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ABSTRACT | In this era of large-scale data, distributed systems

built on top of clusters of commodity hardware provide cheap

and reliable storage and scalable processing of massive

data. With cheap storage, instead of storing only currently

relevant data, it is common to store as much data as possible,

hoping that its value can be extracted later. In this way,

exabytes (1018 bytes) of data are being created on a daily basis.

Extracting value from these data, however, requires scalable

implementations of advanced analytical algorithms beyond

simple data processing, e.g., statistical regression methods,

linear algebra, and optimization algorithms. Most such tradi-

tional methods are designed to minimize floating-point opera-

tions, which is the dominant cost of in-memory computation on

a single machine. In parallel and distributed environments,

however, load balancing and communication, including disk

and network input/output (I/O), can easily dominate compu-

tation. These factors greatly increase the complexity of

algorithm design and challenge traditional ways of thinking

about the design of parallel and distributed algorithms. Here,

we review recent work on developing and implementing

randomized matrix algorithms in large-scale parallel and

distributed environments. Randomized algorithms for matrix

problems have received a great deal of attention in recent

years, thus far typically either in theory or in machine learning

applications or with implementations on a single machine.

Our main focus is on the underlying theory and practical

implementation of random projection and random sampling

algorithms for very large very overdetermined (i.e., over-

constrained) ‘1- and ‘2-regression problems. Randomization

can be used in one of two related ways: either to construct

subsampled problems that can be solved, exactly or approx-

imately, with traditional numerical methods; or to construct

preconditioned versions of the original full problem that are

easier to solve with traditional iterative algorithms. Theoretical

results demonstrate that in near input-sparsity time and with

only a few passes through the data one can obtain very strong

relative-error approximate solutions, with high probability.

Empirical results highlight the importance of various tradeoffs

(e.g., between the time to construct an embedding and the

conditioning quality of the embedding, between the relative

importance of computation versus communication, etc.) and

demonstrate that ‘1- and ‘2-regression problems can be solved

to low, medium, or high precision in existing distributed

systems on up to terabyte-sized data.
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absolute deviation; least squares; preconditioning; randomized
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I . INTRODUCTION

Matrix algorithms lie at the heart of many applications,
both historically in areas such as signal processing and
scientific computing as well as more recently in areas such
as machine learning and data analysis. Essentially, the
reason is that matrices provide a convenient mathematical
structure with which to model data arising in a broad
range of applications: an m! n real-valued matrix A
provides a natural structure for encoding information
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about m objects, each of which is described by n features.
Alternatively, an n! n real-valued matrix A can be used to
describe the correlations between all pairs of n data points,
or the weighted edge–edge adjacency matrix structure of
an n-node graph. In astronomy, for example, very small
angular regions of the sky imaged at a range of
electromagnetic frequency bands can be represented as a
matrixVin that case, an object is a region and the features
are the elements of the frequency bands. Similarly, in
genetics, DNA single nucleotide polymorphism (SNP) or
DNA microarray expression data can be represented in
such a framework, with Aij representing the expression
level of the ith gene or SNP in the jth experimental
condition or individual. In another example, term-
document matrices can be constructed in many Internet
applications, with Aij indicating the frequency of the jth
term in the ith document.

Traditional algorithms for matrix problems are usually
designed to run on a single machine, often focusing on
minimizing the number of floating-point operations per
second (FLOPS). On the other hand, motivated by the
ability to generate very large quantities of data in
relatively automated ways, analyzing data sets of billions
or more of records has now become a regular task in many
companies and institutions. In a distributed computation-
al environment, which is typical in these applications,
communication costs, e.g., between different machines,
are often much more important than computational costs.
What is more, if the data cannot fit into memory on a
single machine, then one must scan the records from
secondary storage, e.g., hard disk, which makes each pass
through the data associated with enormous input/output
(I/O) costs. Given that, in many of these large-scale
applications, regression, low-rank approximation, and
related matrix problems are ubiquitous, the fast compu-
tation of their solutions on large-scale data platforms is
of interest.

In this paper, we will provide an overview of recent
work in randomized numerical linear algebra (RandNLA)
on implementing randomized matrix algorithms in
large-scale parallel and distributed computational envir-
onments. RandNLA is a large area that applies random-
ization as an algorithmic resource to develop improved
algorithms for regression, low-rank matrix approximation,
and related problems [1]. To limit the presentation, here
we will be most interested in very large, very rectangular
linear regression problems on up to terabyte-sized data:
in particular, in the ‘2-regression [also known as least
squares (LSs)] problem and its robust alternative, the
‘1-regression [also known as least absolute deviations
(LADs) or least absolute errors (LAEs)] problem, with
strongly rectangular ‘‘tall’’ data. Although our main focus
is on ‘2- and ‘1-regression, much of the underlying theory
holds for ‘p-regression, either for p 2 ½1; 2# or for all
p 2 ½1;1Þ, and thus for simplicity we formulate many of
our results in ‘p.

Several important conclusions will emerge from our
presentation.

• First, many of the basic ideas from RandNLA in
RAM extend to RandNLA in parallel/distributed
environments in a relatively straightforward
manner, assuming that one is more concerned
about communication than computation. This is
important from an algorithm design perspective,
as it highlights which aspects of these RandNLA
algorithms are peculiar to the use of randomiza-
tion and which aspects are peculiar to parallel/
distributed environments.

• Second, with appropriate engineering of random
sampling and random projection algorithms, it is
possible to compute good approximate solutionsVto
low precision (e.g., one or two digits of precision),
medium precision (e.g., three or four digits of
precision), or high precision (e.g., up to machine
precision)Vto several common matrix problems in
only a few passes over the original matrix on up to
terabyte-sized data. While low precision is certainly
appropriate for many data analysis and machine
learning applications involving noisy input data, the
appropriate level of precision is a choice for user of
an algorithm to make; and there are obvious
advantages to having the developer of an algorithm
provide control to the user on the quality of the
answer returned by the algorithm.

• Third, the design principles for developing high-
quality RandNLA matrix algorithms depend
strongly on whether one is interested in low,
medium, or high precision. (An example of this is
whether to solve the randomized subproblem with
a traditional method or to use the randomized
subproblem to create a preconditioned version of
the original problem.) Understanding these prin-
ciples, the connections between them, and how
they relate to traditional principles of NLA
algorithm design is important for providing high-
quality implementations of recent theoretical
developments in the RandNLA literature.

Although many of the ideas we will discuss can be
extended to related matrix problems such as low-rank
matrix approximation, there are two main reasons for
restricting attention to strongly rectangular data. The first,
most obvious, reason is that strongly rectangular data arise
in many fields to which machine learning and data analysis
methods are routinely applied. Consider, e.g., Table 1,
which lists a few examples.

• In genetics, SNPs are important in the study of
human health. There are roughly ten million SNPs
in the human genome. However, there are
typically at most a few thousand subjects for a
study of a certain type of disease, due to the high
cost of determination of genotypes and limited
number of target subjects.
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• In Internet applications, strongly rectangular data
sets are common, for example, the image data set
called TinyImages [2] which contains 80 million
images of size 32 ! 32 collected from the Internet.

• In spatial discretization of high-dimensional partial
differential equations (PDEs), the number of
degrees of freedom grows exponentially as dimen-
sion increases. For 3-D problems, it is common
that the number of degrees of freedom reaches 109,
for example, by having a 1000! 1000! 1000
discretization of a cubic domain. However, for a
time-dependent problem, time stays 1-D. Though
depending on spatial discretization (e.g., the
Courant–Friedrichs–Lewy condition for hyperbol-
ic PDEs), the number of time steps is usually much
lower than the number of degrees of freedoms in
spatial discretization.

• In geophysical applications, especially in seismol-
ogy, the number of sensors is much lower than the
number of data points each sensor collects. For
example, Werner-Allen et al. [3] deployed three
wireless sensors to monitor volcanic eruptions.
In 54 h, each sensor sent back approximately
20 million packets.

• In natural language processing (NLP), the number
of documents is much lower than the number of
n-grams, which grows geometrically as n increases.
For example, the webspam1 data set contains
350 000 documents and 254 unigrams, but 680 715
trigrams.

• In high-frequency trading, the number of relevant
stocks is much lower than the number of ticks,
changes to the best bid and ask. For example, in
2012 ISE Historical Options Tick Data2 has daily
files with average size greater than 100 GB
uncompressed.

A second, less obvious, reason for restricting attention to
strongly rectangular data is that many of the algorithmic
methods that are developed for them (both the RandNLA
methods we will review as well as deterministic NLA
methods that have been used traditionally) have extensions
to low-rank matrix approximation and to related problems
on more general ‘‘fat’’ matrices. For example, many of the

methods for SVD-based low-rank approximation and
related rank-revealing QR decompositions of general
matrices have strong connections to QR decomposition
methods for rectangular matrices; and, similarly, many of
the methods for more general linear and convex program-
ming arise in special (e.g., ‘1-regression) linear program-
ming problems. Thus, they are a good problem class to
consider the development of matrix algorithms (either in
general or for RandNLA algorithms) in parallel and
distributed environments.

It is worth emphasizing that the phrase ‘‘parallel and
distributed’’ can mean quite different things to different
research communities, in particular to what might be
termed high-performance computing (HPC) or scientific
computing researchers versus data analytics or database or
distributed data systems researchers. There are important
technical and cultural differences here, but there are also
some important similarities. For example, to achieve
parallelism, one can use multithreading on a shared-
memory machine, or one can use message passing on a
multinode cluster. Alternatively, to process massive data on
large commodity clusters, Google’s MapReduce [4] de-
scribes a computational framework for distributed compu-
tation with fault tolerance. For computation not requiring
any internode communication, one can achieve even better
parallelism. We do not want to dwell on many of these
important details here: this is a complicated and evolving
space; and no doubt the details of the implementation of
many widely used algorithms will evolve as the space
evolves. To give the interested reader a quick sense of some
of these issues, though, here we provide a very high-level
representative description of parallel environments and
how they scale. See Table 2. As one goes down this list, one
tends to get larger and larger.

In addition, it is also worth emphasizing that there is a
great deal of related work in parallel and distributed
computing, both in numerical linear algebra as well as more
generally in scientific computing. For example, Valiant has
provided a widely used model for parallel computation [5];
Aggarwal et al. have analyzed the communication com-
plexity of parallel random-access machines (PRAMs) [6];
Lint and Agerwala have highlighted communication issues
that arise in the design of parallel algorithms [7]; Heller has
surveyed parallel algorithms in numerical linear algebra
[8]; Toledo has provided a survey of out-of-core algorithms
in numerical linear algebra [9]; Ballard et al. have focused

1http://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/binary.html
2http://www.ise.com/hotdata

Table 1 Examples of Strongly Rectangular Data Sets
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on developing algorithms for minimizing communication
in numerical linear algebra [10]; and Bertsekas and
Tsitsiklis have surveyed parallel and distributed iterative
algorithms [11]. We expect that some of the most
interesting developments in upcoming years will involve
coupling the ideas for implementing RandNLA algorithms
in parallel and distributed environments that we describe
in this review with these more traditional ideas for
performing parallel and distributed computation.

In Section II, we will review the basic ideas underlying
RandNLA methods, as they have been developed in the
special case of ‘2-regression in the RAM model. Then, in
Section III, we will provide notation, some background,
and preliminaries on ‘2, and more general ‘p-regression
problems, as well as traditional methods for their solution.
Then, in Section IV, we will describe rounding and
embedding methods that are used in a critical manner by
RandNLA algorithms; and in Section V, we will review
recent empirical results on implementing these ideas to
solve up to terabyte-sized ‘2- and ‘1-regression problems.
Finally, in Section VI, we will provide a brief discussion
and conclusion. An overview of the general RandNLA area
has been provided [1], and we refer the interested reader to
this overview. In addition, two other reviews are available
to the interested reader: an overview of how RandNLA
methods can be coupled with traditional NLA algorithms
for low-rank matrix approximation [12]; and an overview
of how data-oblivious subspace embedding methods are
used in RandNLA [13].

II . RandNLA IN RAM

In this section, we will highlight several core ideas that
have been central to prior work in RandNLA in (theory
and/or practice in) RAM that we will see are also
important as design principles for extending RandNLA
methods to larger scale parallel and distributed environ-
ments. We start in Section II-A by describing a prototypical
example of a RandNLA algorithm for the very overdeter-
mined LS problem; then, we describe in Section II-B two
problem-specific complexity measures that are important

for low-precision and high-precision solutions to matrix
problems, respectively, as well as two complementary ways
in which randomization can be used by RandNLA
algorithms; and we conclude in Section II-C with a brief
discussion of running time considerations.

A. A Meta-Algorithm for RandNLA
A prototypical example of the RandNLA approach is

given by the following meta-algorithm for very overdeter-
mined LS problems [1], [14]–[16]. In particular, the
problem of interest is to solve

min
x
kAx% bk2: (1)

The following meta-algorithm takes as input an m! n
matrix A, where m& n, a vector b, and a probability
distribution f!igm

i¼1, and it returns as output an approx-
imate solution x̂, which is an estimate of the exact answer
x( of (1).

• Randomly sampling. Randomly sample r > n
constraints, i.e., rows of A and the corresponding
elements of b, using f!igm

i¼1 as an importance
sampling distribution.

• Subproblem construction. Rescale each sampled
row/element by 1=ðr!iÞ to form a weighted LS
subproblem.

• Solving the subproblem. Solve the weighted LS
subproblem, formally given in (2), and then return
the solution x̂.

It is convenient to describe this meta-algorithm in terms of
a random ‘‘sampling matrix’’ S, in the following manner. If
we draw r samples (rows or constraints or data points) with
replacement, then define an r! m sampling matrix S,
where each of the r rows of S has one nonzero element
indicating which row of A (and element of b) is chosen in a
given random trial. In this case, the ði; kÞth element of S
equals 1=

ffiffiffiffiffiffiffi
r!k
p

if the kth data point is chosen in the ith
random trial (meaning, in particular, that every nonzero
element of S equals

ffiffiffiffiffiffiffi
n=r

p
for sampling uniformly at

Table 2 High-Level Representative Description of Parallel Environments
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random). With this notation, this meta-algorithm con-
structs and solves the weighted LS estimator

x̂ ¼ arg min
x
kSAx% Sbk2: (2)

Since this meta-algorithm samples constraints and not
variables, the dimensionality of the vector x̂ that solves the
(still overconstrained, but smaller) weighted LS subprob-
lem is the same as that of the vector x( that solves the
original LS problem. The former may thus be taken as an
approximation of the latter, where, of course, the quality of
the approximation depends critically on the choice of
f!ign

i¼1. Although uniform subsampling (with or without
replacement) is very simple to implement, it is easy to
construct examples where it will perform very poorly [1],
[14], [16]. On the other hand, it has been shown that, for a
parameter " 2 ð0; 1# that can be tuned, if

!i * "
hii

n
and r ¼ O n logðnÞ

ð"#2Þ

" #
(3)

where the so-called statistical leverage scores hii are
defined in (6), i.e., if one draws the sample according to an
importance sampling distribution that is proportional to
the leverage scores of A, then with constant probability
(that can be easily boosted to probability 1% $, for any
$ > 0) the following relative-error bounds hold:

kb% Ax̂k2 +ð1þ #Þkb% Ax(k2 (4)

kx( % x̂k2 +
ffiffi
#
p

%ðAÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
&%2 % 1

p$ %
kx(k2 (5)

where %ðAÞ is the condition number of A and where
& ¼ kUUTbk2=kbk2 is a parameter defining the amount of
the mass of b inside the column space of A [1], [14], [15].

Due to the crucial role of the statistical leverage scores
in (3), this canonical RandNLA procedure has been
referred to as the algorithmic leveraging approach to
approximating LS approximation [16]. In addition, al-
though this meta-algorithm has been described here only
for very overdetermined LS problems, it generalizes to
other linear regression problems and low-rank matrix
approximation problems on less rectangular matrices9

[17]–[21].

B. Leveraging, Conditioning, and Using
Randomization

Leveraging and conditioning refer to two types of
problem-specific complexity measures, i.e., quantities that

can be computed for any problem instance that character-
ize how difficult that problem instance is for a particular
class of algorithms. Understanding these, as well as
different uses of randomization in algorithm design, is
important for designing RandNLA algorithms, both in
theory and/or practice in RAM as well as in larger parallel
and distributed environments. For now, we describe these
in the context of very overdetermined LS problems.

