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Abstract
In order to compute fast approximations to the sin-
gular value decompositions (SVD) of very large
matrices, randomized sketching algorithms have
become a leading approach. However, a key prac-
tical difficulty of sketching an SVD is that the
user does not know how far the sketched singular
vectors/values are from the exact ones. Indeed,
the user may be forced to rely on analytical worst-
case error bounds, which may not account for the
unique structure of a given problem. As a result,
the lack of tools for error estimation often leads to
much more computation than is really necessary.
To overcome these challenges, this paper develops
a fully data-driven bootstrap method that numer-
ically estimates the actual error of sketched sin-
gular vectors/values. Furthermore, the method is
computationally inexpensive, because it operates
only on sketched objects, and hence it requires no
extra passes over the full matrix being factored.

1. Introduction
During the past fifteen years, randomized sketching algo-
rithms have emerged as a powerful framework for comput-
ing approximate solutions to large-scale matrix problems in
machine learning, data analysis, and scientific computing.
Accordingly, given that the singular value decomposition
(SVD) is among the most essential matrix computations in
these domains, it has been a major focal point in the liter-
ature on randomized numerical linear algebra (RandNLA)
(e.g., Frieze et al., 2004; Drineas et al., 2006; Rokhlin et al.,
2010; Clarkson & Woodruff, 2009; Halko et al., 2011b;a;
Woodruff, 2014; Musco & Musco, 2015; Tropp et al., 2019,
among many others). Broadly speaking, this line of work
has led to a variety of randomized SVD algorithms that
can offer higher speed and scalability than classical deter-
ministic algorithms — provided that the user is willing to
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tolerate some approximation error. For this reason, the
performance of a sketched SVD hinges on an appropriate
tradeoff between computational cost and approximation er-
ror. However, one of the key unresolved challenges for users
is that the actual error is unknown, and as a result, it is hard
to control the tradeoff efficiently.

In practice, this issue has typically been handled in one of
two ways, each with their own limitations. The simplest
option is to rely on informal rules of thumb for deciding
how much computation to spend on a sketched SVD (e.g., in
terms of the “sketch size”), but such rules give no warning
when they fail, and this creates significant uncertainty in
downstream computations. Alternatively, a more cautious
option is to use analytical worst-case error bounds, but these
present other challenges: First, these bounds often involve
constants that are unspecified or dependent on unknown
parameters. Second, even when explicit constants are avail-
able, worst-case bounds are necessarily pessimistic, and
they may not account for the unique structure of a given
problem.

Based on these concerns, the RandNLA literature has shown
rising interest in a posteriori error estimation, which seeks
to improve upon worst-case analysis by numerically quan-
tifying error with data-driven methods (e.g., Liberty et al.,
2007; Woolfe et al., 2008; Halko et al., 2011b; Martinsson
& Voronin, 2016; Sorensen & Embree, 2016; Duersch &
Gu, 2017; Lopes et al., 2018; Yu et al., 2018; Lopes et al.,
2019b; Tropp et al., 2019; Chen & Lopes, 2020; Martinsson
& Tropp, 2020). (Note that hereafter we will use the sim-
pler phrase “error estimation”.) Likewise, error estimation
has the potential to make computations data-adaptive, so
that “just enough” work is done to achieve a specific error
tolerance for a specific input. Nevertheless, error estimation
methods are still scarce for many sketching algorithms, and
in particular, there has not yet been a systematic way to
directly estimate the errors of the singular vectors/values
in a sketched SVD. Therefore, the primary aim of the cur-
rent paper is to develop a method for solving this problem.
(More specific contributions associated with the method will
be outlined in Section 1.3.)
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1.1. Preliminaries on SVD and Sketching

Before we can explain the problem of error estimation in
precise terms, it is necessary to briefly review a few aspects
of classical SVD algorithms and their sketched versions.

Classical SVD. LetA ∈ Rn×d be a very large deterministic
input matrix with n ≥ d. (In the case where d ≥ n, all of
our work can be applied to the transpose of A instead.) The
SVD of A is a factorization of the form

A = UΣV >,

where the matrix U ∈ Rn×d has orthonormal columns
u1, . . . , ud ∈ Rn called left singular vectors, the matrix
V ∈ Rd×d has orthonormal columns v1, . . . , vd ∈ Rd
called right singular vectors, and the non-negative matrix
Σ = diag(σ1, . . . , σd) ∈ Rd×d contains the singular values
σ1 ≥ · · · ≥ σd. It will also be convenient to refer to the
“partial SVD”, which returns (u1, σ1, v1), . . . , (uk, σk, vk)
for some k ∈ {1, . . . , d}, and includes the ordinary SVD as
a special case when k = d. In large-scale settings, it is often
unaffordable to use classical (deterministic) algorithms to
compute the partial SVD to machine precision. With respect
to floating point operations, the O(ndk) cost of this compu-
tation can be prohibitive, but an even more severe obstacle
arises with respect to communication costs. Namely, in the
common situation when A is too large to be stored in fast
memory, classical algorithms are often infeasible because
they may require many passes over the entire matrix A (cf.
Golub & Van Loan, 2012).

