̅̅̅̅
4σt‖gt‖

√
�

̅̅̅̅̅̅̅̅̅̅
‖gt‖/σt

√
.

Using Cartis et al. (2012, lemma 2.1), we get

1 − ρt � F xt + st( ) − F xt( ) −mt st( )
−mt st( ) ≤ δg‖sCt ‖ + 1

2 δH‖sCt ‖2
σt‖sCt ‖3

6

� δg + 1
2 δH‖sCt ‖

σt‖sCt ‖2
6

≤ 6δg
‖gt‖

+ 3δH̅̅̅̅̅̅̅̅
2εgLF

√ ≤ 1 − η

2
+ 1 − η

2
� 1 − η,

where the last inequality follows from the condition on δg and δH .
For the second case in which Kt > 0, from (16a) in Lemma 9, it follows that

‖sCt ‖ �
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
K2
t + 4σt‖gt‖

√ − Kt

2σt
� 2‖gt‖̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

K2
t + 4σt‖gt‖

√ + Kt
.

Now, we consider two cases: (a) K2
t ≥ σt‖gt‖ and (b) K2

t ≤ σt‖gt‖.
a. When K2

H ≥ K2
t ≥ σt‖gt‖, from the preceding equality, we have

‖sCt ‖ ≤
‖gt‖
Kt

.

Meanwhile, because K2
t ≥ σt‖gt‖, from Lemma 9, we have

−mt sCt
( ) ≥ ‖gt‖

2
̅̅
3

√ min
‖gt‖
|Kt| ,

‖gt‖̅̅̅̅̅̅̅̅
σt‖gt‖

√
{ }

� ‖gt‖2
2

̅̅
3

√
Kt

.
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Combining the inequalities together, it follows that

1 − ρt � F xt + st( ) − F xt( ) −mt st( )
−mt st( ) ≤ δg‖sCt ‖ + 1

2 δH‖sCt ‖2
‖gt‖2
2
̅̅
3

√
Kt

≤
δg

‖gt‖
Kt

+ 1
2 δH

‖gt‖
Kt

( )2
‖gt‖2
2
̅̅
3

√
Kt

� 2
̅̅
3

√
δg

‖gt‖
+

̅̅
3

√
δH

Kt
≤ 2

̅̅
3

√
δg

‖gt‖
+

̅̅
3

√
δH̅̅̅̅̅̅̅̅

2LFεg
√ ≤ 1 − η

2
+ 1 − η

2
� 1 − η.

b. When K2
t ≤ σt‖gt‖, we have

‖sCt ‖ ≤
‖gt‖̅̅̅̅̅̅̅̅‖gtσt‖

√ ,

and

−mt sCt
( ) ≥ ‖gt‖

2
̅̅
3

√ min
‖gt‖
|Kt| ,

‖gt‖̅̅̅̅̅̅̅̅
σt‖gt‖

√
{ }

≥ ‖gt‖3/2
2

̅̅
3

√ ̅̅̅
σt

√ .

Then,

1 − ρt � F xt + st( ) − F xt( ) −mt st( )
−mt st( ) ≤ δg‖sCt ‖ + 1

2 δH‖sCt ‖2
‖gt‖3/2
2
̅̅
3

√ ̅
σ̅t

√
� 2

̅̅
3

√
δg

‖gt‖
+

̅̅
3

√
δH̅̅̅̅̅̅

σtεg
√

≤ 2
̅̅
3

√
δg

‖gt‖
+

̅̅
3

√
δH̅̅̅̅̅̅̅̅

2LFεg
√ ≤ 1 − η

2
+ 1 − η

2
� 1 − η.

From these, it follows that the tth iteration is successful; that is, σt+1 � σt/γ when ‖gt‖ ≥ εg. ■
The following lemma, whose proof is similar to Xu et al. (2019, lemma 9), helps bound F(xt + st) − F(xt) −

mt(st) when the Hessian has negative eigenvalues; the detailed proof is included in the appendix.

Lemma 13. (Xu et al. 2019, Lemma 9). Suppose Assumptions 1 and 2 and Condition 3 hold and σt ≥ 2LF. Then, if
λmin(Ht) < −εH, we have

δH
2
‖st‖2 + LF

2
− σt

3

( )
‖st‖3 ≤ δH

2
‖sEt ‖2.

Then, the following lemma shows Eigen points also yield a descent similarly as in Lemma 5.

Lemma 14. Suppose Assumptions 1 and 2 and Conditions 3 and 4 hold. Further, suppose, at iteration t, we have λmin(Ht) <
−εH , ‖gt‖ ≤ εg and σt ≥ 2LF. Then, iteration t is successful; that is, σt+1 � σt/γ.

Proof. If λmin(Ht) < −εH and ‖gt‖ ≤ εg, recall that our subproblem is

mt s( ) � 1
2
〈s,Hts〉 + σt

3
‖s‖3,

and we pick the Eigen point direction, that is, st � sEt . Now, it is clear that, if st is an approximate solution of
the preceding problem, then so is −st. Similar to Lemma 5, without loss of generality, assume 〈st,∇F(xt)〉 ≤ 0.
Then, according to (18),

F xt + st( ) − F xt( ) −mt st( ) ≤ δH
2
‖st‖2 + LF − σt/3( )

2
‖st‖3.
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Therefore, according to (17b) and Lemma 13,

1 − ρt � F xt + st( ) − F xt( ) −mt st( )
−mt st( ) ≤ δH‖st‖2 + LF − σt/3( )‖st‖3

−2mt st( )
≤ δH‖st‖2/2
ν|λmin Ht( )|‖st‖2/6 � 3δH

ν‖λmin Ht( )‖ ≤ 1 − η,

which means the iteration t is successful. ■
With the help of these lemmas, we can now show an upper bound for σt as in Lemma 15.

Lemma 15. Under Assumptions 1 and 2 and Conditions 3 and 4, we have σt ≤ max{2γLF, σ0} for all t.