• Statistical leverage. (Related to eigenvectors;
important for obtaining low-precision solutions.)

If we let H ¼ AðATAÞ%1AT , where the inverse can
be replaced with the Moore–Penrose pseudoin-
verse if A is rank deficient, be the projection matrix
onto the column span of A, then the ith diagonal
element of H

hii ¼ AðiÞðATAÞ%1
AT
ðiÞ (6)

where AðiÞ is the ith row of A, is the statistical
leverage of ith observation or sample. Since H can
alternatively be expressed as H ¼ UUT , where U is
any orthogonal basis for the column space of X,
e.g., the Q matrix from a QR decomposition or the
matrix of left singular vectors from the thin SVD,
the leverage of the ith observation can also be
expressed as

hii ¼
Xn

j¼1

U2
ij ¼ UðiÞ

&& &&2
(7)

where UðiÞ is the ith row of U. Leverage scores
provide a notion of ‘‘coherence’’ or ‘‘outlierness,’’
in that they measure how well correlated the
singular vectors are with the canonical basis [15],
[18], [22] as well as which rows/constraints have
largest ‘‘influence’’ on the LS fit [23]–[26].
Computing the leverage scores fhiigm

i¼1 exactly is
generally as hard as solving the original LS
problem (but 1- # approximations to them can
be computed more quickly, for arbitrary input
matrices [15]). Leverage scores are important from
an algorithm design perspective since they define
the key nonuniformity structure needed to control
the complexity of high-quality random sampling
algorithms. In particular, naBve uniform random
sampling algorithms perform poorly when the
leverage scores are very nonuniform, while
randomly sampling in a manner that depends on
the leverage scores leads to high-quality solutions.
Thus, in designing RandNLA algorithms, whether
in RAM or in parallel-distributed environments,
one must either quickly compute approximations

9Let A be a matrix with dimension m by n where m > n. A less
rectangular matrix is a matrix that has smaller m=n.
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to the leverage scores or quickly preprocess the
input matrix so they are nearly uniformizedVin
which case uniform random sampling on the
preprocessed matrix performs well.10

Informally, the leverage scores characterize
where in the high-dimensional Euclidean space
the (singular value) information in A is being sent,
i.e., how the quadratic well (with aspect ratio %ðAÞ
that is implicitly defined by the matrix A) ‘‘sits’’
with respect to the canonical axes of the high-
dimensional Euclidean space. If one is interested in
obtaining low-precision solutions, e.g., # ¼ 10%1,
that can be obtained by an algorithm that provides
1- # relative-error approximations for a fixed value
of # but whose # dependence is polynomial in 1=#,
then the key quantities that must be dealt with are
statistical leverage scores of the input data.

• Condition number. (Related to eigenvalues; im-
portant for obtaining high-precision solutions.) If
we let 'maxðAÞ and 'minðAÞ denote the largest and
smallest nonzero singular values of A, respectively,
then %ðAÞ ¼ 'maxðAÞ='þminðAÞ is the ‘2-norm
condition number of A which is formally defined
in Definition 3. (Here, 'þminðAÞ is the smallest
nonzero singular value of A.) Computing %ðAÞ
exactly is generally as hard as solving the original
LS problem. The condition number %ðAÞ is
important from an algorithm design perspective
since %ðAÞ defines the key nonuniformity structure
needed to control the complexity of high-precision
iterative algorithms, i.e., it bounds the number of
iterations needed for iterative methods to con-
verge. In particular, for ill-conditioned problems,
e.g., if %ðAÞ . 106 & 1, then the convergence
speed of iterative methods is very slow, while if
%a1 then iterative algorithms converge very
quickly. Informally, %ðAÞ defines the aspect ratio
of the quadratic well implicitly defined by A in the
high-dimensional Euclidean space. If one is
interested in obtaining high-precision solutions,
e.g., # ¼ 10%10, that can be obtained by iterating a
low-precision solution to high precision with an
iterative algorithm that converges as logð1=#Þ, then
the key quantity that must be dealt with is the
condition number of the input data.

• Monte Carlo versus Las Vegas uses of randomiza-
tion. Note that the guarantee provided by the meta-
algorithm, as stated above, is of the following form:
the algorithm runs in no more than a specified time
T, and with probability at least 1% $ it returns a

solution that is an #-good approximation to the exact
solution. Randomized algorithms that provide
guarantees of this form, i.e., with running time
that is deterministic, but whose output may be
incorrect with a certain small probability, are known
as Monte Carlo algorithms [27]. A related class of
randomized algorithms, known as Las Vegas algo-
rithms, provide a different type of guarantee: they
always produce the correct answer, but the amount
of time they take varies randomly [27]. In many
applications of RandNLA algorithms, guarantees of
this latter form are preferable.

The notions of condition number and leverage scores
have been described here only for very overdetermined ‘2-
regression problems. However, as discussed in Section III
(as well as previously [17], [19]), these notions generalize to
very overdetermined ‘p, for p 6¼ 2, regression problems [19]
as well as to p ¼ 2 for less rectangular matrices, as long as
one specifies a rank parameter k [17]. Understanding these
generalizations, as well as the associated tradeoffs, will be
important for developing RandNLA algorithms in parallel
and distributed environments.

C. Running Time Considerations in RAM
As presented, the meta-algorithm of Section II-B has a

running time that depends on both the time to construct
the probability distribution, f!ign

i¼1, and the time to solve
the subsampled problem. For uniform sampling, the
former is trivial and the latter depends on the size of the
subproblem. For estimators that depend on the exact or
approximate [recall the flexibility in (3) provided by "]
leverage scores, the running time is dominated by the
exact or approximate computation of those scores. A naBve
algorithm involves using a QR decomposition or the thin
SVD of A to obtain the exact leverage scores. This naBve
implementation of the meta-algorithm takes roughly
Oðmn2=#Þ time and is thus no faster (in the RAM model)
than solving the original LS problem exactly [14], [17].
There are two other potential problems with practical
implementations of the meta-algorithm: the running time
dependence of roughlyOðmn2=#Þ time scales polynomially
with 1=#, which is prohibitive if one is interested in
moderately small (e.g., 10%4) to very small (e.g., 10%10)
values of #; and, since this is a randomized Monte Carlo
algorithm, with some probability $ the algorithm might
completely fail.

Importantly, all three of these potential problems can
be solved to yield improved variants of the meta-algorithm.

• Making the algorithm fast: improving the depen-
dence on m and n. We can make this meta-
algorithm ‘‘fast’’ in worst case theory in RAM [14],
[15], [20], [28], [29]. In particular, this meta-
algorithm runs in Oðmn log n=#Þ time in RAM if
one does either of the following: if one performs a
Hadamard-based random projection and then
performs uniform sampling in the randomly

10As stated, this is just an observation about how to approach
RandNLA algorithm design. As a forward reference, however, we note
that any random projection algorithm (whether Gaussian based or
Hadamard based or input sparsity based or via some other construction)
works (essentially) since it does the latter option, and any random
sampling algorithm (that leads to high-quality, e.g., relative-error and not
additive-error, bounds) works (essentially) since it does the former option.
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rotated basis [28], [29] (which, recall, is basically
what random projection algorithms do when
applied to vectors in a Euclidean space [1]); or if
one quickly computes approximations to the
statistical leverage scores (using the algorithm of
[15], the running time bottleneck of which is
applying a random projection to the input data)
and then uses those approximate scores as an
importance sampling distribution [14], [15]. In
addition, by using carefully constructed extremely
sparse random projections, both of these two
approaches can be made to run in so-called ‘‘input
sparsity time,’’ i.e., in time proportional to the
number of nonzeros in the input data, plus lower
order terms that depend on the lower dimension of
the input matrix [20].

• Making the algorithm high precision: improving the
dependence on #. We can make this meta-algorithm
‘‘fast’’ in practice, e.g., in ‘‘high-precision’’ numerical
implementation in RAM [30]–[33]. In particular,
this meta-algorithm runs in Oðmn log n logð1=#ÞÞ
time in RAM if one uses the subsampled problem
constructed by the random projection/sampling
process to construct a preconditioner, using it as a
preconditioner for a traditional iterative algorithm
on the original full problem [30]–[32]. This is
important since, although the worst case theory
holds for any fixed #, it is quite coarse in the sense
that the sampling complexity depends on # as 1=#
and not logð1=#Þ. In particular, this means that
obtaining high-precision with (say) # ¼ 10%10 is not
practically possible. In this iterative use case, there
are several tradeoffs: e.g., one could construct a very
high-quality preconditioner (e.g., using a number of
samples that would yield a 1þ # error approximation
if one solved the LS problem on the subproblem) and
perform fewer iterations, or one could construct a
lower quality preconditioner by drawing many fewer
samples and perform a few extra iterations. Here
too, the input sparsity time algorithm of [20] could
be used to improve the running time still further.

• Dealing with the $ failure probability. Although fixing
a failure probability $ is convenient for theoretical
analysis, in certain applications having even a very
small probability that the algorithm might return a
completely meaningless answer is undesirable. In this
case, one is interested in converting a Monte Carlo
algorithm into a Las Vegas algorithm. Fortuitously,
those application areas, e.g., scientific computing, are
often more interested in moderate- to high-precision
solutions than in low-precision solutions. In these
case, using the subsampled problem to create a
preconditioner for iterative algorithms on the original
problem has the side effect that one changes a ‘‘fixed
running time but might fail’’ algorithm to an ‘‘expected
running time but will never fail’’ algorithm.

From above, we can make the following conclusions. The
‘‘fast in worst case theory’’ variants of the meta-algorithm
[14], [15], [20], [28], [29] represent qualitative improve-
ments to the Oðmn2Þ worst case asymptotic running time
of traditional algorithms for the LS problem going back to
Gaussian elimination. The ‘‘fast in numerical implemen-
tation’’ variants of the meta-algorithm [30]–[32] have been
shown to beat Lapack’s direct dense LS solver by a large
margin on essentially any dense tall matrix, illustrating
that the worst case asymptotic theory holds for matrices as
small as several thousand by several hundred [31].

While these results are a remarkable success for RandNLA
in RAM, they leave open the question of how these RandNLA
methods perform in larger scale parallel/distributed environ-
ments, and they raise the question of whether the same
RandNLA principles can be extended to other common
regression problems. In the remainder of this paper, we will
review recent work showing that if one wants to solve
‘2-regression problems in parallel/distributed environments,
and if one wants to solve ‘1-regressionproblemsintheoryor in
RAM or in parallel/distributed environments, then one can
use the same RandNLA meta-algorithm and design princi-
ples. Importantly, though, depending on the exact situation,
one must instantiate the same algorithmic principles in
different ways, e.g., one must worry much more about
communication rather than FLOPS.

III . PRELIMINARIES ON ‘p-REGRESSION
PROBLEMS

In this section, we will start in Section III-A with a brief
review of notation that we will use in the remainder of
the paper. Then, in Section III-B–D, we will review
‘p-regression problems and the notions of condition
number and preconditioning for these problems.

A. Notation Conventions
We briefly list the notation conventions we follow in

this work.
• We use uppercase letters to denote matrices and

constants, e.g., A, R, C, etc.
• We use lowercase letters to denote vectors and

scalars, e.g., x, b, p, m, n, etc.
• We use k / kp to denote the ‘p-norm of a vector,
k / k2 the spectral-norm of a matrix, k / kF the
Frobenius-norm of a matrix, and j / jp the element-
wise ‘p-norm of a matrix.

• We use uppercase calligraphic letters to denote
point sets, e.g., A for the linear subspace spanned
by A’s columns, C for a convex set, and E for an
ellipsoid, except that O is used for big O-notation.

• The ‘‘0’’ accent is used for sketches of matrices,
e.g., ~A, the ‘‘(’’ superscript is used for indicating
optimal solutions, e.g., x(, and the ‘‘^’’ accent is
used for estimates of solutions, e.g., x̂.
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B. ‘p-Regression Problems
In this work, a parameterized family of linear

regression problems that is of particular interest is the
‘p-regression problem.

Definition 1 (‘p-Regression): Given a matrix A 2 Rm!n, a
vector b 2 Rm, and p 2 ½1;1#, the ‘p-regression problem
specified by A, b, and p is the following optimization problem:

minimizex2Rn kAx% bkp (8)

where the ‘p-norm of a vector x is kxkp ¼ ð
P

i jxijpÞ1=p,
defined to be maxi jxij for p ¼1. We call the problem
strongly overdetermined if m& n, and strongly under-
determined if m1 n.

Important special cases include the ‘2-regression
problem, also known as linear LS, and the ‘1-regression
problem, also known as LADs or LAEs. The former is
ubiquitous; and the latter is of particular interest as a
robust regression technique, in that it is less sensitive to
the presence of outliers than the former.

For general p 2 ½1;1#, denote X ( the set of optimal
solutions to (8). Let x( 2 X( be an arbitrary optimal
solution, and let f ( ¼ kAx( % bkp be the optimal objective
value. We will be particularly interested in finding a
relative-error approximation, in terms of the objective
value, to the general ‘p-regression problem (8).

Definition 2 (Relative-Error Approximation): Given an
error parameter # > 0, x̂ 2 Rn is a ð1þ #Þ-approximate
solution to the ‘p-regression problem (8) if and only if

f̂ ¼ kAx̂% bkp + ð1þ #Þf
(:

In order to make our theory and our algorithms for
general ‘p-regression simpler and more concise, we can
use an equivalent formulation of (8) in our discussion

minimizex2Rn kAxkp

subject to cTx ¼ 1: (9)

Above, the ‘‘new’’ A is A concatenated with%b, i.e., ðA %bÞ
and c is a vector with a 1 at the last coordinate and zeros
elsewhere, i.e., c 2 Rnþ1 and c ¼ ð0 . . . 01Þ, to force the
last element of any feasible solution to be 1. We note that
the same formulation is also used by [34] for solving
unconstrained convex problems in relative scale. This
formulation of ‘p-regression, which consists of a homoge-
neous objective and an affine constraint, can be shown to
be equivalent to the formulation of (8).

Consider, next, the special case p ¼ 2. If, in the LS
problem

minimizex2Rn kAx% bk2 (10)

we let r ¼ rankðAÞ + minðm; nÞ, then recall that if rG n
(the LS problem is underdetermined or rank deficient),
then (10) has an infinite number of minimizers. In that
case, the set of all minimizers is convex and hence has a
unique element having minimum length. On the other
hand, if r ¼ n so the problem has full rank, there exists
only one minimizer to (10) and hence it must have the
minimum length. In either case, we denote this unique
min-length solution to (10) by x(, and we are interested in
computing x( in this work. This was defined in (1). In this
case, we will also be interested in bounding kx( % x̂k2, for
arbitrary or worst case input, where x̂ was defined in (2)
and is an approximation to x(.

C. ‘p-Norm Condition Number
An important concept in ‘2 and more general

‘p-regression problems, and in developing efficient algo-
rithms for their solution, is the concept of condition
number. For linear systems and LS problems, the ‘2-norm
condition number is already a well-established term.

Definition 3 (‘2-Norm Condition Number): Given a
matrix A 2 Rm!n with full column rank, let 'max

2 ðAÞ
be the largest singular value and 'min

2 ðAÞ be the smallest
singular value of A. The ‘2-norm condition number of A
is defined as %2ðAÞ ¼ 'max

2 ðAÞ='min
2 ðAÞ. For simplicity, we

use %2, 'min
2 , and 'max

2 when the underlying matrix is clear
from context.

For general ‘p-norm and general ‘p-regression pro-
blems, here we state two related notions of condition
number and then a lemma that characterizes the
relationship between them.

Definition 4 (‘p-Norm Condition Number [19]): Given a
matrix A 2 Rm!n and p 2 ½1;1#, let

'max
p ðAÞ ¼ max

kxk2¼1
kAxkp and 'min

p ðAÞ ¼ min
kxk2¼1

kAxkp:

Then, we denote by %pðAÞ the ‘p-norm condition number
of A, defined to be

%pðAÞ ¼
'max

p ðAÞ
'min

p ðAÞ
:
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For simplicity, we use %p, 'min
p , and 'max

p when the
underlying matrix is clear.

Definition 5 (ð(; ); pÞ-Conditioning [35]): Given a matrix
A 2 Rm!n and p 2 ½1;1#, let k / kq be the dual-norm of
k / kp. Then, A is ð(; ); pÞ-conditioned if: 1) jAjp + (; and
2) for all z 2 Rn, kzkq + )kAzkp. Define !%pðAÞ, the
ð(; ); pÞ-condition number of A, as the minimum value
of () such that A is ð(; ); pÞ-conditioned. We use !%p for
simplicity if the underlying matrix is clear.