Proof. We consider two cases. First, suppose σ0 ≤ 2γLF. We prove the claim in this case by contradiction. Suppose
that the tth iteration is the first unsuccessful iteration such that σt+1 � γσt ≥ 2γLF, which implies that σt ≥ 2LF.
However, according to Lemmas 12 and 14, respectively, if ‖gt‖ ≥ εg or λmin(Ht) ≤ −εH, then the iteration is
successful, and we must have σt+1 � σt/γ ≤ σt, which is a contradiction. Second, consider the case in which
σ0 > 2γLF. According to Lemmas 12 and 14, any iteration t with σt ≥ 2LF is successful, which implies that
σt ≤ σ0, ;∀t. ■

Now, we upper bound the number of all successful iterations ‖Tsucc‖, which is shown in Lemma 16. The
proof is similar to Xu et al. (2019, lemma 13).

Lemma 16 (Successful Iterations). Under Assumptions 1 and 2 and Conditions 3 and 4, the number of successful iterations
is upper bounded by

‖Tsucc‖ ≤ F x0( ) − F x∗( )
C

( )
max εg

−2, εH−3{ }
.

Based on these lemmas, Theorem 2 follows.

Theorem 2 (Complexity of Algorithm 2). Let Assumption 1 hold and consider any 0 < εg, εH < 1. Further, suppose that gt
and Ht satisfy Assumption 2 with δg and δH under Condition 3. If the approximate solution to the subproblem (13) satisfies
Condition 4, then Algorithm 2 terminates after at most

T ∈ O max εg
−2, εH−3{ }( )

,

iterations.

Remark 3. To obtain similar suboptimal iteration complexity, the sufficient condition on approximating a Hessian
in Xu et al. (2019) requires that δH ∈ O(min{εg, εH}), which is stronger than Condition 3.

2.2.2. Optimal Complexity for Algorithm 2. In this section, we show that, by better approximation of the gradient
and the Hessian as well as subproblem (13), Algorithm 2 indeed enjoys optimal iteration complexity.

First, we require the following condition on approximating the gradient and Hessian.

Condition 5 (Gradient and Hessian Approximation for Algorithm 2). Given the termination criteria, εg, εH, in Algorithm 2,
we require the inexact gradient and Hessian to satisfy

δg ≤ 1 − η
( )
192LF

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
K2
H + 8LF max min ‖gt‖, ‖gt+1‖

{ }
, εg

{ }√
− KH

( )2
, (19a)

δH ≤ 1 − η
( )

6
min

1
4

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
K2
H + 8LF‖gt‖

√
− KH

( )
, νεH

{ }
, (19b)

δg ≤ δH ≤ ζεg, (19c)
where 0 < ζ < 1 − ̅̅

2
√

/2.
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Condition 5 implies δg � O(ε2g) and δH � O(min{εg, εH}), which is strictly stronger than Condition 3 in
Section 2.2.1. Admittedly, although Condition 5 allows one to obtain optimal iteration complexity of Al-
gorithm 2, it also implies more computations; for example, for the finite-sum problems of Section 2.3, this
translates to larger sampling complexities. We suspect that, instead of being an inherent property of Al-
gorithm 2, this is merely a by-product of our analysis. In this light, we conjecture that the same requirement
as (15) should also be sufficient for Algorithm 2; investigating this conjecture is left for future work.

Now, we provide a sufficient condition on approximating the solution of the subproblem (13). Here, we
require that subproblem (13) is solved more accurately than in Condition 4. To obtain optimal complexity,
similar conditions have been considered in several previous works (Cartis et al. 2010, Xu et al. 2019). Spe-
cifically, we require that the solution is not only as good as the Cauchy and Eigen points, but also that it
satisfies an extra requirement, (20), which accelerates the convergence to first-order critical points.

Condition 6. (Approximate Solution of (13) for Algorithm 2). If ‖gt‖ ≥ εg, find st such that mt(st) ≤ mt(sCt ) and
‖∇m st( )‖ ≤ θt‖gt‖, θt ≤ min ζ, 1/5, ‖st‖/5{ }. (20)

Otherwise, we take the Eigen point, that is, st � sEt . Here, sCt and sEt are Cauchy and Eigen points as in Definitions 4
and 5, respectively.

It is not hard to see that, compared with Condition 4, when the gradient is large enough, Condition 6
involves a more accurate solution of (13) than a simple Cauchy point. For a given p � d, let Ut ∈ Rd× p be any
orthonormal basis for some p-dimensional subspace S such that Span{sCt } ⊆ S ⊂ Rd. Such a subspace can be
easily constructed from sCt and Ht using standard methods, such as the Lanczos process (Ascher and Greif
2011, section 7.5). Now, a practical way to ensure Condition 6 for the case in which ‖gt‖ ≥ εg is by approximating
the unconstrained high-dimensional subproblem (13) with the following lower-dimensional problem:

min
v∈Rp

〈Utv,gt〉 +
1
2
〈Utv,HtUtv〉 + σt

3
‖Utv‖3,

followed by setting st � Utv. Obviously, when p � d, solving such a lower-dimensional problem, which
involves a smaller matrix and vectors, can be significantly easier than the original high-dimensional one. One
can consider a sequence of such reduced subproblems using progressively larger subspaces and stop
when (20) holds. Because, ultimately, ‖∇m(st)‖ � 0 for when S � Rd, we are guaranteed to also satisfy (20) for
large enough S ⊂ Rd.

As a result of the stricter condition imposed by Condition 6, we need to refine some lemmas in Section 2.2.1.
First, we need use the following result, which gives conditions for a successful iteration when ‖gt‖ ≥ εg.