Lemma 1 (Equivalence of %p and !%p [19]): Given a matrix
A 2 Rm!n and p 2 ½1;1#, we always have

n%j1=2%1=pj%pðAÞ + !%pðAÞ + nmax 1
2;

1
p

' (
%pðAÞ:

That is, by Lemma 1, if m& n, then the notions of condition
number provided by Definitions 4 and 5 are equivalent, up to
low-dimensional factors. These low-dimensional factors
typically do not matter in theoretical formulations of the
problem, but they can matter in practical implementations.

The ‘p-norm condition number of a matrix can be
arbitrarily large. Given the equivalence established by
Lemma 1, we say that a matrix A is well conditioned in the
‘p-norm if %p or !%p ¼ OðpolyðnÞÞ, independent of the high
dimension m. We see in the following sections that the
condition number plays a very important part in the
analysis of traditional algorithms.

D. Preconditioning ‘p-Regression Problems
Preconditioning refers to the application of a transfor-

mation, called the preconditioner, to a given problem
instance such that the transformed instance is more easily
solved by a given class of algorithms. Most commonly, the
preconditioned problem is solved with an iterative
algorithm, the complexity of which depends on the
condition number of the preconditioned problem.

To start, consider p ¼ 2, and recall that for a square
linear system Ax ¼ b of full rank, this preconditioning
usually takes one of the following forms:

left preconditioning MTAx ¼ MTb

right preconditioning ANy ¼ b; x ¼ Ny

left and right preconditioning MTANy¼MTb; x¼Ny:

Clearly, the preconditioned system is consistent with the
original one, i.e., has the same x( as the unique solution, if
the preconditioners M and N are nonsingular.

For the general LS problem (1), more care should be
taken so that the preconditioned system has the same
min-length solution as the original one. In particular, if
we apply left preconditioning to the LS problem minx

kAx% bk2, then the preconditioned system becomes minx

kMTAx%MTbk2, and its min-length solution is given by

x(left ¼ ðM
TAÞyMTb:

Similarly, the min-length solution to the right precondi-
tioned system is given by

x(right ¼ NðANÞyb:

The following lemma states the necessary and sufficient
conditions for Ay ¼ NðANÞy or Ay ¼ ðMTAÞyMT to hold.
Note that these conditions holding certainly imply that
x(right ¼ x( and x(left ¼ x(, respectively.

Lemma 2 (Left and Right Preconditioning [32]): Given
A 2 Rm!n, N 2 Rn!p, and M 2 Rm!q, we have:

1) Ay ¼ NðANÞy if and only if rangeðNNTATÞ ¼
rangeðATÞ;

2) Ay ¼ ðMTAÞyMT if and only if rangeðMMTAÞ ¼
rangeðAÞ.

Just as with p ¼ 2, for more general ‘p-regression
problems with matrix A 2 Rm!n with full column rank,
although its condition numbers %pðAÞ and !%pðAÞ can be
arbitrarily large, we can often find a matrix R 2 Rn!n such
that AR%1 is well conditioned. (This is not the R from a QR
decomposition of A, unless p ¼ 2, but some other matrix R.)
In this case, the ‘p-regression problem (9) is equivalent to
the following well-conditioned problem:

minimizey2Rn kAR%1ykp

subject to cTR%1y ¼ 1: (11)

Clearly, if y( is an optimal solution to (11), then x( ¼ R%1y is
an optimal solution to (9), and vice versa; however, (11) may
be easier to solve than (9) because of better conditioning.

Since we want to reduce the condition number of a
problem instance via preconditioning, it is natural to ask
what the best possible outcome would be in theory. For
p ¼ 2, an orthogonal matrix, e.g., the matrix Q computed
from a QR decomposition, has %2ðQÞ ¼ 1. More generally,
for the ‘p-norm condition number %p, we have the
following existence result.

Lemma 3: Given a matrix A 2 Rm!n with full column
rank and p 2 ½1;1#, there exists a matrix R 2 Rn!n such
that %pðAR%1Þ + n1=2.

This is a direct consequence of John’s theorem [36] on
ellipsoidal rounding of centrally symmetric convex sets.
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For the ð(; ); pÞ-condition number !%p, we have the
following lemma.

Lemma 4: Given a matrix A 2 Rm!n with full column
rank and p 2 ½1;1#, there exists a matrix R 2 Rn!n such
that !%pðAR%1Þ + n.

Note that Lemmas 3 and 4 are both existential results.
Unfortunately, except the case when p ¼ 2, no polynomi-
al-time algorithm is known that can provide such
preconditioning for general matrices. In Section IV, we
will discuss two practical approaches for ‘p-norm pre-
conditioning: via ellipsoidal rounding and via subspace
embedding, as well as subspace-preserving sampling
algorithms built on top of them.

IV. ROUNDING, EMBEDDING, AND
SAMPLING ‘p-REGRESSION PROBLEMS

Preconditioning, ellipsoidal rounding, and low-distortion
subspace embedding are three core technical tools under-
lying RandNLA regression algorithms. In this section, we
will describe in detail how these methods are used for
‘p-regression problems, with an emphasis on tradeoffs that
arise when applying these methods in parallel and distrib-
uted environments. Recall that, for any matrix A 2 Rm!n

with full column rank, Lemmas 3 and 4 show that there
always exists a preconditioner matrix R 2 Rn!n such that
AR%1 is well conditioned, for ‘p-regression, for general
p 2 ½1;1#. For p ¼ 2, such a matrix R can be computed in
Oðmn2Þ time as the ‘‘R’’ matrix from a QR decomposition,
although it is of interest to compute other such precondi-
tioner matrices R that are nearly as good more quickly; and
for p ¼ 1 and other values of p, it is of interest to compute a
preconditioner matrix R in time that is linear in m and low-
degree polynomial in n. In this section, we will discuss these
and related issues.

In particular, in Section IV-A and B, we discuss
practical algorithms to find such R matrices, and we
describe the tradeoffs between speed (e.g., FLOPS,
number of passes, additional space/time, other communi-
cation costs, etc.) and conditioning quality. The algorithms
fall into two general families: ellipsoidal rounding
(Section IV-A) and subspace embedding (Section IV-B).
We present them roughly in the order of speed (in the
RAM model), from slower ones to faster ones. We will
discuss practical tradeoffs in Section V. For simplicity,
here we assume m& polyðnÞ, and hence mn2 & mnþ
polyðnÞ; and if A is sparse, we assume that mn& nnzðAÞ.
Hereby, the degree of polyðnÞ depends on the underlying
algorithm, which may range from OðnÞ to Oðn7Þ.

Before diving into the details, it is worth mentioning a
few high-level considerations about subspace embedding
methods. (Similar considerations apply to ellipsoidal
rounding methods.) Subspace embedding algorithms
involve mapping data points, e.g., the columns of an
m! n matrix, where m& n to a lower dimensional space

such that some property of the data, e.g., geometric
properties of the point set, is approximately preserved; see
Definition 7 for definition for low-distortion subspace
embedding matrix. As such, they are critical building
blocks for developing improved random sampling and
random projection algorithms for common linear algebra
problems more generally, and they are one of the main
technical tools for RandNLA algorithms. There are several
properties of subspace embedding algorithms that are
important in order to optimize their performance in theory
and/or in practice. For example, given a subspace
embedding algorithm, we may want to know:

• whether it is data oblivious (i.e., independent of the
input subspace) or data aware (i.e., dependent on
some property of the input matrix or input space);

• the time and storage it needs to construct an
embedding;

• the time and storage to apply the embedding to an
input matrix;

• the failure rate, if the construction of the embedding
is randomized;

• the dimension of the embedding, i.e., the number of
dimensions being sampled by sampling algorithms or
being projected onto by projection algorithms,

• the distortion of the embedding;
• how to balance the tradeoffs among those properties.

Some of these considerations may not be important for
typical theoretical analysis but still affect the practical
performance of implementations of these algorithms.

After the discussion of rounding and embedding
methods, we will then show in Section IV-C that ellipsoidal
rounding and subspace embedding methods (that show that
the ‘p-norms of the entire subspace of vectors can be well
preserved) can be used in one of two complementary ways:
one can solve an ‘p-regression problem on the rounded/
embedded subproblem; or one can use the rounding/
embedding to construct a preconditioner for the original
problem. [We loosely refer to these two complementary
types of approaches as low-precision methods and high-
precision methods, respectively. The reason is that the
running time complexity with respect to the error parameter
# for the former is polyð1=#Þ, while the running time
complexity with respect to # for the latter is logð1=#Þ.] We
also discuss various ways to combine these two types of
approaches to improve their performance in practice.

Since we will introduce several important and distinct
but closely related concepts in this long section, in Fig. 1
we provide an overview of these relations as well as of the
structure of this section.

A. Ellipsoidal Rounding and Fast Ellipsoid Rounding
In this section, we will describe ellipsoidal rounding

methods. In particular, we are interested in the ellipsoidal
rounding of a centrally symmetric convex set and its
application to ‘p-norm preconditioning. We start with a
definition.
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Definition 6 (Ellipsoidal Rounding): Let C 2 Rn be a
convex set that is full dimensional, closed, bounded, and
centrally symmetric with respect to the origin. An ellipsoid
Eð0; EÞ ¼ fx 2 Rnj kExk2 + 1g is a %-rounding of C if it
satisfies E=% 2 C 2 E, for some % * 1, where E=% means
shrinking E by a factor of 1=%.

Finding an ellipsoidal rounding with a small % factor for a
given convex set has many applications such as in computa-
tional geometry [37], convex optimization [38], and computer
graphics [39]. In addition, the ‘p-norm condition number
%p naturally connects to ellipsoidal rounding. To see this,
let C ¼ fx 2 Rnj kAxkp + 1g and assume that we have a
%-rounding of C: E ¼ fxj kRxk2 + 1g. This implies

kRxk2 + kAxkp + %kRxk2 8x 2 Rn:

If we let y ¼ Rx, then we get

kyk2 + kAR%1ykp + %kyk2 8y 2 Rn:

Therefore, we have %pðAR%1Þ + %. So a %-rounding of C
leads to a %-preconditioning of A.

Recall the well-known result due to John [36] that
for a centrally symmetric convex set C there exists a

n1=2-rounding. It is known that this result is sharp and that
such rounding is given by the Löwner–John (LJ) ellipsoid
of C, i.e., the minimal-volume ellipsoid containing C. This
leads to Lemma 3. Unfortunately, finding an n1=2-rounding
is a hard problem. No constant-factor approximation in
polynomial time is known for general centrally symmetric
convex sets, and hardness results have been shown [38].

To state algorithmic results, suppose that C is described
by a separation oracle and that we are provided an ellipsoid
E0 that gives an L-rounding for some L * 1. In this case, we
can find an ðnðnþ 1ÞÞ1=2-rounding in polynomial time, in
particular, in Oðn4 log LÞ calls to the oracle; see [38,
Th. 2.4.1]. (Polynomial time algorithms with better % have
been proposed for special convex sets, e.g., the convex hull
of a finite point set [40] and the convex set specified by
the matrix ‘1-norm [41].) This algorithmic result was
used by Clarkson [42] and then by Dasgupta et al. [35] for
‘p-regression. Note that, in these works, onlyOðnÞ-rounding
is actually needed, instead of ðnðnþ 1ÞÞ1=2-rounding.

Recent work has focused on constructing ellipsoid
rounding (ER) methods that are much faster than these
more classical techniques but that lead to only slight
degradation in preconditioning quality. See Table 3 for a
summary of these results. In particular, Clarkson et al. [19]
follow the same construction as in the proof of Lovász [38] but
show that it is much faster (inOðn2 log LÞ calls to the oracle)
to find a (slightly worse) 2n-rounding of a centrally symmetric
convex set in Rn that is described by a separation oracle.

Fig. 1. Overview of relationships between several core technical components in RandNLA algorithms for solving ‘p-regression. Relevant

subsection and tables in this section are also shown. A directed edge implies the tail component contributes to the head component.

Table 3 Summary of Several Ellipsoidal Rounding for ‘p Conditioning. The ( Superscript Denotes That the Oracles Are Described and Called Through a

Smaller Matrix With Size m=n by n
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Lemma 5 (Fast Ellipsoidal Rounding [19]): Given a
centrally symmetric convex set C 2 Rn, which is centered
at the origin and described by a separation oracle, and an
ellipsoid E0 centered at the origin such that E0=L 2 C 2 E0

for some L * 1, it takes at most 3:15n2 log L calls to the oracle
and additional Oðn4 log LÞ time to find a 2n-rounding of C.

By applying Lemma 5 to the convex set C ¼
fxjkAxkp + 1g, with the separation oracle described via a
subgradient of kAxkp and the initial rounding provided by
the ‘‘R’’ matrix from the QR decomposition of A, one
immediately improves the running time of the algorithm
used by Clarkson [42] and by Dasgupta et al. [35] from
Oðmn5 log mÞ to Oðmn3 log mÞ while maintaining an
OðnÞ-conditioning.

Corollary 1: Given a matrix A 2 Rm!n with full column
rank, it takes at most Oðmn3 log mÞ time to find a matrix
R 2 Rn!n such that %pðAR%1Þ + 2n.

Unfortunately, even this improvement for computing a
2n-conditioning is not immediately applicable to very large
matrices. The reason is that such matrices are usually
distributively stored on secondary storage and each call to
the oracle requires a pass through the data. We could
group n calls together within a single pass, but this would
still need Oðn log mÞ passes. Instead, Meng and Mahoney
[43] present a deterministic single-pass conditioning
algorithm that balances the cost-performance tradeoff to
provide a 2nj2=p%1jþ1-conditioning of A [43]. This algorithm
essentially invoke the fast ellipsoidal rounding (Lemma 5)
method on a smaller problem which is constructed via a
single pass on the original data set. Their main algorithm is
stated in Algorithm 1, and the main result for Algorithm 1 is
the following.

Algorithm 1: A single-pass conditioning algorithm.

Input: A 2 Rm!n with full column rank and p 2 ½1;1#.
Output: A nonsingular matrix E 2 Rn!n such that

kyk2 + kAEykp + 2nj2=p%1jþ1kyk2 8y 2 Rn:

1: Partition A along its rows into submatrices of size n2 ! n,
denoted by A1; . . . ; AM.

2: For each Ai, compute its economy-sized SVD:
Ai ¼ Ui SSiVT

i .
3: Let ~Ai ¼ SSiVT

i for i ¼ 1; . . . ;M

~C ¼ x 2 Rn PM

i¼1
k~Aixk

p
2

" #1
p

+ 1

)))))

( )

and ~A ¼
~A1

..

.

~AM

0

B@

1

CA:

4: Compute ~A’s SVD: ~A ¼ ~U~
SS~V

T
.

5: Let E0 ¼ Eð0; E0Þ where E0 ¼ nmaxf1=p%1=2;0g ~V~
SS
%1

.
6: Compute an ellipsoid E ¼ Eð0; EÞ that gives a

2n-rounding of ~C starting from E0 that gives an
ðMn2Þj1=p%1=2j-rounding of ~C.

7: Return nminf1=p%1=2;0gE.

Lemma 6 (One-Pass Conditioning [43]): Algorithm 1 is
a 2nj2=p%1jþ1-conditioning algorithm, and it runs in
Oððmn2 þ n4Þ log mÞ time. It needs to compute a 2n-
rounding on a problem with size m=n by n which needs
Oðn2 log mÞ calls to the separation oracle on the smaller
problem.

Remark 1: Solving the rounding problem of size m=n! n
in Algorithm 1 requires OðmÞ RAM, which might be too
much for very large-scale problems. In such cases, one can
increase the block size from n2 to, e.g., n3. A modification to
the proof of Lemma 6 shows that this gives us a 2nj3=p%3=2jþ1-
conditioning algorithm that only needs Oðm=nÞ RAM and
Oððmnþ n4Þ log mÞ FLOPS for the rounding problem.

Remark 2: One can replace SVD computation in
Algorithm 1 by a fast randomized ‘2 subspace embedding
(i.e., a fast low-rank approximation algorithm as described
in [1] and [12] and that we describe below). This reduces
the overall running time to Oððmnþ n4Þ logðmnÞÞ, and
this is an improvement in terms of FLOPS; but this would
lead to a nondeterministic result with additional variabil-
ity due to the randomization (that in our experience
substantially degrades the embedding/conditioning qual-
ity in practice). How to balance those tradeoffs in real
applications and implementations depends on the under-
lying application and problem details.

B. Low-Distortion Subspace Embedding and
Subspace-Preserving Embedding

In this section, we will describe in detail subspace
embedding methods. Subspace embedding methods
were first used in RandNLA by Drineas et al. in their
relative-error approximation algorithm for ‘2-regression
(basically, the meta-algorithm described in Section II-A)
[14]; they were first used in a data-oblivious manner in
RandNLA by Sarlós [28]; and an overview of data-
oblivious subspace embedding methods as used in
RandNLA has been provided by Woodruff [13]. Based
on the properties of the subspace embedding methods, we
will present them in the following four categories. In
Section IV-B1 and B2, we will discuss the data-oblivious
subspace embedding methods for ‘2- and ‘1-norms, respec-
tively; and then in Sections IV-B3 and B4, we will discuss the
data-aware subspace embedding methods for ‘2- and
‘1-norms, respectively. Before getting into the details of
these methods, we first provide some background and
definitions.

Let us denote by A 3 Rm the subspace spanned by the
columns of A. A subspace embedding ofA intoRs with s > 0
is a structure-preserving mapping * : A ,! Rs, where the
meaning of ‘‘structure-preserving’’ varies depending on the
application. Here, we are interested in low-distortion linear
embeddings of the normed vector space Ap ¼ ðA; k / kpÞ,
the subspace A paired with the ‘p-norm k / kp. (Again,
although we are most interested in ‘1 and ‘2, some of the
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results hold more generally than for just p ¼ 2 and p ¼ 1,
and so we formulate some of these results for general p.) We
start with the following definition.

Definition 7 (Low-Distortion ‘p Subspace Embedding):
Given a matrix A 2 Rm!n and p 2 ½1;1#, F 2 Rs!m is an
embedding ofAp if s ¼ OðpolyðnÞÞ, independent of m, and
there exist 'F > 0 and %F > 0 such that

'F / kykp + kFykp + %F'F / kykp 8y 2 Ap:

We call F a low-distortion subspace embedding of Ap if
the distortion of the embedding %F ¼ OðpolyðnÞÞ, inde-
pendent of m.

We remind the reader that low-distortion subspace
embeddings can be used in one of two related ways: for
‘p-norm preconditioning and/or for solving directly
‘p-regression subproblems. We will start by establishing
some terminology for their use for preconditioning.

Given a low-distortion embedding matrix F ofAp with
distortion %F, let R be the ‘‘R’’ matrix from the QR
decomposition of FA. Then, the matrix AR%1 is well
conditioned in the ‘p-norm. To see this, note that we have

kAR%1xkp + kFAR%1xkp='F

+ smaxf0;1=p%1=2g / kFAR%1k2 / kxk2='F

¼ smaxf0;1=p%1=2g / kxk2='F 8x 2n;

where the first inequality is due to low distortion and the
second inequality is due to the equivalence of vector
norms. By similar arguments, we can show that

kAR%1xkp * kFAR%1kp=ð'F%FÞ

* sminf0;1=p%1=2g / kFAR%1xk2=ð'F%FÞ
¼ 'Fsminf0;1=p%1=2g / kxk2=ð'F%FÞ 8x 2n :

Hence, by combining these results, we have

%pðAR%1Þ + %Fsj1=p%1=2j ¼ O polyðnÞð Þ

i.e., the matrix AR%1 is well conditioned in the ‘p-norm. We
call a conditioning method that is obtained via computing
the QR factorization of a low-distortion embedding a
QR-type method; and we call a conditioning method that
is obtained via an ER of a low-distortion embedding an
ER-type method.

Furthermore, one can construct a well-conditioned
basis by combining QR-like and ER-like methods. To see

this, let R be the matrix obtained by applying Corollary 1 to
FA. We have

kAR%1xkp + kFAR%1xkp='F + 2njxk2='F 8x 2n;

where the second inequality is due to the ellipsoidal
rounding result, and

kAR%1xkp*kFAR%1xkp=ð'F%FÞ*kxk2=ð'F%FÞ 8x 2n:

Hence

%pðAR%1Þ + 2n%F ¼ O polyðnÞð Þ

and AR%1 is well conditioned. Following our previous
conventions, we call this combined type of conditioning
method a QR+ER-type method.

In Table 4, we summarize several different types of
conditioning methods for ‘1- and ‘2-conditioning. Comparing
the QR-type approach and the ER-type approach to obtaining
the preconditioner matrix R, we see there are tradeoffs
between running times and conditioning quality. Performing
the QR decomposition takesOðsn2Þ time [60], which is faster
than fast ellipsoidal rounding that takes Oðsn3 log sÞ time.
However, the latter approach might provide a better
conditioning quality when 2n G sj1=p%1=2j. We note that
those tradeoffs are not important in most theoretical
formulations, as long as both take OðpolyðnÞÞ time and
provide OðpolyðnÞÞ conditioning, independent of m, but
they certainly do affect the performance in practice.

A special family of low-distortion subspace embedding
that has very low distortion factor is called subspace-
preserving embedding.

Definition 8 (Subspace-Preserving Embedding): Given a
matrix A 2 Rm!n, p 2 ½1;1# and # 2 ð0; 1Þ, F 2 Rs!m is a
subspace-preserving embedding of Ap if s ¼ OðpolyðnÞÞ,
independent of m, and

ð1% #Þ / kykp + kFykp + ð1þ #Þ / kykp 8y 2 Ap:

1) Data-Oblivious Low-Distortion ‘2 Subspace Embeddings:
An ‘2 subspace embedding is distinct from but closely
related to the embedding provided by the Johnson–
Lindenstrauss (J–L) lemma.

Lemma 7 (Johnson–Lindenstrauss Lemma [49]): Given
# 2 ð0; 1Þ, a point set X of N points in Rm, there is a linear
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map * : Rm ,! Rs with s ¼ C log N=#2, where C > 0 is a
global constant, such that

ð1%#Þkx%yk2+ *ðxÞ%*ðyÞk k2+ð1þ#Þkx%yk2 8x; y2X :

We say a mapping has J–L property if it satisfies the above
condition with a constant probability.

The original proof of the J–L lemma is done by
constructing a projection from Rm to a randomly chosen s-
dimensional subspace. The projection can be represented by
a random orthonormal matrix in Rs!m. Indyk and Motwani
[50] show that a matrix whose entries are independent
random variables drawn from the standard normal distribu-
tion scaled by s%1=2 also satisfies the J–L property. This
simplifies the construction of a J–L transform, and it has
improved algorithmic properties. Later, Achlioptas [51]
showed that the random normal variables can be replaced by
random signs, and moreover, we can zero out approximately
2/3 of the entries with proper scaling, while still maintaining
the J–L property. The latter approach allows faster
construction and projection with less storage, although still
at the same order as the random normal projection.

The original J–L lemma applies to an arbitrary set
of N vectors in Rm. By using an #-net argument and
triangle inequality, Sarlós [28] shows that a J–L transform
can also preserve the Euclidean geometry of an entire
n-dimensional subspace of vectors in Rm, with embedding
dimension Oðn logðn=#Þ=#2Þ.

Lemma 8 [28]: Let A2 be an arbitrary n-dimensional
subspace of Rm and 0 + #; $ G 1. If F is a J–L transform
from Rm to Oðn logðn=#Þ=#2 / fð$ÞÞ dimensions for some
function f , then

Pr 8x 2 A2 : kxk2 % kFxk2

)) )) + #kxk2

* +
* 1% $:

The result of Lemma 8 applies to any J–L transform, i.e., to
any transform (including those with better or worse
asymptotic FLOPS behavior) that satisfies the J–L distor-
tion property.

It is important to note, however, that for some J–L
transforms, we are able to obtain more refined results. In
particular, these can be obtained by bounding the spectral
norm of ðFUÞTðFUÞ % I, where U is an orthonormal
basis of A2. If kðFUÞTðFUÞ % Ik + #, for any x 2 A2,
we have

kFxk2
2 % kxk

2
2

)) )) ¼ ðUxÞT ðFUÞTðFUÞ % I
* +

ðUxÞ
)) ))

+ #kUxk2
2 ¼ #kxk

2
2

and hence

kFxk2 % kxk2

)) )) + #kxk2
2

kFxk2 þ kxk2

+ #kxk2:

We show some results following this approach. First
consider the a random normal matrix, which has the
following concentration result on its extreme singular
values.

Lemma 9 [52]: Consider an s! n random matrix G
with s > n, whose entries are independent random
variables following the standard normal distribution.
Let the singular values be '1 * / / / * 'n. Then, for any
t > 0

max Prð'1*
ffiffi
s
p
þ

ffiffiffi
n
p
þtÞ; Prð'n+

ffiffi
s
p
%

ffiffiffi
n
p
%tÞ

' (
Ge%t2=2:

(12)

Table 4 Summary of ‘1- and ‘2-Norm Conditioning Methods. QR and ER Refer, Respectively, to Methods Based on the QR Factorization and Methods

Based on ER, as Discussed in the Text
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Using this concentration result, we can easily present
a better analysis of random normal projection than in
Lemma 8.

Corollary 2: Given an n-dimensional subspace A2 3 Rm

and #; $ 2 ð0; 1Þ, let G 2 Rs!m be a random matrix whose
entries are independently drawn from the standard normal
distribution. There exists s ¼ Oðð

ffiffiffi
n
p
þ logð1=$ÞÞ2=#2Þ

such that, with probability at least 1% $, we have

ð1% #Þkxk2 + ks
%1=2Gxk2 + ð1þ #Þkxk2 8x 2 A2:

Dense J–L transforms, e.g., a random normal projec-
tion and its variants, use matrix–vector multiplication for
the embedding. Given a matrix A 2 Rm!n, computing
~A ¼ FA takes OðnnzðAÞ / sÞ time when F is a dense
matrix of size s! m and nnzðAÞ is the number of nonzero
elements in A. There is also a line of research work on
‘‘fast’’ J–L transforms that started with [53] and [54]. These
use fast Fourier transform (FFT)-like algorithms for the
embedding, and thus they lead toOðm log mÞ time for each
projection. Hence, computing ~A ¼ FA takes Oðmn log mÞ
time when F is a fast J–L transform. Before stating these
results, we borrow the notion of fast Johnson–Linden-
strauss transform (FJLT) from [53] and [54] and use that to
define a stronger and faster version of the simple J–L
transform.

Definition 9 (FJLT): Given an n-dimensional subspace
A2 3 Rm, we say F 2 Rr!m is an FJLT forA2 if F satisfies
the following two properties:

• kðFUÞTðFUÞ % Ink2 + #, where U is an orthonor-
mal basis of A2;

• given any x 2 Rn, Fx can be computed in at most
Oðm log mÞ time.

Ailon and Chazelle construct the so-called FJLT [54],
which is a product of three matrices F ¼ PHD, where
P 2 Rs!m is a sparse J–L transform with approximately
Oðs log2 NÞ nonzeros, H 2 Rm!m is a normalized Walsh–
Hadamard matrix, and D 2 Rm!m is a diagonal matrix with
its diagonals drawn independently from f%1; 1g with
probability 1/2. Because multiplying H with a vector can be
done in Oðm log mÞ time using an FFT-like algorithm, it
reduces the projection time from OðsmÞ to Oðm log mÞ.
This FJLT construction is further simplified by Ailon and
Liberty [55], [56].

A subsequently refined FJLT was analyzed by Tropp
[46], and it is named the subsampled randomized
Hadamard transform (SRHT). As with other FJLT
methods, the SRHT preserves the geometry of an entire
‘2 subspace of vectors by using a matrix Chernoff
inequality to bound kðFUÞTðFUÞ % Ik2. We describe this
particular FJLT in more detail.

Definition 10: An SRHT is an s! m matrix of the form

F ¼
ffiffiffiffi
m

s

r
RHD

where D 2 Rm!m is a diagonal matrix whose entries are
independent random signs; H 2 Rm!m is a Walsh–
Hadamard matrix scaled by m%1=2; and R 2 Rs!m restricts
an n-dimensional vector to s coordinates, chosen uniformly
at random.

Below we present the main results for SRHT from [15]
since it has a better characterization of the subspace-
preserving properties. We note that its proof is essentially
a combination of the results in [29] and [46].

Lemma 10 (SRHT [15], [29], [46]): Given an
n-dimensional subspace A2 3 Rm and #; $ 2 ð0; 1Þ, let
F 2 Rs!m be a random SRHT with embedding dimension
s * ð14n lnð40mnÞ=#2Þ lnð302n lnð40mnÞ=#2Þ. Then, with
probability at least 0.9, we have

ð1% #Þkxk2 + kFxk2 + ð1þ #Þkxk2 8x 2 A2:

Note that besides Walsh–Hardamard transform, other
FFT-based transform, e.g., discrete Hartley transform
(DHT) and discrete cosine transform (DCT) which have
more practical advantages, can also be used; see [31] for
details of other choices. Another important point to keep
in mind (in particular, for parallel and distributed
applications) is that, although called ‘‘fast,’’ a fast
transform might be slower than a dense transform: when
nnzðAÞ ¼ OðmÞ (since machines are optimized for
matrix–vector multiplies); when A’s columns are distrib-
utively stored (since this slows down FFT-like algorithms,
due to communication issues, e.g., if each machine has
only certain rows from a tall matrix A, which is often the
case, then it is not straightforward to perform an FFT on
the columns); or for other machine-related issues.

More recently, Clarkson and Woodruff [20] developed
an algorithm for the ‘2 subspace embedding that runs in
so-called input-sparsity time, i.e., in OðnnzðAÞÞ time, plus
lower order terms that depend polynomially on the low
dimension of the input. Their construction is exactly the
CountSketch matrix in the data stream literature [57],
which is an extremely simple and sparse matrix. It can be
written as the product of two matrices F ¼ SD 2 Rs!m,
where S 2 Rs!m has each column chosen independently
and uniformly from the s standard basis vectors of Rs and
D 2 Rm!m is a diagonal matrix with diagonal entries
chosen independently and uniformly from -1. By decou-
pling A into two orthogonal subspaces, called ‘‘heavy’’ and
‘‘light’’ based on the row norms of U, an orthonormal basis
of A, i.e., based on the statistical leverage scores of A, they
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proved that with an embedding dimension Oðn2=#2Þ, the
above construction gives an ‘2 subspace embedding matrix.
Improved bounds and simpler proofs (that have much
more linear algebraic flavor) were subsequently provided
by Meng and Mahoney [47] and Nelson and Nguyen [48].
In rest of this paper, we refer to this method as CW. Below,
we present the main results from [20], [47], and [48].

Lemma 11 (Input-Sparsity Time Embedding for ‘2 [20],
[47], [48]): Given an n-dimensional subspace A2 3 Rm

and any $ 2 ð0; 1Þ, let s ¼ ðn2 þ nÞ=ð#2$Þ. Then, with
probability at least 1% $

ð1% #Þkxk2 + kFxk2 + ð1þ #Þkxk2 8x 2 A2

where F 2 Rs!m is the CountSketch matrix described
above.

Remark 3: It is easy to see that computing FA, i.e.,
computing the subspace embedding, takes OðnnzðAÞÞ
time. The OðnnzðAÞÞ running time is indeed optimal, up
to constant factors, for general inputs. Consider the case
when A has an important row ai such that A becomes rank
deficient without it. Thus, we have to observe ai in order to
compute a low-distortion embedding. However, without
any prior knowledge, we have to scan at least a constant
portion of the input to guarantee that ai is observed with a
constant probability, which takes OðnnzðAÞÞ time. Also
note that this optimality result applies to general ‘p-norms.

To summarize, in Table 5, we provide a summary of the
basic properties of several data-oblivious ‘2 subspace
embeddings discussed here (as well as of several data-
aware ‘2 subspace-preserving embeddings that will be
discussed in Section IV-B3).

Remark 4: With these low-distortion ‘2 subspace
embeddings, one can use the QR-type method to compute
an ‘2 preconditioner. That is, one can compute the QR
factorization of the low-distortion subspace embeddings in
Table 5 and use R%1 as the preconditioner; see Table 4 for

more details. We note that the tradeoffs in running time are
implicit although they have the same conditioning quality.
This is because the running time for computing the QR
factorization depends on the embedding dimension which
is varied from method to method. However, normally this is
absorbed by the time for forming FA (theoretically, and it
is in practice not the dominant effect).