Lemma 17. Suppose Assumptions 1 and 2 and Condition 5 hold. If σt ≥ 2LF and ‖gt‖ > εg, then

δg‖st‖ + 1
2
δH‖st‖2 + 1

2
LF − σt

3

( )
‖st‖3 ≤ δg‖sCt ‖ +

1
2
δH‖sCt ‖2. (21)

Proof. We consider the following two cases:
i. If ‖st‖ ≤ ‖sCt ‖, then, from the assumption of σt, it immediately follows that

δg‖st‖ + 1
2
δH‖st‖2 + 1

2
LF − σt

3

( )
‖st‖3 ≤ δg‖st‖ + 1

2
δH‖st‖2 ≤ δg‖sCt ‖ +

1
2
δH‖sCt ‖2.

ii. If ‖st‖ ≥ ‖sCt ‖, first, because LF ≤ σt/2,

δg‖st‖ + 1
2
δH‖st‖2 + 1

2
LF − σt

3

( )
‖st‖3 ≤ δg‖st‖ + 1

2
δH‖st‖2 − σt

12
‖st‖3.

Now, let’s define function r(x) � δg + δHx/2 − σtx2/12. The derivative of r(x) is given by r′(x) � δH/2 − σtx/6. For
any x ≥ ‖sCt ‖, according to (16a), we have

r′ x( ) ≤ 1
2
δH − 1

6
σt‖sCt ‖ ≤

1
2
δH −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
K2
H + 4σt‖gt‖

√ − KH

12
≤ 0.
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Therefore,

r ‖st‖( ) ≤ r ‖sCt ‖
( ) � δg + 1

2
δH‖sCt ‖ −

1
12

σt‖sCt ‖2 ≤ δg + 1
2
δH −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
K2
H + 4σt‖gt‖

√ − KH

24

( )
‖sCt ‖

≤ δg −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
K2
H + 4σt‖gt‖

√ − KH

48
‖sCt ‖ ≤

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
K2
H + 8LF‖gt‖

√ − KH

192LF
−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
K2
H + 4σt‖gt‖

√ − KH

96σt
≤ 0.

The last inequality follows from the fact that p(x) :� ( ̅̅̅̅̅̅̅̅
a2 + x

√ − a)2/x is an increasing function over R+. Then,
we have

δg‖st‖ + 1
2
δH‖st‖2 + 1

2
LF − σt

3

( )
‖st‖3 � ‖st‖r ‖st‖( ) ≤ 0,

which completes the proof. ■
With the help of the preceding lemma, we show that iteration t is successful when ‖gt‖ ≥ εg.

Lemma18. Suppose Assumptions 1 and 2 and Conditions 5 and 6 hold. Further, suppose at iteration t,we have ‖gt‖ > εg and
σt ≥ 2LF. Then, iteration t is successful; that is, σt+1 � σt/γ.

Proof. First, because ‖gt‖ ≥ εg, by Lemmas 11 and 17, we have

F xt + st( ) − F xt( ) −mt st( ) ≤ δg‖sCt ‖ +
1
2
εH‖sCt ‖2.

Now from Condition 6 and (16a), we get

−mt st( ) ≥ −mt sCt
( ) ≥ 1

12
‖sCt ‖2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
K2
H + 4σt‖gt‖

√
− KH

( )
.

Consider the approximation quality ρt,

1 − ρt � F xt + st( ) − F xt( ) −mt st( )
−mt st( ) ≤ δg‖sCt ‖ + 1

2 δH‖sCt ‖2
1
12 ‖sCt ‖2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
K2
H + 4σt‖gt‖

√ − KH

( )

� 12δg

‖sCt ‖
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
K2
H + 4σt‖gt‖

√ − KH

( ) + 6δH̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
K2
H + 4σt‖gt‖

√ − KH

≤ 24σtδg̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
K2
H + 4σt‖gt‖

√ − KH

( )2 + 6δH̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
K2
H + 4σt‖gt‖

√ − KH

≤ 48LFδg̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
K2
H + 8LF‖gt‖

√ − KH

( )2 + 6δH̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
K2
H + 8LF‖gt‖

√ − KH
,

where the second inequality follows from (11) and the last inequality follows from σt ≥ 2LF as well as the fact
that function r(x) :�x/( ̅̅̅̅̅̅̅

a2+x√ −a)2 is monotonically decreasing over R+. Now, because δH≤(1−η)( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
K2
H+4LF‖gt‖

√ −
KH)/24, we get 6δH/(

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
K2
H +8LF‖gt‖

√ −KH) ≤ (1−η)/4. Similarly, because δg ≤ (1−η)( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
K2
H +8LF‖gt‖

√ −KH)2/(192LF),
we get 48LFδg/(

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
K2
H + 8LF‖gt‖

√ − KH)2 ≤ (1 − η)/4. Therefore, 1 − ρt ≤ 1 − η, which means the iteration is suc-
cessful. ■

Now, as in Lemma 15, we have the following:

Lemma 19. Under Assumptions 1 and 2 and Conditions 5 and 6, we have σt ≤ 2γLF for all t.

We are now in position to prove the optimal complexity of Algorithm 2 under Condition 6. Recall that
Lemma 15 still holds. Hence, we only need to prove a tighter bound for |T succ|. In particular, we separate Tsucc
into the following three subsets:

T1
succ ≜ t ∈ Tsucc | ‖gt+1‖ ≥ εg

{ }
, (22)

T2
succ ≜ t ∈ Tsucc | ‖gt+1‖ ≤ εg and λmin Ht+1( ) ≤ −εH{ }

, (23)
T3

succ ≜ t ∈ Tsucc | ‖gt+1‖ ≤ εg and λmin Ht+1( ) ≥ −εH{ }
. (24)
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Clearly, Tsucc � T1
succ

⋃
T2

succ
⋃

T3
succ, and trivially, ‖T3

succ‖ � 1.
First, let us bound T2

succ.Intuitively, we can see that we need each update to yield sufficient descent in order
to bound T1

succ. Equivalently, we need each st to be bounded below to get sufficient decrease; see the fol-
lowing lemma.

Lemma 20. Under Assumptions 1 and 2 and Conditions 5 and 6, we have the following upper bound:

‖T2
succ‖ ≤ CεH−3.