2) Data-Oblivious Low-Distortion ‘1 Subspace Embeddings:
General ‘p subspace embedding and even ‘1 subspace
embedding is quite different from ‘2 subspace embedding.
Here, we briefly introduce some existing results on ‘1

subspace embedding; for more general ‘p subspace
embedding, see [47] and [20].

For ‘1, the first question to ask is whether there exists
an J–L transform equivalent. This question was answered
in the negative by Charikar and Sahai [59].

Lemma 12 [59]: There exists a set of OðmÞ points in ‘m
1

such that any linear embedding into ‘s
1 has distortion at

least
ffiffiffiffiffiffiffiffi
m=s

p
. The tradeoff between dimension and distor-

tion for linear embeddings is tight up to a logarithmic
factor. There exists a linear embedding of any set of N
points in ‘m

1 to ‘s0
1 where s0 ¼ Oðs log NÞ and the distortion

is Oð
ffiffiffiffiffiffiffiffi
m=s

p
Þ.

This result shows that linear embeddings are particularly
‘‘bad’’ in ‘1, compared to the particularly ‘‘good’’ results
provided by the J–L lemma for ‘2. To obtain a constant
distortion, we need s * Cm for some constant C. So the
embedding dimension cannot be independent of m. How-
ever, the negative result is obtained by considering arbitrary
point sets. In many applications, we are dealing with
structured point sets, e.g., vectors from a low-dimensional
subspace. In this case, Sohler and Woodruff [44] give the first
linear oblivious embedding of an n-dimensional subspace of
‘m

1 into ‘Oðn log nÞ
1 with distortion Oðn log nÞ, where both the

embedding dimension and the distortion are independent of
m. In particular, they prove the following quality bounds.

Lemma 13 (Cauchy Transform (CT) [44]): Let A1 be an
arbitrary n-dimensional linear subspace of Rm. Then, there
is an s0 ¼ s0ðnÞ ¼ Oðn log nÞ and a sufficiently large

Table 5 Summary of Data-Oblivious and Data-Aware ‘2 Embeddings. s Denotes the Embedding Dimension. By Running Time, We Mean the Time Needed

to Compute FA. For Each Method, We Set the Failure Rate to Be a Constant. Moreover, ‘‘Exact lev. Scores Sampling’’ Means Sampling Algorithm Based on

Using the Exact Leverage Scores (as Importance Sampling Probabilities); and ‘‘Appr. lev. Scores Sampling (SRHT)’’ and ‘‘Appr. lev. Scores Sampling (CW)’’

Are Sampling Algorithms Based on Approximate Leverage Scores Estimated by Using SRHT and CW (Using the Algorithm of [15]) as the Underlying

Random Projections, Respectively. Note That Within the Algorithm (of [15]) for Approximating the Leverage Scores, the Target Approximation Accuracy Is

Set to be a Constant
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constant C0 > 0, such that for any s with s0 + s + nOð1Þ,
and any constant C * C0, if F 2 Rs!m is a random matrix
whose entries are chosen independently from the standard
Cauchy distribution and are scaled by C=s, then with
probability at least 0.99

kxk1 + kFxk1 + Oðn log nÞ / kxk1 8x 2 A1:

The proof is by constructing tail inequalities for the sum of
half Cauchy random variables [44]. The construction here
is quite similar to the construction of the dense Gaussian
embedding for ‘2 in Lemma 2, with several important
differences. The most important differences are as follows:

• Cauchy random variables replace standard normal
random variables;

• a larger embedding dimension does not always lead
to better distortion quality;

• the failure rate becomes harder to control.
As CT is the ‘1 counterpart of the dense Gaussian

transform, the fast Cauchy transform (FCT) proposed by
Clarkson et al. [19] is the ‘1 counterpart of FJLT. There are
several related constructions. For example, this FCT
construction first preprocesses by a deterministic low-
coherence matrix, then rescales by Cauchy random
variables, and finally samples linear combinations of the
rows. Then, they construct F as

F ¼ 4BCH

where B 2 Rs!2m has each column chosen independently and
uniformly from the s standard basis vectors for Rs; for (
sufficiently large, the parameter is set as s ¼ (n logðn=$Þ,
where $ 2 ð0; 1Þ controls the probability that the algorithm
fails; C 2 R2m!2m is a diagonal matrix with diagonal entries
chosen independently from a Cauchy distribution; and
H 2 R2m!m is a block-diagonal matrix composed of m=t
blocks along the diagonal. Each block is the 2t! t matrix

Gs ¼ Ht
It

$ %
, where It is the t! t identity matrix, and Ht is the

normalized Hadamard matrix. (For simplicity, assume t is a
power of two and m=t is an integer.)

H ¼

Gs

Gs

. .
.

Gs

0

BBB@

1

CCCA:

Informally, the effect of H in the above FCT
construction is to spread the weight of a vector, so that
Hy has many entries that are not too small. This means that
the vector CHy comprises Cauchy random variables with

scale factors that are not too small; and finally these
variables are summed up by B, yielding a vector BCHy,
whose ‘1-norm will not be too small relative to kyk1. They
prove the following quality bounds.

Lemma 14 (Fast Cauchy Transform (FCT) [19]): There is
a distribution (given by the above construction) over
matrices F 2 Rs!m, with s ¼ Oðn log nþ n logð1=$ÞÞ,
such that for an arbitrary (but fixed) A 2 Rm!n, and for
all x 2 Rn, the inequalities

kAxk1 + kFAxk1 + %kAxk1

hold with probability 1% $, where

% ¼ O n
ffiffi
t
p

$
logðsnÞ

" #
:

Further, for any y 2 Rm, the product Fy can be computed
in Oðm log sÞ time.

To make the algorithm work with high probability, one
has to set t to be at the order of s6 and s ¼ Oðn log nÞ. It
follows that % ¼ Oðn4 log4 nÞ in the above theorem. That is,
while faster in terms of FLOPS than the CT, the FCT leads to
worse embedding/preconditioning quality. Importantly, this
result is different from how FJLT compares to dense
Gaussian transform: FJLT is faster than the dense Gaussian
transform, while both provide the same order of distortion;
but FCT becomes faster than the dense Cauchy transform
(CT), at the cost of somewhat worse distortion quality.

Similar to [20], [47], and [48] for computing an ‘2

subspace embedding, Meng and Mahoney [47] developed an
algorithm for computing an ‘1 subspace embedding matrix in
input-sparsity time, i.e., in OðnnzðAÞÞ time. They used a
CountSketch-like matrix which can be written as the product
of two matrices F ¼ SC 2 Rs!m, where S 2 Rs!m has each
column chosen independently and uniformly from the s
standard basis vectors of Rs and C 2 Rm!m is a diagonal
matrix with diagonal entries chosen independently from the
standard Cauchy distribution. We summarize the main
theoretical results in the following lemma.

Lemma 15 (Sparse Cauchy Transform (SPCT) [47]): Given
an n-dimensional subspace A1 3 Rm and # 2 ð0; 1Þ, there
is s ¼ Oðn5 log5 nÞ such that with a constant probability

1

Oðn2 log2 nÞkxk1

+ kFxk1 + Oðn log nÞkxk18x 2 A1

where F is the SPCT described above.

Yang et al. : Implementing Randomized Matrix Algorithms in Parallel and Distributed Environments

74 Proceedings of the IEEE | Vol. 104, No. 1, January 2016



More recently, Woodruff and Zhang [45] proposed
another algorithm that computes an ‘1 subspace embed-
ding matrix in input-sparsity time. Its construction is
similar to that of SPCT. That is, F ¼ SD where D is a
diagonal matrix with diagonal entries 1=u1; 1=u2; . . . ; 1=un

where ui are exponential variables. Comparing to SPCT,
the embedding dimension and embedding quality have
been improved. We summarize the main results in the
following lemma.

Lemma 16 [45]: Given an n-dimensional subspace
A1 3 Rm and # 2 ð0; 1Þ, there is s ¼ Oðn log nÞ such
that with a constant probability

1

Oðn log nÞkxk1

+ kFxk1 + Oðn log nÞkxk1 8x 2 A1

where F is the sparse transform using reciprocal
exponential variables described above.

To summarize, in Table 6, we provide a summary of the
basic properties of several data-oblivious ‘1 subspace
embeddings discussed here (as well as of several data-
aware ‘1 subspace-preserving embeddings that will be
discussed in Section IV-B4).

3) Data-Aware Low-Distortion ‘2 Subspace Embeddings:
All of the linear subspace embedding algorithms mentioned
in previous sections are oblivious, i.e., independent of the
input subspace. That has obvious algorithmic advantages,
e.g., one can construct the embedding matrix without even
looking at the data. Since using an oblivious embedding is
not a hard requirement for the downstream task of solving
‘p-regression problems (and since one can use random
projection embeddings to construct importance sampling
probabilities [15] in essentially ‘‘random projection time,’’ up
to small constant factors), a natural question is whether
nonoblivious or data-aware embeddings could give better
conditioning performance. In general, the answer is yes.

As mentioned in Section II-B, Drineas et al. [14]
developed a sampling algorithm for solving ‘2-regression
by constructing a ð1- #Þ-distortion ‘2 subspace-preserving
sampling matrix. The underlying sampling distribution is

defined based on the statistical leverage scores of the
design matrix which can be viewed as the ‘‘influence’’ of
that row on the LS fit. That is, the sampling distribution is
a distribution fpigm

i¼1 satisfying

pi * ) /
‘iP

j ‘j
; i ¼ 1; . . . ;m: (13)

Above f‘igm
i¼1 are the leverage scores of A and ) 2 ð0; 1#.

When ) ¼ 1 and ) G 1, (13) implies we define fpigm
i¼1

according to the exact and estimated leverage scores,
respectively.

More importantly, theoretical results indicate that,
given a target desired accuracy, the required sampling
complexity is independent of the higher dimension of the
matrix. Similar construction of the sampling matrix
appeared in several subsequent works, e.g., [14], [15],
and [29], with improved analysis of the sampling
complexity. For completeness, we include the main
theoretical result regarding the subspace-preserving qual-
ity below, stated here for ‘2.

Theorem 1 (‘2 Subspace-Preserving Sampling [14], [15],
[29]): Given an n-dimensional subspace A2 3 Rm repre-
sented by a matrix A 2 Rm!n and # 2 ð0; 1Þ, choose
s ¼ Oðn log n logð1=$Þ=)#2Þ, and construct a sampling
matrix S 2 Rm!m with diagonals

sii ¼
1ffiffiffi
qi
p ; with probability qi

0; otherwise,

,
i ¼ 1; . . . ;m

where

qi * minf1; s / pig; i ¼ 1; . . . ;m

and fpigm
i¼1 satisfies (13). Then, with probability at least 0.7

ð1% #Þkyk2 + kSyk2 + ð1þ #Þkyk2 8y 2 A2:

Table 6 Summary of Data-Oblivious and Data-Aware ‘1 Embeddings. Above, s Denotes the Embedding Dimension. By Running Time, We Mean the Time

Needed to Compute FA. For Each Method, We Set the Failure Rate to Be a Constant. Moreover, ‘‘Sampling (FCT)’’ and ‘‘Sampling (SPCT)’’ Denote the

‘1 Sampling Algorithms Obtained by Using FCT and SPCT as the Underlying Preconditioning Methods, Respectively
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An obvious (but surmountable) challenge to applying this
result is that computing the leverage scores exactly
involves forming an orthonormal basis for A first.
Normally, this step will take Oðmn2Þ time which becomes
undesirable when for large-scale applications.

On the other hand, by using the algorithm of [15],
computing the leverage scores approximately can be done
in essentially the time it takes to perform a random
projection: in particular, Drineas et al. [15] suggested that
one can estimate the leverage scores by replacing A with a
‘‘similar’’ matrix in the computation of the pseudoinverse
(which is the main computational bottleneck in the exact
computation of the leverage scores). To be more specific,
by noticing that the leverage scores can be expressed as the
row norms of AAy, we can use ‘2 subspace embeddings to
estimate them. The high-level idea is

keiAAyk2 . eiAðF1AÞy
&&&

&&&
2
. eiAðF1AÞyF2

&&&
&&&

2

where ei is a vector with zeros but 1 in the ith coordinate,
F1 2 Rr1!m is an FJLT, and F2 2 Rn!r2 is a JLT which
preserves the ‘2-norms of certain set of points. If the
estimation of the leverage scores ~‘i satisfies

ð1% "Þ‘i + ~‘i + ð1þ "Þ‘i; i ¼ 1; . . . ;m

then it is not hard to show that a sampling distribution
fpigm

i¼1 defined according to pi ¼ ~‘i=
P

j
~‘j satisfies (13)

with ) ¼ ð1% "Þ=ð1þ "Þ. When " is constant, say 0.5,
from Theorem 1, the required sampling complexity will
only need to be increased by a constant factor 1=) ¼ 3.
This is less expensive, compared to the gain in the
computation cost.

Suppose, now, we use SRHT (Lemma 10) or CW
(Lemma 11) method as the underlying FJLT, i.e., F1, in
the approximation of the leverage scores. Then, combining
the theory suggested in [15] and Theorem 1, we have the
following lemma.

Lemma 17 (Fast ‘2 Subspace-Preserving Sampling (SRHT)
[15]): Given an n-dimensional subspace A2 3 Rm repre-
sented by a matrix A 2 Rm!n and # 2 ð0; 1Þ, it takes
Oðmn log mÞ time to compute a sampling matrix S 2 Rs0!m

(with only one nonzero element per row) with
s0 ¼ Oðn log n=#2Þ such that with constant probability

ð1% #Þkyk2 + kSyk2 + ð1þ #Þkyk2 8y 2 A2:

Lemma 18 (Fast ‘2 Subspace-Preserving Sampling (CW)
[15], [20]): Given an n-dimensional subspace A2 3 Rm

represented by a matrix A 2 Rm!n and # 2 ð0; 1Þ, it takes

OðnnzðAÞ / log mÞ time to compute a sampling matrix
S 2 Rs0!m (with only one nonzero element per row) with
s0 ¼ Oðn log n=#2Þ such that with constant probability

ð1% #Þkyk2 + kSyk2 + ð1þ #Þkyk2 8y 2 A2:

Remark 5: Although using CW runs asymptotically
faster than using SRHT, due to the poorer embedding
quality of CW, in order to achieve the same embedding
quality, and relatedly the same quality results in applica-
tions to ‘2-regression, it may need a higher embedding
dimension, i.e., r1. This results in a substantially longer QR
factorization time for CW-based methods.

Finally, recall that a summary of both data-oblivious
and data-aware subspace embedding for ‘2-norm can be
found in Table 5.

4) Data-Aware Low-Distortion ‘1 Subspace Embeddings:
In the same way as we can use data-aware embeddings for
‘2-regression, we can also use data-aware embeddings
for ‘1-regression. Indeed, the idea of using data-aware
sampling to obtain ð1- #Þ-distortion subspace embeddings
for ‘1-regression was first used in [42], where it was shown
that an ‘1 subspace embedding can be done by weighted
sampling after preprocessing the matrix, including pre-
conditioning, using ellipsoidal rounding. Sampling prob-
abilities depend on the ‘1-norms of the rows of the
preconditioned matrix. Moreover, the resulting sample has
each coordinate weighted by the reciprocal of its sampling
probability. Different from oblivious ‘1 subspace embed-
dings, the sampling approach can achieve a much better
distortion.

Lemma 19 [42]: Given an n-dimensional subspace
A1 3 Rm (e.g., represented by a matrix A 2 Rm!n) and
#; $ 2 ð0; 1Þ, it takes Oðmn5 log mÞ time to compute a
sampling matrix S 2 Rs0!m (with only one nonzero
element per row) with s0 ¼ Oðn3:5 logðn=ð$#ÞÞ=#2Þ such
that, with probability at least 1% $

ð1% #Þkyk1 + kSyk1 + ð1þ #Þkyk1 8y 2 A1:

Therefore, to estimate the ‘1-norms of any vector from an
n-dimensional subspace of Rm, we only need to compute
the weighted sum of the absolute values of a few
coordinates of this vector.

Recall that the ‘2 leverage scores used in the ‘2

sampling algorithm described in Theorem 1 are the
squared row norms of an orthonormal basis of A2 which
can be a viewed as a ‘‘nice’’ basis for the subspace of
interest. Dasgupta et al. [35] generalized this method to the
general ‘p case; in particular, they proposed to sample
rows according to the ‘p row norms of AR%1, where AR%1 is
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a well-conditioned (in the ‘p sense of well conditioning)
basis for Ap. Different from ‘1 sampling algorithm [42]
described above, computing such matrix R is usually
sufficient, meaning it is not needed to preprocess A and
form the basis AR%1 explicitly.

Theorem 2 (‘p Subspace-Preserving Sampling [35]): Given
an n-dimensional subspace Ap 3 Rm represented by a
matrix A 2 Rm!n and a matrix R 2 Rn!n such that AR%1 is
well conditioned, p 2 ½1;1Þ, # 2 ð0; 1=7Þ, and $ 2 ð0; 1Þ,
choose

s * 16ð2p þ 2Þ!%p
pðAR%1Þ n log

12

#

" #
þ log

2

$

" #" #
=ðp2#2Þ

and construct a sampling matrix S 2 Rm!m with diagonals

sii ¼
1

p
1
p
i

; with probability pi

0; otherwise,

(

i ¼ 1; . . . ;m

where

pi * min 1; s / kaiR
%1kp

p=jAR%1jpp
n o

; i ¼ 1; . . . ;m:

Then, with probability at least 1% $

ð1% #Þkykp + kSykp + ð1þ #Þkykp 8y 2 Ap:

In fact, Theorem 2 holds for any choice of R. When
R ¼ I, it implies sampling according to the ‘p row norms of
A and the sampling complexity replies on !%p

pðAÞ. However,
it is worth mentioning that a large condition number for A
will lead to a large sampling size, which in turn affects the
running time of the subsequent operations. Therefore,
preconditioning is typically necessary. That is, one must
find a matrix R 2 Rn!n such that !%pðAR%1Þ ¼ OðpolyðnÞÞ,
which could be done by the preconditioning algorithms
introduced in the previous sections.

Given R such that AR%1 is well conditioned, comput-
ing the row norms of AR%1 takes OðnnzðAÞ / nÞ time.
Clarkson et al. [19] improve this running time by
estimating the row norms of AR%1 instead of computing
them exactly. The central idea is to postmultiply a
random projection matrix F2 2 Rn!r with r ¼ Oðlog mÞ
which takes only OðnnzðAÞ / log mÞ time.

If one uses FCT or SPCT in Table 4 to compute a matrix
R such that AR%1 is well conditioned and then uses the
above idea to estimate quickly the ‘1 row norms of AR%1 to

define the sampling distribution, then by combining with
Theorem 2, we have the following two results.

Lemma 20 (Fast ‘1 Subspace-Preserving Sampling (FCT)
[19], [58]): Given an n-dimensional subspace A1 3 Rm

represented by a matrix A 2 Rm!n and # 2 ð0; 1Þ, it takes
Oðmn log mÞ time to compute a sampling matrix S 2 Rs0!m

(with only one nonzero element per row) with s0 ¼
Oðn13=2 log9=2 n logð1=#Þ=#2Þ such that with a constant
probability

ð1% #Þkxk1 + kSxk1 + ð1þ #Þkxk1 8x 2 A1:

Lemma 21 (Fast ‘1 Subspace-Preserving Sampling (SPCT)
[19], [47], [58]): Given an n-dimensional subspaceA1 3 Rm

(e.g., represented by a matrix A 2 Rm!n) and # 2 ð0; 1Þ, it
takes OðnnzðAÞ / log mÞ time to compute a sampling matrix
S 2 Rs0!m (with only one nonzero element per row) with
s0 ¼ Oðn15=2 log11=2 n logð1=#Þ=#2Þ such that with a constant
probability

ð1% #Þkxk1 + kSxk1 + ð1þ #Þkxk1 8x 2 A1:

Remark 6: Fast sampling algorithm also exists for
‘p-regression. That is, after computing a matrix R such that
AR%1 is well conditioned, one can use a similar idea to
approximate the ‘2 row norms of AR%1, e.g., postmultiply-
ing a random matrix with independent Gaussian variables
(JLT), which lead to estimation of the ‘p row norms of
AR%1 up to small factors; see [19] for more details.

Remark 7: We note that the speedup comes at the cost of
increased sampling complexity, which does not substan-
tially affect most theoretical formulations, since the
sampling complexity is still OðpolyðnÞ logð1=#Þ=#2Þ. In
practice, however, it might be worth computing U ¼ AR%1

and its row norms explicitly to obtain a smaller sample
size. One should be aware of this tradeoff when
implementing a subspace-preserving sampling algorithm.

Finally, recall that a summary of both data-oblivious
and data-aware subspace embeddings for ‘1-norm can be
found in Table 6.

C. Application of Rounding/Embedding Methods to
‘1- and ‘2-Regression

In this section, we will describe how the ellipsoidal
rounding and subspace embedding methods described in
Section IV-A and B can be applied to solve ‘2- and
‘1-regression problems. In particular, by combining the tools
we have introduced in Section IV-A and B, e.g., solving
subproblems and constructing preconditioners with ER
and subspace-embedding methods, we are able to describe
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several approaches to compute very fine ð1þ #Þ relative-
error solutions to ‘p-regression problems.

Depending on the downstream task of interest, e.g., how
the solution to the regression problem will be used, one
might be interested in obtaining low-precision solutions,
e.g., # ¼ 10%1, medium-precision solutions, e.g., # ¼ 10%4,
or high-precision solutions, e.g., # ¼ 10%10. As described in
Section II, the design principles for these cases are somewhat
different. In particular, the use of ‘2 and ‘1 well-conditioned
bases is somewhat different, depending on whether one is
interested in low precision. Here, we elaborate on how we
can use the methods described previously construct low-
precision solvers and high-precision solvers for solving
‘p-regression problems. As a reference, see Tables 7 and 8 for
a summary of several representative RandNLA algorithms
for solving ‘2- and ‘1-regression problems, respectively.
(Most of these have been previously introduced for smaller
scale computations in RAM; and in Section V we will
describe several variants that extend to larger scale parallel
and distributed environments.)

1) Low-Precision Solvers: The most straightforward use of
these methods (and the one to which most of the theory has
been developed) is to construct a subspace-preserving
embedding matrix and then solve the resulting reduced-sized
problem exactly, thereby obtaining an approximate solution
to the original problem. In somewhat more detail, this
algorithmic approach performs the following two steps.

1) Construct a subspace-preserving embedding ma-
trix F with distortion 1- #=4.

2) Using a black-box solver, solve the reduced-sized
problem exactly, i.e., exactly solve

x̂ ¼ min
x2Rn
kFAx% Fbkp:

We refer to this approach as low precision since the
running time complexity with respect to the error

parameter # is polyð1=#Þ. Thus, while this approach can
be analyzed for a fixed #, this dependence means that as a
practical matter this approach cannot achieve high-
precision solutions.

To see why this approach gives us a ð1þ #Þ-approxi-
mate solution to the original problem, recall that a
subspace-preserving embedding matrix F with distortion
factor ð1- #=4Þ satisfies

ð1% #=4Þ/kAxkp+kFAxkp+ð1þ#=4Þ/kAxkp 8x2Rn:

Therefore, the following simple reasoning shows that x̂ is
indeed a ð1þ #Þ-approximation solution:

kAx̂kp +
1

1% #=4
kFAx̂kp +

1

1% #=4
kFAx(kp

+ 1þ #=4

1% #=4
kAx(kpGð1þ #ÞkAx(kp:

Here, A is any matrix, but in particular it could be the
constraint matrix A above augmented by the right-hand
side vector b. For completeness, we include the following
lemma stating this result more precisely.

Lemma 22: Given an ‘p-regression problem specified by
A 2 Rm!n and p 2 ½1;1Þ using the constrained formula-
tion (9), let F be a ð1- #=4Þ-distortion embedding of Ap,
and x̂ be an optimal solution to the reduced-sized problem
mincT x¼1 kFAxkp. Then, x̂ is a ð1þ #Þ-approximate solu-
tion to the original problem.

A great deal of work has followed this general approach.
In particular, the meta-algorithm for ‘2-regression from
Section II is of this general form. Many other authors have
proposed related algorithms that require solving the
subproblem by first computing a subspace-preserving

Table 7 Summary of RandNLA-Based ‘2-Regression Solvers; PC Stands for Preconditioning

Table 8 Summary of RandNLA-Based ‘1-Regression Solvers; PC Stands for Preconditioning
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sampling matrix. See, e.g., [1] and references therein. Here,
we simply cite several of the most immediately relevant for
our subsequent discussion.

• Sampling for ‘2-regression. One could use the
original algorithm of [14] and [17], which performs
a data-aware random sampling and solves the
subproblem in Oðmn2Þ time to obtain an approx-
imate solution. Using the algorithm of [15], the
running time of this method was improved to
roughly Oðmn logðnÞÞ time, and by combining the
algorithm of [15] with the algorithm of [20], the
running time was still further improved to input-
sparsity time.

• Projections for ‘2-regression. Alternatively, one
could use the algorithm of [28] and [29], which
performs a data-oblivious Hadamard-based random
projection and solves the subproblem in roughly
Oðmn logðnÞÞ time, or one could use the algorithm
of [20], which runs in input-sparsity time.

• Sampling and projections for ‘1- and ‘p-regression.
See [19], [42], and [44] and see [20], [35], and [47]
and references therein for both data-oblivious and
data-aware methods, respectively.

To summarize these and other results, depending on
whether the idealization that m& n holds, either the
Hadamard-based projections for ‘2-regression (e.g., the
projection algorithm of [29] or the sampling algorithm
of [14] combined with the algorithm of [15]) and
‘1-regression (e.g., the algorithm of [19]) or the input-
sparsity time algorithms for ‘2- and ‘1-regression (e.g., the
algorithms of [20] and [47]) lead to the best worst-case
asymptotic performance. There are, however, practical
tradeoffs, both in RAM and in parallel-distributed
environments, and the most appropriate method to use
in any particular situation is still a matter of ongoing
research.

2) High-Precision Solvers: A more refined use of these
methods (and the one that has been used most in
implementations) is to construct a subspace-preserving
embedding matrix and then use that to construct a
preconditioner for the original ‘p-regression problem,
thereby obtaining an approximate solution to the original
problem. In somewhat more detail, this algorithmic
approach performs the following two steps.

1) Construct a randomized preconditioner for A,
called N.

2) Invoke an iterative algorithm whose convergence
rate depends on the condition number of the
problem being solved (a linear system for
‘2-regression, and a linear or convex program
for ‘1-regression) on the preconditioned system
AN.

We refer to this approach as high precision since the
running time complexity with respect to the error
parameter # is logð1=#Þ. Among other things, this means

that, given a moderately good solutionVe.g., the one
obtained from the embedding that could be used in a low-
precision solverVone can very easily obtain a very high
precision solution.

Most of the work for high-precision RandNLA solvers
for ‘p-regression has been for ‘2-regression (although we
mention a few solvers for ‘1-regression for completeness
and comparison).

• For ‘2-regression. Recall that theoretical (and
empirical) results suggest that the required num-
ber of iterations in many iterative solvers such as
LSQR [62] depends strongly on the condition
number of the system. Thus, a natural idea is first
to compute a randomized preconditioner and then
to apply one of these iterative solvers on the
preconditioned system. For example, if we use
SRHT (Lemma 10) to create a preconditioned
system with condition number bounded by a small
constant and then use LSQR to solve the precondi-
tioned problem iteratively, the total running time
would be Oðmn logðm=#Þ þ n3 log nÞ, where
Oðmn logðmÞÞ comes from SRHT, Oðn3 log nÞ
from computing the preconditioner matrix, and
Oðmn logð1=#ÞÞ from LSQR iterations. Rokhlin
and Tygert [30] and Avron et al. [31] developed
algorithms that use FJLT for preconditioning and
LSQR as an iterative solver. In [32], Meng et al.
developed a randomized solver for ‘2-regression
using Gaussian transform and LSQR or the
Chebyshev semi-iterative method; see Section V-A
for more details.

As with the low-precision solvers, note that if
we use the input-sparsity time algorithm of [20]
for embedding and then use an (SRHT+LSQR)
approach above to solve the reduced-sized problem,
then under the assumption that m * polyðnÞ and # is
fixed, this particular combination would become the
best approach proposed. However, there are various
tradeoffs among those approaches. For instance,
there are tradeoffs between running time and
conditioning quality in preconditioning for comput-
ing the subspace-preserving sampling matrix, and
there are tradeoffs between embedding dimension/
sample size and failure rate in embedding/sampling.
Some of the practical tradeoffs on different problem
types and computing platforms will be discussed in
Section V-C.

• For ‘1-regression. While most of the work in
RandNLA for high-precision solvers has been for
‘2-regression, we should point out related work for
‘1-regression. In particular, Nesterov [41] pro-
posed an algorithm that employs a combination of
ER and accelerated gradient descent; and second-
order methods from [61] use interior point
techniques more generally. See also the related
solvers of Portnoy et al. [63], [64]. For
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‘1-regression, Meng and Mahoney [43] coupled these
ideas with RandNLA ideas to develop an iterative
medium-precision algorithm for ‘1-regression; see
Section V-B for more details.

V. IMPLEMENTATIONS AND EMPIRICAL
RESULTS

In this section, we describe several implementations in
large-scale computational environments of the theory
described in Section IV. In particular, in Section V-A, we
will describe LSRN, an ‘2-regression solver appropriate for
parallel environments using multithreads and MPI; and
then in Section V-B, we will describe the results of both a
low-precision algorithm as well as a related medium-
precision iterative algorithm for the ‘1-regression problem.
Both of these subsections summarize recent previous
work, and they both illustrate how implementing
RandNLA algorithms in parallel and distributed environ-
ments requires paying careful attention to computation-
communication tradeoffs. These prior results do not,
however, provide a comprehensive evaluation of any
particular RandNLA method. Thus, for completeness, we
also describe in Section V-C several new results: a
comprehensive empirical evaluation of low-precision,
medium-precision, and high-precision random sampling
and random projection algorithms for the very overdeter-
mined ‘2-regression problem. Hereby, by ‘‘medium preci-
sion,’’ typically we mean calling a high-precision solver but
executing fewer iterations in the underlying iterative solver.
These implementations were done in Apache Spark11; they
have been applied to matrices of up to terabyte size; and
they illustrate several points that will be important to
understand as other RandNLA algorithms are implemented
in very large-scale computational environments.12

A. Solving ‘2-Regression in Parallel Environments
In this section, we describe implementation details for

a high-precision ‘2-regression solver designed for large-
scale parallel environments. LSRN [32] is designed to solve
the minimum-length LS problem (1) to high precision; and
it works for linear systems that are either strongly
overdetermined, i.e., m& n or strongly underdetermined,
i.e., m1 n, and possibly rank deficient. LSRN uses
random normal projections to compute a preconditioner
matrix such that the preconditioned system is provably
extremely well conditioned. In particular, either LSQR
[62] (a conjugate-gradient-based method) or the
Chebyshev semi-iterative (CS) method [66] can be used
at the iterative step to compute the min-length solution
within just a few iterations. As we will describe, the latter

method is preferred on clusters with high communication
cost. Here, we only present the formal description of the
LSRN algorithm for strongly overdetermined systems in
Algorithm 2.

Algorithm 2: LSRN for strongly overdetermined systems

1: Choose an oversampling factor " > 1, e.g., " ¼ 2. Set
s ¼ d"ne.

2: Generate G ¼ randnðs;mÞ, a Gaussian matrix.
3: Compute ~A ¼ GA.
4: Compute ~A’s economy-sized SVD: ~U~S ~V

T
.

5: Let N ¼ ~V ~S
%1

. (Note that this is basically R%1 from QR
on the embedding, but it is written here into the SVD.)

6: Iteratively compute the min-length solution ŷ to

minimizey2Rr kANy% bk2:

7: Return x̂ ¼ Nŷ.

Two important aspects of LSRN are the use of the
Gaussian transform and the CS method, and they are
coupled in a nontrivial way. In the remainder of this
section, we discuss these issues.

To start, note that among the available choices for the
random projection matrix, the Gaussian transform has
particularly good conditioning properties. In particular,
the distribution of the spectrum of the preconditioned
system depends only on that of a certain Gaussian matrix,
not the original linear system. In addition, one can show
that

P %ðANÞ +
1þ (þ

ffiffi
r
s

p

1% (%
ffiffi
r
s

p
 !