Proof. Because F(xt) is monotonically decreasing, then

F x0( ) − Fmin ≥ ∑T−1
t�0

F xt( ) − F xt+1( ) � F x0( ) − F x1( ) +∑T−1
t� 0

F xt( ) − F xt+1( )
≥ F x0( ) − F x1( ) + ∑

t∈T2
succ

F xt( ) − F xt+1( )

≥ F x0( ) − F x1( ) + ∑
t∈T2

succ

ηmt+1 st+1( )

≥ F x0( ) − F x1( ) + η
∑

t∈T2
succ

ν3ε3H
24γ2L2F

,

where the last inequality follows from (17b). Hence,

‖T2
succ‖ ≤

F x1( ) − Fmin( )24γ2L2F
ην3

ε−3H � O ε−3H
( )

. ■

Intuitively, we can see that we need each update to yield suffcient descent in order to bound T1
succ.

Equivalently, we need each st to be bounded below to get suffcient decrease; see the following lemma.

Lemma 21. Suppose Assumptions 1 and 2 and Conditions 5 and 6 hold. If iteration t is successful and ‖gt‖ ≥ εg, then

‖st‖ ≥ κg 1 − ζ − ζ

1 − 2ζ

( )
‖gt+1‖ −

5
2
δg

[ ]
,

where

κg:�min
LF
2
+ 2γLF + ε0 + ζKF

( )−1
,
LF
2
+ 2γLF + ζ

1 − 2ζ
KF + ζKF

( )−1{ }
.

Proof. Using Condition 6, we get

‖gt+1‖ ≤ ‖gt+1 − ∇mt st( )‖ + ‖∇mt st( )‖ ≤ ‖gt+1 − ∇mt st( )‖ + θt‖gt‖. (25)
Noting that ∇mt(st) � gt +Htst + σt‖st‖st, by Assumptions 1 and 2, we have

‖gt+1 − ∇mt st( )‖ ≤ ‖gt+1 − gt −Htst‖ + σt‖st‖2

≤ ‖
∫ 1

0
∇2F xt + τst( ) − ∇2F xt( )( )

stdτ + ∇2F xt( ) −Ht
( )

st‖
+ ‖gt − ∇F xt( )‖ + ‖gt+1 − ∇F xt + τst( )‖ + σt‖st‖2

≤ LF
2
+ 2γLF

( )
‖st‖2 + δH‖st‖ + 2δg.

(26)
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Also, according to Assumption 2, we get

‖gt‖ ≤ ‖gt − ∇F xt( )‖ + ‖∇F xt( ))‖ ≤ δg + KH‖st‖ + ‖∇F xt + st( )‖
≤ 2δg + KH‖st‖ + ‖gt+1‖.

(27)

By combining (25)–(27) and using definition of θt in (20), we get

‖gt+1‖ ≤
LF
2
+ 2γLF

( )
‖st‖2 + δH + θtKF( )‖st‖ + 2 1 + θt( )δg + θt‖gt+1‖

≤ LF
2
+ 2γLF

( )
‖st‖2 + δH + θtKF( )‖st‖ + 5

2
δg + ζ‖gt+1‖,

which implies

1 − ζ( )‖gt+1‖ −
5
2
δg ≤ LF

2
+ 2γLF

( )
‖st‖2 + δH + θtKF( )‖st‖. (28)

Now, consider two cases:
i. If ‖st‖ ≥ 1, then

δH + θtKF( )‖st‖ ≤ εH + ζKF( )‖st‖2.
It follows that

1 − ζ( )‖gt+1‖ − 5/2δg ≤ LF
2
+ 2γLF + εH + ζKF

( )
‖st‖2,

that is,

‖s2t ‖ ≥
1 − ζ( )‖gt+1‖ − 5

2 δg
LF/2 + 2γLF + εH + ζKF

.

ii. If ‖st‖ ≤ 1, then

δH ≤ ζεg ≤ ζ‖gt‖
≤ ζ ‖gt+1‖ + ‖∇F xt + st( ) − gt+1‖ + ‖∇F xt( ) − ∇F xt + st( )‖ + ‖gt − ∇F xt( )‖( )
≤ ζ 2δg + KF‖st‖ + ‖gt+1‖

( )
≤ ζ 2δH + KF‖st‖ + ‖gt+1‖

( )
,

where the third inequality is from the triangular inequality and the last inequality follows from δg ≤ δH in (19c)
in Condition 6. Therefore, we have

δH‖st‖ ≤ ζ

1 − 2ζ
KF‖st‖ + ‖gt+1‖
( )‖st‖ ≤ ζ

1 − 2ζ
KF‖st‖2 + ‖gt+1‖
( )

.

Then, using θt ≤ ζ in (20),

δH + θtKF( )‖st‖ ≤ ζ

1 − 2ζ
+ ζ

( )
KF‖st‖2 + ζ

1 − 2ζ
‖gt+1‖.

Substituting this into (28), we have

1 − ζ − ζ

1 − 2ζ

( )
‖gt+1‖ −

5
2
δg ≤ LF

2
+ 2γLF + ζ

1 − 2ζ
KF + ζKF

( )
‖st‖2,

that is,

‖st‖2 ≥ 1 − ζ − ζ

1 − 2ζ

( )
‖gt+1‖ −

5
2
δg

( )
LF
2
+ 2γLF + ζ

1 − 2ζ
KF + ζKF

( )−1
.

The two cases complete the proof. ■
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Now, based on Lemma 21, it is easy to bound ‖T1
succ‖.

Lemma 22. Given the same setting as Lemma 21, the success iteration T1
succ is bounded by

‖T1
succ‖ ≤ Cmax εg

−1.5, εH−3{ }
.

Proof. First, according to (19a) in Condition 5, we have

δg ≤ 1 − η

192LF

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
K2
H + 8LF max min ‖gt‖, ‖gt+1‖

{ }
, εg

{ }√
− KH

( )2
≤ 1 − η
( )

8LF max min ‖gt‖, ‖gt+1‖
{ }

, εg
{ }
192LF

≤ max min ‖gt‖, ‖gt+1‖
{ }

, εg
{ }

24
.