* 1% 2e%(
2s=2

where %ðANÞ is the condition number of the precondi-
tioned system, r is the rank of A, and ( is a parameter [32].
For example, if we choose the oversampling factor " in
Algorithm 2 to be 2, then the condition number of the new
linear system is less than 6 with high probability. In
addition, a result on bounds on the singular values
provided in [32] enables CS to work more efficiently.

Moreover, while slower in terms of FLOPS than FFT-
based fast transforms, the Gaussian transform comes with
several other advantages for large-scale environments.
First, it automatically speeds up with sparse input matrices
and fast linear operators (in which case FFT-based fast
transforms are no longer ‘‘fast’’). Second, the precondi-
tioning process is embarrassingly parallel and thus scales
well in parallel environments. Relatedly, it is easy to
implement using multithreads or MPI. Third, it still works
(with an extra ‘‘allreduce’’ operation) when A is partitioned

11http://spark.apache.org
12An important point that we will not describe in detail is that

generating the random bits to implement the randomized algorithm and
then randomly sampling parts of the data can be challenging when we do
not have random access to the data; see, e.g., [65] and references therein.
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along its bigger dimension. Last, when implemented
properly, Gaussian random variables can be generated
very fast [67] (which is nontrivial, given that the dominant
cost in naBvely implemented Gaussian-based projections can
be generating the random variables). For example, it takes
less than 2 s to generate 109 random Gaussian numbers
using 12 central processing unit (CPU) cores [32].

To understand why CS is preferable as a choice of
iterative solver compared to other methods such as the
conjugate-gradient-based LSRN, one has to take the
convergence rate and computation/communication costs
into account. In general, if (a bound for) the condition
number of the linear system is large or not known
precisely, then the CS method will fail ungracefully (while
LSQR will just converge very slowly). However, with the
very strong preconditioning guarantee of the Gaussian
transform, we have very strong control on the condition
number of the embedding, and thus the CS method can be
expected to converge within a very few iterations. In
addition, since CS does not have vector inner products
that require synchronization between nodes (while the
conjugate-gradient-based LSQR does), CS has one less
synchronization point per iteration, i.e., it has improved
communication properties. See Fig. 2 for the Python
code snippets of LSQR and CS, respectively. On each
iteration, both methods have to do two matrix–vector
multiplications, while CS only needs one cluster-wide
synchronization compared to two in LSQR. Thus, the
more communication-efficient CS method is enabled by
the very strong control on conditioning that is provided by
the more expensive Gaussian projection. It is this
advantage that makes CS favorable in the distributed
environments, where communication costs are considered
more expensive.

B. Solving ‘1-Regression in Distributed Environments
In this section, we describe implementation details

for both low-precision and high-precision solvers for
the ‘1-regression problem in large-scale distributed en-
vironments. These algorithms were implemented using

MapReduce framework [4] which (at least until the
relatively recent development of the Apache Spark
framework) was the de facto standard parallel environment
for analyzing massive data sets.

1) Low-Precision Solver: Recall that one can use the
sampling algorithm described in Section IV-C to obtain a
low-precision approximate solution for ‘1-regression. This
can be summarized in the following three steps.

1) Compute an ‘1 well-conditioned basis U ¼ AR%1

for A.
2) Construct an importance sampling distribution
fpigm

i¼1 based on the ‘1 row norms of U. Randomly
sample a small number of constraints according to
fpigm

i¼1 to construct a subproblem.
3) Solve the ‘1-regression problem on the subproblem.
Next, we will discuss some of the implementation details

of the above three steps in the MapReduce framework. The
key thing to note is that, for the problems we are
considering, the dominant cost is the cost of input/output,
i.e., communicating the data,13 and hence we want to extract
as much information as possible for each pass over the data.

The first step, as described in Section IV-C, is to
construct an ‘1 well-conditioned basis for A; and for this
one can use one of the following three methods: ER; a QR
factorization of FA, where FA is a low-distortion subspace
embedding matrix in terms of ‘1-norm (QR); or a
combination of these two (QR+ER method). See Table 4
for summary of these approaches to conditioning. Note
that many conditioning methods are embarrassingly
parallel, in which case it is straightforward to implement
them in MapReduce. For example, the CT with embedding
dimension r can be implemented in the following manner.

Mapper:

1: For each row ai of A, generate a vector ci 2 Rr!1

consisting r standard Cauchy random variables.
2: For j ¼ 1; . . . r, emit ðj; ci;jaiÞ where ci;j denotes the jth

element of ci.
Reducer:
1: Reduce vectors associated with key k to vk with addition

operation.
2: Return vk.

After collecting all the vectors vk, for k ¼ 1; . . . ; r, one
only has to assemble these vectors and perform QR
decomposition on the resulting matrix, which completes
the preconditioning process.

Fig. 2. Python code snippets for LSQR-based and CS-based iterations,

respectively, illustrating that the latter has one synchronization point

per iteration, while the former has two.

13There are other communication costs, but the dominant cost in the
MapReduce framework is the number of iterations, each of which involves
an enormous amount of communication. This particular cost is partly
mitigated by the state maintained in the Apache Spark framework, and as
more algorithms are developed in Apache Spark, more attention will need
to be paid to the other communication costs.
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With the matrix R%1 such that AR%1 is well condi-
tioned, a second pass over the data set is sufficient to
construct a subproblem and obtain several approximate
solutions to the original problem, i.e., the second and three
steps of the sampling algorithm above. Note that since
computation is a less precious resource than communica-
tion here, one can exploit this to compute multiple
subsampled solutions in this single pass. (For example,
performing, say, 100 matrix–vector products is only
marginally more expensive than performing 1, and thus
we can solve multiple subsampled solutions in a single
‘‘pass’’ with almost no extra effort. To provide an example,
on a ten-node Hadoop cluster, with a matrix of size ca.
108 ! 50, a single query took 282 s, while 100 queries took
only 383 s, meaning that the extra 99 queries come almost
‘‘for free.’’) We summarize the basic steps as follows.
Assume that A 2 Rm!n has condition number %1, s is the
sampling size, and nx is the number of approximate
solutions desired.14 Then, the following algorithm returns
nx approximate solutions to the original problem.

Mapper:

1: For each row ai of A, let pi ¼ minfskaik1=ð%1n1=2Þ; 1g.
2: For k ¼ 1; . . . ; nx, emit ðk; ai=piÞ with probability pi.
Reducer:
1: Collect row vectors associated with key k and assemble

Ak.
2: Compute x̂k ¼ arg mincT x¼1 kAkxk1 using interior-point

methods.
3: Return x̂k.

Note here, in the second step of the reducer above, since
the size of the subsampled matrix Ak typically only depends
on the low dimension n, the subproblem can be fit into the
memory of a single machine and can be solved locally.

As an aside, note that such an algorithm can be used to
compute approximate solutions for other problems such as
the quantile regression problem by only increasing the
sampling size by a constant factor. In [58], Yang et al.
evaluate the empirical performance of this algorithm by
using several different underlying preconditioners, e.g.,
CT, FCT, etc., on a terabyte-size data set in Hadoop to
solve ‘1-regression and other quantile regression problems.

2) High-Precision Solver: To obtain a high-precision
solution for the ‘1-regression problem, we have to resort to
iterative algorithms. See Table 9, where we summarize
several iterative algorithms [34], [42], [68], [69] in terms
of their convergence rates and complexity per iteration.
Note that, among these methods, although the interior
point cutting plane method (IPCPM) needs additional

work at each iteration, the needed number of passes is
linear in the low dimension n and it only has a dependence
on logð1=#Þ. Again, since communication is a much more
precious resource than computation in the distributed
application where this was implemented, this can be an
acceptable tradeoff when, e.g., a medium-precision
solution is needed.

Meng and Mahoney [43] proposed a randomized IPCPM
algorithm to solve the ‘1-regression problem to medium
precision in large-scale distributed environments. It includes
several features specially designed for MapReduce and
distributed computation. (To describe the method, recall
that IPCPM is similar to a bisection method, except that it
works in a high-dimensional space. It starts with a search
region S0 ¼ fxjSx + tg, which contains a ball of desired
solutions described by a separation oracle. At step k, we first
compute the maximum-volume ellipsoid Ek inscribing Sk.
Let yk be the center of Ek, and send yk to the oracle. If yk is
not a desired solution, the oracle returns a linear cut that
refines the search region Sk ! Skþ1.) The algorithm of [43]
is different from the standard IPCPM, mainly for the
following two reasons.

• Initialization using all the solutions returned by
sampling algorithms. To construct a search region
S0, one can use the multiple solutions returned by
calling the sampling algorithm, e.g., low-precision
solutions, to obtain a much better initial condition.
If we denote by x̂1; . . . x̂N the N approximation
solution, then given each x̂, let f̂ ¼ kAx̂k1 and
ĝ ¼ ATsignðAx̂Þ. Note that given x̂1; . . . ; x̂N, com-
puting f̂ i; ĝi for i ¼ 1; . . . ;N can be done in a single
pass. Then, we have

kx( % x̂k2 + kAðx
( % x̂Þk1 + kAx(k1 þ kAx̂k1

+ 2f̂ :

Hence, for each subsampled solution x̂i, we have a
hemisphere that contains the optimal solution. We
use all these hemispheres to construct a better initial
search region S0, which may potentially reduce the
number of iterations needed for convergence.

• Performing multiple queries per iteration. Instead
of sending one query point at each iteration, one
can exploit the fact that it is inexpensive to
compute multiple query points per iteration, and
one can send multiple query points at a time. Let

14The condition number parameter %1 can be estimated with a
traditional condition number estimator, or it can be computed to within
relative error # in an additional pass over the data [15].

Table 9 Iterative Algorithms for Solving ‘1-Regression
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us still use x̂i to denote the multiple query points.
Note that by convexity

kAx(k1 * kAx̂k1 þ ĝTðx( % x̂Þ:

This implies gTx( + gTx̂. That is, given any query
point x̂, the subgradient serves as a separation
oracle which returns a half-space that contains the
desired ball. This means that, for each query point
x̂i, a half-space containing the ball of desired
solutions will be returned.

Note that both of these differences take advantage of
performing extra computation while minimizing the
number of iterations (which is strongly correlated with
communication for MapReduce computations).

C. Detailed Empirical Evaluations of ‘2-Regression
Solvers in Parallel/Distributed Environments

In this section, we provide a detailed empirical
evaluation of the performance of RandNLA algorithms
for solving very overdetermined very large-scale
‘2-regression problems. Recall that the subspace embed-
ding that is a crucial part of RandNLA algorithms can be
data aware (i.e., a sampling algorithm) or data oblivious
(i.e., a projection algorithm). Recall also that, after obtaining
a subspace embedding matrix, one can obtain a low-precision
solution by solving the resulting subproblem, or one can
obtain a high-precision solution by invoking a iterative
solver, e.g., LSQR [62], for ‘2-regression, with a precondi-
tioner constructed from by the embedding. Thus, in this
empirical evaluation, we consider both random sampling
and random projection algorithms, and we consider solving
the problem to low precision, medium precision, and high
precision on a suite or data sets chosen to be challenging for
different classes of algorithms. We consider a range of
matrices designed to ‘‘stress test’’ all of the variants of the
basic meta-algorithm of Section II that we have been
describing, and we consider matrices of size ranging up to
just over the terabyte size scale.15

1) Experimental Setup: In order to illustrate a range of
uniformity and nonuniformity properties for both the
leverage scores and the condition number, we considered
the following four types of data sets:

• UG (matrices with uniform leverage scores and
good condition number);

• UB (matrices with uniform leverage scores and bad
condition number);

• NG (matrices with nonuniform leverage scores and
good condition number);

• NB (matrices with nonuniform leverage scores and
bad condition number).

These matrices are generated in the following manner. For
matrices with uniform leverage scores, we generated the
matrices by using the commands that are listed in Table 10.
For matrices with nonuniform leverage scores, we
considered matrices with the following structure:

A ¼ (B R
0 I

" #

where B 2 Rðm%d=2Þ!ðd=2Þ is a random matrix with each
element sampled from N ð0; 1Þ, I 2 Rðd=2Þ!ðd=2Þ is the
identity matrix, and R 2 Rðm%d=2Þ!ðd=2Þ is a random matrix
generated using 1e-8 * rand(m-d/2,d/2). In this
case, the condition number of A is controlled by (. It is
worth mentioning that the last d=2 rows of the above
matrix have leverage scores exactly 1 and the rest ones are
approximately d=2=ðn% d=2Þ. Also, for matrices with bad
condition number, the condition number is approximately
1e6 (meaning 106), while for matrices with good condition
number, the condition number is approximately 5.

To generate a large-scale matrix that is beyond the
capacity of RAM, and to evaluate the quality of the solution
for these larger inputs, we used two methods. First, we
replicate the matrix (and the right-hand side vector, when it
is needed to solve regression problems) REPNUM times, and
we ‘‘stack’’ them together vertically. We call this naBve way of
stacking matrices as STACK1. Alternatively, for NB or NG
matrices, we can stack them in the following manner:

~A ¼

(B R
/ / /
(B R
0 I

0

BB@

1

CCA:

We call this stacking method STACK2. The two different
stacking methods lead to different properties for the linear
system being solvedVwe summarize these in Table 11V
and, while they yielded results that were usually similar, as

15While our empirical evaluation is detailed, it is not exhaustive. In
particular, we do not evaluate weak scaling versus strong scaling, two
common metrics of interest in scientific computing and high-performance
computing.

Table 10 Commands (Presented in MATLAB format) Used to Generate

Matrices With Uniform Leverage Scores, i.e., the UG and UB Matrices. Here,

kappa Is a Parameter Used to Determine the Condition Number of the

Generated Matrix
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we mention below, the results were different in certain
extreme cases. With either method of stacking matrices, the
optimal solution remains the same, so that we can evaluate
the approximate solutions of the new large LS problems. We
considered these and other possibilities, but in the results
reported below, unless otherwise specified, we choose the
following: for large-scale UG and UB matrices, we use
STACK1 to generate the data; and, for large-scale NG and
NB matrices, we use STACK2 to generate the data.

Recall that Table 5 provides several methods for
computing an ‘2 subspace embedding matrix. Since a
certain type of random projection either can be used to
obtain an embedding directly or can be used (with the
algorithm of [15]) to approximate the leverage scores for
use in sampling, we consider both data-aware and data-
oblivious methods. Throughout our evaluation, we use the
following notations to denote various ways of computing
the subspace embedding:

• PROJ CW: random projection with the input-
sparsity time CW method;

• PROJ GAUSSIAN: random projection with Gauss-
ian transform;

• PROJ RADEMACHER: random projection with
Rademacher transform;

• PROJ SRDHT: random projection with subsampled
randomized discrete Hartley transform [70];

• SAMP APPR: random sampling based on approx-
imate leverage scores;

• SAMP UNIF: random sampling with uniform
distribution.

Note that, instead of using a vanilla SRHT, we perform our
evaluation with a subsampled randomized discrete Hartley
transform (SRDHT). (An SRDHT is a related FFT-based
transform which has similar properties to a SRHT in terms
of speed and accuracy but does not have the restriction on
the dimension to be a power of 2.) Also note that, instead
of using a distributed FFT-based transform to implement
SRDHT, we treat the transform as a dense matrix–matrix
multiplication, hence we should not expect SRDHT to
have computational advantage over other transforms.

Throughout this section, by embedding dimension, we
mean the projection size for projection-based methods and
the sampling size for sampling-based methods. Also, it is
worth mentioning that for sampling algorithm with approx-
imate leverage scores, and we fix the underlying embedding
method to be PROJ CW and the projection size c to be d2=4.
In our experiments, we found thatVwhen they were
approximated sufficiently wellVthe precise quality of the

approximate leverage scores does not have a strong influence
on the quality of the solution obtained by the sampling
algorithm. We will elaborate on this more in Section V-C3.