If ‖gt+1‖ ≥ εg and ‖gt‖ ≥ εg, according to Lemma 21 and substituting ζ � 1/4, we have

‖st‖2 ≥ κg 1 − 1/4 − 1/4
1 − 2/4

( )
εg − 5/2

1
24

εg

[ ]
� 1
8
κgεg.

Now, consider any t ∈ T1
succ. Because ‖gt‖ ≥ εg, then we have

−mt st( ) ≥ σt
6
‖st‖3 ≥ σmin

6
κgεg
8

( )3/2≥ cgεg3/2,

where cg ≜κ3/2
g σmin/200. Otherwise, we must have λmin(Ht) ≤ −εH , and by (17b), we have

−mt st( ) ≥ ν3ε3H
24γ2L2F

� cHε3H ,

where cH ≜ ν3

24γ2L2F
. Therefore,

−mt st( ) ≥ min cgε3/2g , cHε3H
{ }

.

Because F(xt) is monotonically decreasing and F(x) is lower bounded by Fmin, it follows that

F x0( ) − Fmin ≥ ∑T−1
t�0

F xt( ) − F xt+1( ) ≥ ∑
t∈T1

succ

F xt( ) − F xt+1( ) ≥ ∑
t∈T1

succ

−ηmt st( )

≥ ∑
t∈T1

succ

min cgε3/2g , cHε3H
{ }

� ‖T1
succ‖min cgε3/2g , cHε3H

{ }
.

Therefore,

‖T1
succ‖ ≤ max

F x0( ) − Fmin

cg
ε−3/2g ,

F x0( ) − Fmin

cH
ε−3H

{ }
,

which completes the proof. ■
Because Tsucc � T1

succ
⋃

T2
succ

⋃
T3

succ, we can get a bound of the total number of successful iterations.

Lemma 23. Given Assumptions 1 and 2 as well as Conditions 5 and 6, the number of successful iterations ‖Tsucc‖ is
bounded by

‖Tsucc‖ ≤ Cmax εg
−1.5, εH−3{ }

.

Proof. It immediately follows from Lemmas 20 and 22. ■
The optimal iteration complexity of Algorithm 2 is stated in Theorem 4.

Theorem 4 (Optimal Complexity of Algorithm 2). Let Assumption 1 hold and consider any 0 < εg, εH < 1. Further, suppose
that gt andHt satisfy Assumption 2with δg and δH under Condition 5. If the approximate solution to subproblem (13) satisfies
Condition 6, then Algorithm 2 terminates after at most

T ∈ O max εg
−1.5, εH−3{ }( )

,

iterations.
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Remark 5. If we assume LF is known (set σt ≡ LF) and st is close enough to the best solution s∗t of mt(s), by using
Taylor expansion, it is not hard to show that

F xt + st( ) − F xt( ) ≥ −c1mt st( ) ≥ −c2mt s∗t
( )

.

Given that ‖gt‖ or −λmin(Ht) is large, −m(s∗t ) would then be large. Therefore, there could be enough descent
along st. Roughly speaking, we could drop Lemmas 9–15 and get the same iteration complexity results, that is,
T ∈ O(max{εg−1.5, εH−3}). For example, we do not need Lemma 9 to show the Cauchy point is one of the
directions for −mt(st). Also, in this case, either Lemma 17 or 18 becomes redundant.

2.3. Finite-Sum Problems
As a special class of (1), we now consider a nonconvex finite-sum minimization of (2), where each fi : Rd → R is
smooth and nonconvex. In big-data regimes in which n � 1, one can consider subsampling schemes to speed
up various aspects of many Newton-type methods; for example, see Roosta and Mahoney (2019), Xu
et al. (2016), and Bollapragada et al. (2018) for such techniques in the context of convex optimization.
More specifically, we consider the subsampled gradient and Hessian as

g≜
1

‖Sg‖
∑
i∈Sg

∇fi x( ), and H≜
1

‖SH‖
∑
i∈SH

∇2fi x( ), (29)

where Sg,SH ⊂ {1, · · · ,n} are the subsample batches for the estimates of the gradient and Hessian, respectively.
In this setting, a relevant question is that of how large sample sizes Sg and SH should be to guarantee, at least
with high probability, that g and H in (29) satisfy Assumption 2. As long as ‖Sg‖ � n and ‖SH‖ � n, such
subsampling strategies can result in significant reduction in overall computational costs.

If sampling is done uniformly at random, we have the following sampling complexity bounds, whose proofs
can be found in Roosta and Mahoney (2019) and Xu et al. (2019). For more sophisticated sampling/sketching
schemes, see Pilanci and Wainwright (2015) and Xu et al. (2016, 2019).

Lemma24. (Sampling Complexity; Roosta andMahoney 2019, Xu et al. 2019). For any 0 < δg, δH, δ < 1, let g andH be
as in (29) with

‖Sg‖ ≥
16K2

g

δ2g
log

1
δ

and ‖SH‖ ≥ 16K2
H

δ2H
log

2d
δ
,

where 0 < Kg,KH < ∞ are such that ‖∇fi(x)‖ ≤ Kg and ‖∇2fi(x)‖ ≤ KH. Then, with probability at least 1 − δ, As-
sumption 2 holds with the corresponding δg and δH . Combining Lemma 24 with the sufficient conditions presented
earlier, that is, Conditions 1 and 2 for Algorithm 1 and Conditions 3 and 4 or Conditions 5 and 6 for Al-
gorithm 2, we can immediately obtain similar but probabilistic iteration complexities as in Sections 2.1 and 2.2.
For completeness, we bring such a result for Algorithm 1 and omit those related to Algorithm 2.

Because Conditions 1, 3, and 5 are only guaranteed probabilistically, in order to guarantee success, a small
failure probability across all iterations is required. In particular, in order to get an accumulative success
probability of 1 − δ for the entire T iterations, the per-iteration failure probability is set as (1 − ̅̅[√ T](1 − δ)) ∈
O(δ/T). Fortunately, this failure probability appears only in the “log factor” in Lemma 24, and so it is not the
dominating cost. For example, for T ∈ O(max{ε−2g ε−1H , ε−3H }), as in Theorem 1, we can set the per-iteration failure
probability to δmin{ε2gεH, ε3H}.
Corollary 1. (Optimal Complexity of Algorithm 1 for Finite-Sum Problem (2)). Consider any 0 < εg, εH, δ < 1. Let δg
and δH be as in Condition 1 and set δ0 � δmin{ε2gεH , ε3H}. Furthermore, for such δg, δH, and δ0, let the sample size ‖Sg‖ and
‖SH‖ be as in Lemma 24 and form the subsampled gradient and Hessian as in H as in (29). For problem (2), under
Assumptions 1 and 2 and Conditions 1 and 2, Algorithm 1 terminates in at most T ∈ O(max{ε−2g ε−1H , ε−3H }) iterations, upon
which, with probability 1 − δ, we have that ‖∇F(x)‖ ≤ εg + δg, and λmin(∇2F(x)) ≥ −(δH + εH).

3. Experiments
In this section, we provide empirical results evaluating the performance of Algorithms 1 and 2. We aim to
demonstrate that an approximate gradient, Hessian, and subproblem solves indeed help improve the
computational efficiency. For our experiments, we consider the following methods:

• Full ARC: Standard ARC algorithms with exact gradient and Hessian.
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• SubH TR/ARC (Xu et al. 2019): TR and ARC with exact gradient and subsampled Hessian.
• SCR (GD) (Tripuraneni et al. 2018): CR with subsampled gradient and Hessian. The subproblems are

solved by gradient descent (GD) (Carmon and Duchi 2016).
• SCR (Lanczos): CR that is similar to SCR (GD) (Tripuraneni et al. 2018), but the subproblems are solved

by the generalized Lanczos method (Cartis et al. 2011a).
• SGD: Stochastic gradient descent with momentum (Sutskever et al. 2013). The momentum parameter is

set to the typical value of 0.9. The gradient size is set to be 1,000.
• Adagrad: An adaptive first-order method developed in Duchi et al. (2011). The gradient size is set to

be 1,000.
• ADAM: A modification of Adagrad that has become the method of choice within the machine learning

community (Kingma and Ba 2014). The two momentum terms in ADAM are set to be 0.9 and 0.999, which are
typically chosen in practice. The gradient size is set to be 1,000.

• Inexact TR/ARC (this work): TR and ARC with subsampled gradient and Hessian as described in
Algorithms 1 and 2. The subproblems of Algorithms 1 and 2 are solved, respectively, by CG-Steihaug
(Steihaug 1983) and by the generalized Lanczos method (Cartis et al. 2011a). For both algorithms, the gradient
sample size is adaptively chosen as follows: if ‖gt‖ ≥ 1.2‖gt−1‖ or ‖gt‖ ≤ ‖gt−1‖/1.2, we, respectively, decrease or
increase the sample size for gradient estimation by a factor of 1.2. Otherwise, the sample size stays the same as
the previous iteration.

For our experiments, except SCR (GD), we use the CG-Steihaug (Nocedal and Wright 2006) and generalized
Lanczos methods (Cartis et al. 2011a) to solve the subproblems of TR and ARC, respectively. Also following
Xu et al. (2020), we set the maximum iterations for the subproblem solvers to 250. Further specific hyper-
parameters as well as samples sizes used for second-order algorithms in our experiments are gathered in
Table 2.

Similar to Xu et al. (2020), the performance of all the algorithms in our experiments is measured by tallying
total number of propagations, that is, the number of oracle calls of function, gradient, and Hessian-vector
products. More specifically, for each i in (2), after computing fi(x), computing ∇fi(x) is equivalent to one
additional function evaluation. In our implementations, we merely require Hessian-vector products ∇2fi(x)v
instead of forming the explicit Hessian, which amounts to two additional function evaluations as compared
with gradient evaluation. We would like note that we opted to choose propagations as the complexity because
“wall clock” time can be highly affected by particular implementation details as well as system specifications.
In contrast, counting the number of propagations (or oracle calls) is implementation and system independent
and is, hence, more appropriate and fair. For experiments of Section 3.1, we use a GTX Titan X GPU with 12
Gb RAM memory. The code is based on Python with framework PyTorch 1.2.0. In Section 3.2, the experiments
are performed on a Macbook Pro, 2017c (2.9 GHz Intel Core i7-7820HQ, 16 Gb RAM) with Matlab. Our code is
publicly available at https://github.com/yaozhewei/Inexact_Newton_Method.

3.1. Multilayer Perceptron
We first evaluate the performance of Algorithm 1 in terms of running time as measured by the training loss
versus total number of propagations. We do this using a simple multilayer perceptron (MLP) model on the
MNIST data set, which is available from LIBSVM library (Chang and Lin 2011).

Here, we consider an MLP involving one hidden layer and one output layer to determine the assigned class
of the input image. All intermediate neurons involve the SoftPlus activation function (Glorot et al. 2011), which
amounts to a smooth optimization problem. We consider three instances of such an MLP with hidden layer
sizes of 16, 128, and 1,024. Table 3 gathers the dimensions of the resulting optimization problems.

Table 2. The Hyperparameters and the Samples Sizes Used for Newton-Type Methods Used in the Experiments

Method Full ARC SubH TR SubH ARC SCR Algorithm 1 Algorithm 2

Hyperparameter σ0 � 10 Δ0 � 10 σ0 � 10 σ � 10 (Fig. 2) Δ0 � 10 σ0 � 10
‖Sg‖ (Section 3.1) n n n N/A 5,000 5,000
‖SH‖ (Section 3.1) n 1,000 1,000 N/A 1,000 1,000
‖Sg‖ (Section 3.2) n n n 0.1n 0.1n 0.1n
‖SH‖ (Section 3.2) n 0.01n 0.01n 0.01n 0.01n 0.01n

Notes. n is as in Tables 3 and 4. Recall that ‖Sg‖ is adjusted adaptively for Algorithms 1 and 2, and hence, the values given here refer to the
gradient sample size at initialization. For Hessian estimation, however, we use a fixed sample size for both Algorithms 1 and 2.
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Similar to the observations in Xu et al. (2020), despite the best of our efforts, we were unable to obtain the
expected performance of any variant of ARC and CR on this model problem using a variety of imple-
mentations. As a result, we did not include them in this experiment.