The computations for Table 12, Fig. 4, and Table 13
(i.e., for the smaller sized problems) were performed on a

Table 11 Summary of Methods for Stacking Matrices, to Generate Matrices Too Large to Fit Into RAM; Here, REPNUM Denotes the Number of Replications

and Coherence Is Defined as the Largest Leverage Score of the Matrix

Table 12 Quality of the Approximate Leverage Scores. The Test Was

Performed on an NB Matrix With Size 1e6 by 500. p̂ Denotes the

Distribution by Normalizing the Approximate Leverage Scores and p(

Denotes the Exact Leverage Score Distribution. DKLðpkqÞ Is the KL

Divergence [71] of q From p Defined as
P

i pi lnðpi=qiÞ. Let L ¼ fijp(i ¼ 1g
and S ¼ fijp(i G1g. In This Case, p̂L Denotes the Corresponding Slice of p̂,

and the Quantities p̂S;p(;L;p(:S Are Defined Similarly
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Fig. 3. Evaluation of all six of the algorithms on the four different types of matrices of size 1e7 by 1000. For each method, the following three

quantities are computed: relative error of the objective jf % f(j=f(; relative error of the certificate kx % x(k2=kx(k2; and the running time to

compute the approximate solution. Each subplot shows one of the above quantities versus the embedding dimension, respectively. For each

setting, three independent trials are performed and the median is reported.
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shared-memory machine with 12 Intel Xeon CPU cores at
clock rate 2 GHz with 128-GB RAM. In these cases, the
algorithms are implemented in MATLAB. All of the other
computations (i.e., for the larger sized problems) were
performed on a cluster with 16 nodes (1 master and
15 slaves), each of which has 8 CPU cores at clock rate
2.5 GHz with 25-GB RAM. For all these cases, the
algorithms are implemented in Spark via a Python API.

2) Overall Performance of Low-Precision Solvers: Here, we
evaluate the performance of the six kinds of embedding
methods described above (with different embedding
dimension) on the four different types of data set described
above (with size 1e7 by 1000). For dense transforms, e.g.,
PROJ GAUSSIAN, due to the memory capacity, the
largest embedding dimension we can handle is 5e4. For
each data set and each kind of the embedding, we compute
the following three quantities: relative error of the
objective jf % f (j=f(; relative error of the solution certif-
icate kx% x(k2=kx(k2; and the total running time to
compute the approximate solution. The results are
presented in Fig. 3.

As we can see, when the matrices have uniform leverage
scores, all the methods including SAMP UNIF behave
similarly. As expected, SAMP UNIF runs fastest, followed by
PROJ CW. On the other hand, when the leverages scores are
nonuniform, SAMP UNIF breaks down even with large

sampling size. Among the projection-based methods, the
dense transforms, i.e., PROJ GAUSSIAN, PROJ RADE-
MACHER, and PROJ SRDHT, behave similarly. Although
PROJ CW runs much faster, it yields very poor results until
the embedding dimension is large enough, i.e., c ¼ 3e5.
Meanwhile, the sampling algorithm with approximate
leverage scores, i.e., SAMP APPR, tends to give very reliable
solutions. (This breaks down if the embedding dimension in
the approximate leverage score algorithm is chosen to be too
small.) In particular, the relative error is much lower
throughout all choices of the embedding dimension. This
can be understood in terms of the theory; see [14], [17], and
[29] for details. In addition, its running time becomes more
favorable when the embedding dimension is larger.

As a more minor point, theoretical results also indicate
that the upper bound of the relative error of the solution
vector depends on the condition number of the system as
well as the amount of mass of b lies in the range space of A,
denoted by " [15]. Across the four data sets, " is roughly
the same. This is why we see the relative error of the
certificate, i.e., the vector achieving the minimum solution
tends to be larger when the condition number of the
matrix becomes higher.

3) Quality of the Approximate Leverage Scores: Here, we
evaluate the quality of the fast approximate leverage score
algorithm of [15], and we investigate the quality of the
approximate leverage scores with several underlying
embeddings. (The algorithm of [15] considered only
Hadamard-based projections, but other projection meth-
ods could be used, leading to similar approximation
quality but different running times.) We consider only an
NB matrix since leverage scores with nonuniform
distributions are harder to approximate. In addition, the
size of the matrix we considered is only rather small, 1e6
by 500, due to the need to compute the exact leverage
scores for comparison. Our implementation follows
closely the main algorithm of [15], except that we

Fig. 4. Performance of sampling algorithms with approximate leverage scores, as computed by several different underlying projections. The test

was performed on an NB matrix of size 1e6 by 500 and the sampling size was 1e4. Each subplot shows one of the following three quantities versus

the projection size used in the underlying random projection phase: relative error of the objective jf % f(j=f(; relative error of the certificate

kx % x(k2=kx(k2; and the running time. For each setting, five independent trials are performed and the median is reported.

Table 13 Quality of Preconditioning on an NB Matrix With Size 1e6 by 500

Using Several Kinds of Embeddings. For Each Setting, Five Independent

Trials Are Performed and the Median Is Reported
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consider other random projection matrices. In particular,
we used the following four ways to compute the
underlying embedding: namely, PROJ CW, PROJ
GAUSSIAN, PROJ RADEMACHER, and PROJ SRDHT.
For each kind of embedding and embedding dimension,
we compute a series of quantities which characterize the
statistical properties of the approximate leverage scores.
The results are summarized in Table 12.

As we can see, when the projection size is large
enough, all the projection-based methods to compute
approximations to the leverage scores produce highly
accurate leverage scores. Among these projection methods,
PROJ CW is typically faster but also requires a much larger
projection size in order to yield reliable approximate
leverage scores. The other three random projections
perform similarly. In general, the algorithms approximate
the large leverage scores (those that equal or are close to 1)
better than the small leverage scores, since (L and )L are
closer to 1. This is crucial when calling SAMP APPR since
the important rows should not be missed, and it is a
sufficient condition for the theory underlying the
algorithm of [15] to apply.

Next, we invoke the sampling algorithm for the ‘2-
regression problem, with sampling size s ¼ 1e4 by using
these approximate leverage scores. We evaluate the
relative error on both the solution vector and objective

and the total running time. For completeness and in order
to evaluate the quality of the approximate leverage score
algorithm, we also include the results by using the exact
leverage scores. The results are presented in Fig. 4.

These results suggest that the precise quality of the
approximate leverage scores does not substantially affect
the downstream error, i.e., sampling-based algorithms are
robust to imperfectly approximated leverage scores, as
long as the largest scores are not too poorly approximated.
(Clearly, however, we could have chosen parameters such
that some of the larger scores were very poorly approx-
imated, e.g., by choosing the embedding dimension to be
too small, in which case the quality would matter. In our
experience, the quality matters less since these approxi-
mate leverage scores are sufficient to solve ‘2-regression
problems.) Finally, and importantly, note that the solution
quality obtained by using approximate leverage scores is as
good as that of using exact leverage scores, while the
running time can be much less.

4) Performance of Low-Precision Solvers When n Changes:
Here, we explore the scalability of the low-precision
solvers by evaluating the performance of all the embed-
dings on NB matrices with varying n. We fix d ¼ 1000 and
let n take values from 2:5e5 to 1e8. These matrices are
generated by stacking an NB matrix with size 2:5e5 by

Fig. 5. Performance of all the algorithms on NB matrices with varying n from 2:5e5 to 1e8 and fixed d ¼ 1000. The matrix is generated using

STACK1. For each method, the embedding dimension is fixed to be 5e3 or 5e4. The following three quantities are computed: relative error of the

objective jf % f(j=f(; relative error of the certificate kx % x(k2=kx(k2; and the running time to compute the approximate solution. For each setting,

three independent trials are performed and the median is reported.
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1000 REPNUM times, with REPNUM varying from 1 to 400
using STACK1. For conciseness, we fix the embedding
dimension of each method to be either 5e3 or 5e4. The
relative error on certificate and objective and running time
are evaluated. The results are presented in Fig. 5.

Especially worthy mentioning is that when using
STACK1, by increasing REPNUM, as we pointed out, the
coherence of the matrix, i.e., the maximum leverage score,
is decreasing, as the size is increased. We can clearly see
that, when n ¼ 2:5e5, i.e., the coherence is 1, PROJ CW
fails. Once the coherence gets smaller, i.e., n gets larger,
the projection-based methods behave similarly and the
relative error remains roughly the same as we increased n.
This is because STACK1 does not alter the condition
number and the amount of mass of the right-hand side
vector that lies in the range space of the design matrix and
the lower dimension d remains the same. However, SAMP
APPR tends to yield larger error on approximating the
certificate as we increase REPNUM, i.e., the coherence gets
smaller. Moreover, it breaks down when the embedding
dimension is very small.

5) Performance of Low-Precision Solvers When d Changes:
Here, we evaluate the performance of the low-precision
solvers by evaluating the performance of all the embed-

dings on NB matrices with changing d. We fix n ¼ 1e7 and
let d take values from 10 to 2000. For each d, the matrix is
generated by stacking an NB matrix with size 2:5e5 by d 40
times using STACK1, so that the coherence of the matrix
is 1/40. For conciseness, we fix the embedding of each
method to be 2e3 or 5e4. The relative error on certificate
and objective and running time are evaluated. The results
are shown in Fig. 6.

As can be seen, overall, all the projection-based
methods behave similarly. As expected, the relative error
goes up as d gets larger. Meanwhile, SAMP APPR yields
lower error as d increases. However, it seems to have a
stronger dependence on the lower dimension of the
matrix, as it breaks down when d is 100 for small sampling
size, i.e., s ¼ 2e3.

6) Performance of High-Precision Solvers: Here, we
evaluate the use of these methods as preconditioners for
high-precision iterative solvers. Since the embedding can
be used to compute a preconditioner for the original linear
system, one can invoke iterative algorithms such as LSQR
[62] to solve the preconditioned LS problem. Here, we will
use LSQR. We first evaluate the conditioning quality, i.e.,
%ðAR%1Þ, on an NB matrix with size 1e6 by 500 using
several different ways for computing the embedding. The

Fig. 6. Performance of all the algorithms on NB matrices with varying d from 10 to 2000 and fixed n ¼ 1e7. The matrix is generated using STACK1.

For each method, the embedding dimension is fixed to be 2e3 or 5e4. The following three quantities are computed: relative error of the objective

jf % f(j=f(; relative error of the certificate kx % x(k2=kx(k2; and the running time to compute the approximate solution. For each setting, three

independent trials are performed and the median is reported.
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results are presented in Table 13. Then, we test the
performance of LSQR with these preconditioners on an
NB matrix with size 1e8 by 1000 and an NG matrix with
size 1e7 by 1000. For simplicity, for each method of
computing the embedding, we try a small embedding
dimension where some of the methods fail, and a large
embedding dimension where most of the methods
succeed. See Figs. 7 and 8 for details.

The convergence rate of the LSQR phase depends on
the preconditioning quality, i.e., %ðAR%1Þ where R is
obtained by the QR decomposition of the embedding of A,
FA. See Section IV-B for more details. Table 13 implies
that all the projection-based methods tend to yield
preconditioners with similar condition numbers once
the embedding dimension is large enough. Among them,
PROJ CW needs a much larger embedding dimension to
be reliable (clearly consistent with its use in low-
precision solvers). In addition, overall, the conditioning
quality of the sampling-based embedding method, i.e.,
SAMP APPR tends to be worse than that of projection-
based methods.

As for the downstream performance, from Fig. 7 we
can clearly see that, when a small embedding dimension

is used, i.e., s ¼ 5e3, PROJ GAUSSIAN yields the best
preconditioner, as its better preconditioning quality
translates immediately into fewer iterations for LSQR to
converge. This is followed by SAMP APPR. This relative
order is also suggested by Table 13. As the embedding
dimension is increased, i.e., using large embedding
dimension, all the methods yield significant improve-
ments and produce much more accurate solutions
compared to that of NOCO (LSQR without precondition-
ing), among which PROJ CW with embedding dimension
3e5 converges to a nearly machine-precision solution
within only five iterations. As for the running time, since
each iteration of LSQR only involves with two matrix–
vector multiplications (costs less than 2 min in our
experiments), the overall running time is dominated by
the time for computing the preconditioner. As expected,
PROJ CW runs the fastest and the running time of PROJ
GAUSSIAN scales linearly in the embedding dimension.
In SAMP APPR, the sampling process needs to make one
to two passes over the data set but the running time is
relatively stable regardless of the sampling size, as
reflected in Fig. 7(c) and (f). Finally, note that the
reason that the error does not drop monotonically in the

Fig. 7. Evaluation of LSQR with randomized preconditioner on an NB matrix with size 1e8 by 1000 and condition number 1e6. Here, several ways

for computing the embedding are implemented. In SAMP APPR, the underlying random projection is PROJ CW with projection dimension 3e5.

For completeness, LSQR without preconditioner is evaluated, denoted byNOCO. By small embedding dimension, we mean 5e3 for all the methods.

By large embedding dimension, we mean 3e5 for PROJ CW, 1e4 for PROJ GAUSSIAN, and 5e4 for SAMP APPR. For each method and embedding

dimension, the following three quantities are computed: relative error of the objective jf % f(j=f(; relative error of the certificate kx % x(k2=kx(k2;

and the running time to compute the approximate solution. Each subplot shows one of the above quantities versus the number of iterations,

respectively. For each setting, only one trial is performed.
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solution vector is the following. With the preconditioners,
we work on a transformed system, and the theory only
guarantees monotonicity in the decreasing of the relative
error of the certificate of the transformed system, not the
original one.

Finally, a minor but potentially important point should
be mentioned as a word of caution. As expected, when the
condition number of the linear system is large, vanilla
LSQR does not converge at all. On the other hand, when
the condition number is very small, from Fig. 8, there is
no need to precondition. If, in this latter case, a
randomized preconditioning method is used, then the
embedding dimension must be chosen to be sufficiently
large: unless the embedding dimension is large enough
such that the conditioning quality is sufficiently good,
then preconditioned LSQR yields larger errors than even
vanilla LSQR.

VI. DISCUSSION AND CONCLUSION

Large-scale data analysis and machine learning problems
present considerable challenges and opportunities to
signal processing, electrical engineering, scientific com-

puting, numerical linear algebra, and other research areas
that have historically been developers of and/or con-
sumers of high-quality matrix algorithms. RandNLA is an
approach, originally from theoretical computer science,
that uses randomization as a resource for the development
of improved matrix algorithms, and it has had several
remarkable successes in theory and in practice in small- to
medium-scale matrix computations in RAM. The general
design strategy of RandNLA algorithms (for problems
such as ‘2-regression and low-rank matrix approximation)
in RAM is by now well known: construct a sketch (either
by performing a random projection or by random
sampling according to a judiciously chosen data-depen-
dent importance sampling probability distribution), and
then use that sketch to approximate the solution to the
original problem (either by solving a subproblem on the
sketch or using the sketch to construct a preconditioner
for the original problem).

The work reviewed here highlights how, with appro-
priate modifications, similar design strategies can extend
(for ‘2-regression problems as well as other problems
such as ‘1-regression problems) to much larger scale
parallel and distributed environments that are increasingly

Fig. 8. Evaluation of LSQR with randomized preconditioner on an NB matrix with size 1e7 by 1000 and condition number 5. Here, several ways for

computing the embedding are implemented. In SAMP APPR, the underlying random projection is PROJ CW with projection dimension 3e5. For

completeness, LSQR without preconditioner is evaluated, denoted by NOCO. By small embedding dimension, we mean 5e3 for all the methods. By

large embedding dimension, we mean 3e5 for PROJ CW and 5e4 for the rest. For each method and embedding dimension, the following three

quantities are computed: relative error of the objective jf % f(j=f(; relative error of the certificate kx % x(k2=kx(k2; and the running time to

compute the approximate solution. Each subplot shows one of the above quantities versus the number of iterations, respectively. For each

setting, three independent trials are performed and the median is reported.
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common. Importantly, though, the improved scalability
often comes due to restricted communications, rather than
improvements in FLOPS. (For example, the use of the
Chebyshev semi-iterative method versus LSQR in LSRN on
MPI; and the use of the MIE with multiple queries on
MapReduce.) In these parallel/distributed settings, we can
take advantage of the communication-avoiding nature of
RandNLA algorithms to move beyond FLOPS to design
matrix algorithms that use more computation than the
traditional algorithms but that have much better commu-
nication profiles, and we can do this by mapping the
RandNLA algorithms to the underlying architecture in
very nontrivial ways. (For example, using more computa-
tionally expensive Gaussian projections to ensure stronger

control on the condition number; and using the MIE
with multiple initial queries to construct a very good
initial search region.) These examples of performing
extra computation to develop algorithms with improved
communication suggest revisiting other methods from
numerical linear algebra, optimization, and scientific
computing, looking in other novel ways beyond FLOPS
for better communication properties for many large-scale
matrix algorithms. h
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