For all first-order methods, several fixed step sizes in the range α � [0.0001, 0.001, 0.01, 0.1] are tested. As is
clearly observed here and also is reported in similar literature (Berahas et al. 2017, Kylasa et al. 2019, Xu et al.
2020), the performance of first-order methods strongly depends on the particular choice of their main
hyperparameter, that is, the step size. For example, in Figure 1, (g)–(i), a finely tuned ADAM can have superior
performance. However, if the step size is not chosen appropriately, the performance of ADAM could be
unpleasantly erratic. As can also be seen, even the best performing step size for ADAM ceases to be ap-
propriate at later stages of the algorithm. As a result, to obtain a solution with higher accuracy, one needs to
pick a new step size at later stages of the algorithm as, otherwise, ADAM ultimately diverges or exhibits
violent zigzagging behavior.

3.2. Nonlinear Least Squares
Because we did not manage to obtain a reasonable performance using any variants of ARC and CR, we opted
to exclude them from the previous experiments in Section 3.1. Nonetheless, on a simpler nonlinear least
squares problem, we were able to compare and contrast various properties of these methods, which we
include in this section.

3.2.1. Computational Efficiency (Figure 2). We now consider the running time of Algorithm 2 in the context of
simple yet illustrative, nonlinear least squares arising from the task of binary classification with squared loss.1

Specifically, given training data {ai, bi}ni�1, where ai ∈ Rd, bi ∈ {0, 1}, consider the following empirical risk
minimization problem:

min
x∈Rd

1
n

∑n
i�1

bi − φ 〈ai, x〉( )( )2,
where φ(z) is the sigmoid function; that is, φ(z) � 1/(1 + e−z). Data sets are taken from LIBSVM library (Chang
and Lin 2011); see Table 4. We use the same setup in Xu et al. (2020).

Figure 2 depicts the results. For all variants of SCR, we hand-tuned the algorithm by performing an ex-
haustive grid search over the involved hyperparameters, and we show the best results. For all variants of ARC,
we chose the same initial parameters, σ0. We can observe that all methods achieve similar training errors,
and Algorithm 2 does so with a much fewer number of propagation calls as compared with other methods.
Furthermore, all variants of ARC perform similarly or better than all variants of CR. This is empirical evidence
that the “optimal” worst-case analysis of CR, although theoretically interesting, might not translate to many
practical applications of interest.

3.2.2. Robustness to Hyperparameters (Figure 3). Next, we highlight the practical challenges arising with
algorithms that heavily rely on the knowledge of hard-to-estimate parameters. In particular, we aim here to
demonstrate that an algorithm whose performance is greatly affected by specific settings of parameters that
cannot be easily estimated lacks the versatility needed in many practical applications. To do so, we perform
one such demonstration by focusing on the sensitivity/robustness of Algorithm 2 and SCR to the cubic
regularization parameter σ. The results are gathered in Figure 3. One can see that the performance of SCR is
highly dependent on the choice of its main hyperparameter, that is, σ. Indeed, if σ is not chosen appropriately,
SCR either converges very slowly or does not converge at all. Determining an appropriate value of σ requires
an expensive (in human or CPU time) hyperparameter search. This is in sharp contrast with Algorithm 2,
which shows great robustness to the choice of σ0 and works more-or-less “out of the box.”

Table 3. The Dimension of the Parameter Space for Various Hidden Layer Sizes in the MLP Experiment

Hidden layer size n d

16 60,000 12,704
128 60,000 101,632
1,024 60,000 813,056
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3.3. Summary of Numerical Experiments
From these numerical examples, that is, multilayer perceptron in Section 3.1 and nonlinear least squares in
Section 3.2, we can make the following general observations regarding the overall performance of Algo-
rithms 1 and 2.

Figure 1. (Color online) Results of Variants of TR (SubH TR and Inexact TR) and First Order Methods (SGD, AdaGrad, and
ADAM) on MLP with Different Hidden Sizes (16, 128, and 1024)

Note. Both x-axis and y-axis are drawn using the logarithmic scaling.

Figure 2. (Color online) Performance of Variants of ARC and CR Methods on ijcnn1 and covertype for Binary
Linear Classification

Note. The x-axis is drawn on the logarithmic scale.
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i. Within the context of both inexact TR and ARC, we can clearly see the added efficiency obtained from
subsampling both the gradient and the Hessian. This is illustrated by competitive performance compared with
several first-order methods as well as superior performance relative to more expensive variants, that is, exact
algorithms and those in which only the Hessian is approximated as in Xu et al. (2019).

ii. In terms of tuning the respective underlying hyperparameters, our inexact ARC variant is significantly
more robust compared with SCR (Tripuraneni et al. 2018). Similarly, in contrast to first-order algo-
rithms whose performance is greatly affected by the choice of the main hyperparameter, that is, step size,
the performance of the proposed Newton-type methods exhibits significant resilience to particular choices
of hyperparameters.

4. Conclusions and Further Thoughts
In this paper, we consider inexact variants of trust region and adaptive cubic regularization in which, to
increase efficiency, the gradient and Hessian as well as the solution to the underlying subproblems are all
suitably approximated. We show that, under certain conditions on these approximations, to coverage to
second-order criticality, the inexact variants achieve the same optimal iteration complexity as the exact
counterparts. The advantages and perhaps shortcomings of our algorithms are also numerically demonstrated.

We note that, unlike Conditions 2, 4, and 6, ensuring Conditions 1, 3, and 5 is not generally as
straightforward and remains the main practical challenge in our work and, to our knowledge, all of related
literature. Although deterministic approaches, such as finite-difference schemes, can theoretically guarantee
these conditions, obtaining an appropriate discretization scheme relies on the knowledge of problem-
dependent constants that are typically hard to estimate. Similarly, for the case of finite-sum minimization
in Section 2.3, which is an important driving application for our results here, randomized subsampling
techniques can give sufficient sample sizes to guarantee such conditions. However, this also requires estimates
of the constants LF,KH , and Kg. Fortunately, for several problems in machine learning, obtaining such esti-
mates is in fact straightforward, for example, linear predictor models in Xu et al. (2019, table 1) and Roosta and
Mahoney (2019, table 2) as well as deep learning in Fazlyab et al. (2019). Furthermore, in our experience as
well as that of many others, the performance of such subsampled algorithms is most resilient to under-
sampling. This is in sharp contrast, however, to the quality of the subproblem solutions, which significantly
affect the overall performance of the algorithms.

Figure 3. (Color online) Robustness of Algorithm 2 and Sensitivity of SCRwith Respect to the Cubic Regularization Parameter
on the covertype Data Set

Notes. For Algorithm 2, this parameter, initially set to _0, adaptively changes across iterations although for SCR, it is kept fixed at a certain σ for
all iterations. (a) Robustness of Algorithm 2 to the choice of _0, where _0 varies over several orders of magnitude. (b, c) Sensitivity of SCR with
two different subproblem solvers (Lanczos and GD) and several choices of the fixed cubic regularization σ. For SCR (GD), the step size of GD for
solving the subproblem is hand-tuned to obtain the best performance (which can be extremely expensive).

Table 4. Data Sets Used for Experiments with Nonlinear Least Squares.

Data n d

covertype 464,810 54
ijcnn1 49,990 22
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As a by-product of our analysis, the bound on gradient approximations for obtaining the optimal iteration
complexity of inexact ARC remains very pessimistic, and tightening such a bound is left for future work. An
important missing piece from our work here is incorporating function approximations as a way to further
reduce the computational costs, which we are currently pursuing. Finally, our results here only consider
iteration complexities of the proposed algorithms. A much finer grained analysis is required to obtain overall
running time, which is an important avenue for future work.
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Appendix. Additional Proofs
In this section, we give the proofs of some lemmas mentioned in the main text.

A.1. Proof of Lemma 3
When ‖gt‖ ≥ εg, using Taylor expansion of F(xt) at point xt,

F xt + st( ) − F xt( ) −mt st( ) � 〈st,∇F xt( ) − gt〉 +
1
2
〈st, ∇2F xt + τst( ) −Ht

( )
st〉

≤ 〈st,∇F xt( ) − gt〉 + | 1
2
〈st, Ht − ∇2F xt + τst( )( )

st〉|

≤ 〈st,∇F xt( ) − gt〉 + | 1
2
〈st, Ht − ∇2F xt( )( )

st〉|

+ | 1
2
〈st, ∇2F xt + τst( ) − ∇2F xt( )( )

st〉|

≤ 〈st,∇F xt( ) − gt〉 +
1
2
δH‖st‖2 + 1

2
LF‖st‖3

≤ δgΔt + 1
2
δHΔt

2 + 1
2
LFΔt

3,

where τ ∈ [0, 1]. Similarly, when ‖gt‖ < εg,

F xt + st( ) − F xt( ) −mt st( ) ≤ 〈st,∇F xt( )〉 + 1
2
δHΔt

2 + 1
2
LFΔt

3.

A.2. Proof of Lemma 11
When ‖gt‖ ≥ εg, using Taylor expansion of F(x) at point xt,

F xt + st( ) − F xt( ) −mt st( ) � 〈st,∇F xt( ) − gt〉 +
1
2
〈st, ∇2F xt + τst( ) −Ht

( )
st〉 − σt

3
‖st‖3

≤ 〈st,∇F xt( ) − gt〉 + | 1
2
〈st, Ht − ∇2F xt + τst( )st〉| − σt

3
‖st‖3

(

≤ 〈st,∇F xt( ) − gt〉 + | 1
2
〈st, Ht − ∇2F xt( )( )

st〉|

+ | 1
2
〈st, ∇2F xt + τst( ) − ∇2F xt( )( )

st〉| − σt
3
‖st‖3

≤ 〈st,∇F xt( ) − gt〉 +
1
2
δH‖st‖2 + LF

2
− σt

3

( )
‖st‖3,

≤ δg‖st‖ + 1
2
δH‖st‖2 + LF

2
− σt

3

( )
‖st‖3,

where τ ∈ [0, 1]. Similarly, when ‖gt‖ < εg,

F xt + st( ) − F xt( ) −mt st( ) ≤ 〈st,∇F xt( )〉 + 1
2
δH‖st‖2 + LF

2
− σt

3

( )
‖st‖3.
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A.3. Proof of Lemma 13
If ‖st‖ ≤ sEe , then based on the condition of σt ≥ 2LF, we have

1
2
δH‖st‖2 + 1

2
LF − σt

3

( )
‖st‖3 ≤ 1

2
δH‖st‖2 ≤ δH

2
‖sEt ‖2.

When ‖st‖ > ‖sEe ‖, because Lf ≤ σt/2,

1
2
δH‖st‖2 + 1

2
LF − σt

3

( )
‖st‖3 ≤ 1

2
δH‖st‖2 − σt

12
‖st‖3

≤ 1
2
δH‖st‖2 − σt

12
‖sEt ‖‖st‖2

≤ 1
2
δH‖st‖2 − ν|λmin Ht( )|

12
‖st‖2

≤ 1 − η
( )

ν|λmin Ht( )| − ν|λmin Ht( )|( )‖st‖2/12
≤ 0 ≤ δH

2
‖sEt ‖2,

where the third and fourth inequalities follow from (17a) and (15), respectively.

Endnote
1Because logistic loss, which is the “standard” loss used in this task, leads to a convex problem, we use square loss to obtain a non-
convex objective.
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