Sketched SVD. As a way of improving scalability, sketch-
ing algorithms proceed by mapping A to a much shorter
matrix Ã ∈ Rt×d with t � n, referred to as a “sketch” of
A. More specifically, the matrix Ã is constructed as

Ã = SA,

where S ∈ Rt×n is a random “sketching matrix” that is
generated by the user. In essence, the matrix S is generated
so that Ã captures enough information to approximately
reconstruct (u1, v1, σ1), . . . , (uk, vk, σk), and a myriad of
choices for S have been proposed in the literature (cf. Ma-
honey, 2011; Woodruff, 2014; Kannan & Vempala, 2017,
for overviews). Commonly, these choices ensure that the
rows of S are i.i.d. vectors in Rn, and that E[S>S] = In.
For instance, two of the most well-known choices are
Gaussian random projections (RP), where the rows of
S are drawn from the Gaussian distribution N(0, 1t In),
and row-sampling matrices (RS), where the rows of S
are drawn from the set of re-scaled standard basis vectors
{ 1√

tp1
e1, . . . ,

1√
tpn

en} ⊂ Rn with sampling probabilities
p1, . . . , pn.

Once the sketch Ã has been obtained, the partial SVD of
A can then be approximated with a variety of approaches

that entail different costs and benefits. (We refer to the pre-
viously cited papers for further background.) Among these
possibilities, our work will focus on the well-established
sketch-and-solve approach, which has the merit of being
highly “pass efficient” (in the sense of Drineas et al. (2006)),
and hence inexpensive with respect to communication. In
addition, it will follow as a consequence of our work that
this approach has an extra benefit of being very amenable to
error estimation. Furthermore, error estimation for sketch-
and-solve is relevant to other approaches as well, because
if the estimated error is large, then this can guide the user
to consider a different approach that may deliver higher
accuracy at higher cost.

To summarize how the sketch-and-solve approach works,
it applies a classical partial SVD algorithm to the small
matrix Ã in order to compute its leading k singular val-
ues σ̃1, . . . , σ̃k and right singular vectors ṽ1, . . . , ṽk ∈ Rd.
Next, another set of vectors ŭj := Aṽj are computed for
1 ≤ j ≤ k and then normalized to yield ũj := ŭj/‖ŭj‖2.1

Then, the sequence (ũ1, σ̃1, ṽ1), . . . , (ũk, σ̃k, ṽk) is re-
turned as an approximation to (u1, σ1, v1), . . . , (uk, σk, vk).
Altogether, the number of floating point operations involved
is O(tdk+Csketch), where Csketch is the cost to obtain Ã. In
particular, for some popular types of row-sampling sketch-
ing matrices, this latter cost is Csketch = O(nd), and hence
only linear in the size of the input A. Furthermore, in terms
of communication, this approach often only requires 1 or 2
passes over A.

1.2. The Error Estimation Problem

After the sketched quantities (ũ1, σ̃1, ṽ1), . . . , (ũk, σ̃k, ṽk)
been computed, the user would (in principle) like to
be able to compare them with the exact quantities
(u1, σ1, v1), . . . , (uk, σk, vk) in terms of various error mea-
sures. To unify our discussion, let ρ(w,w′) denote a generic
non-negative measure of error for comparing two unit vec-
tors w and w′ of the same dimension. Also, since it is of
interest to have uniform control of error over a general set
of indices J ⊂ {1, . . . , k}, we will consider the following
random error variables

ε̃
U
(t) := max

j∈J
ρ(ũj , uj) and ε̃

V
(t) := max

j∈J
ρ(ṽj , vj),

as well as ε̃
Σ
(t) := maxj∈J |σ̃j − σj |. Although these

random variables have been written as functions of t to
indicate that they depend on the choice of t through the
sketched quantities, it is important to note that ε̃

U
(t), ε̃Σ(t),

and ε̃
V
(t) are never observed by the user.

Problem formulation. Our goal is to estimate the tightest
possible upper bounds on ε̃

U
(t), ε̃

Σ
(t), and ε̃

V
(t) that hold

1In the unlikely case Aṽj = 0, we put ũj := 0, and going for-
ward, we will use this same convention when normalizing vectors.
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with probability at least 1 − α, for some desired choice
of α ∈ (0, 1). In statistical terminology, such bounds are
called the (1− α)-quantiles of the error variables, and will
be denoted as q

U
(t), q

Σ
(t), and q

V
(t). More explicitly, q

U
(t)

is an unknown deterministic parameter defined as

q
U
(t) := inf

{
q ∈ [0,∞)

∣∣∣P(ε̃U(t) ≤ q
)
≥ 1− α

}
,

and similarly for q
Σ
(t) and q

V
(t).

With the above notation in place, we propose to develop a
fully data-driven method that will produce numerical quan-
tile estimates q̂

U
(t), q̂

Σ
(t), and q̂

V
(t). Specifically, the pro-

posed method is intended to satisfy two main criteria: (1)
The estimates should be accurate substitutes for the true
quantiles, in the sense that the event

ε̃
U
(t) ≤ q̂

U
(t) (1)

occurs with probability nearly equal to 1− α, and likewise
for q̂

Σ
(t) and q̂

V
(t); (2) The method should be computation-

ally affordable — so that the extra step of error estimation
does not interfere with the overall benefit of sketching. Ac-
cordingly, our work in Sections 3, 4, and 5 will show that
these criteria are achieved.

To give a more visual interpretation of the unknown quantile
q
U
(t), we show in Figure 1 how it is related to the fluctua-

tions of the error variable ε̃
U
(t). If we imagine a hypothetical

experiment where an oracle tells the user how ε̃
U
(t) evolves

as rows are incrementally added to a random sketching ma-
trix S (up to t = 3000 rows), then the red curve displays this
evolution. Similarly, the gray curves display the correspond-
ing evolution over many independent repetitions of the same
experiment. At any fixed t, the black curve represents the
0.95-quantile q

U
(t), which lies above ε̃

U
(t) in 95% of the

experiments. Lastly, it should be emphasized that the user
is not able to see any of these curves in practice.

er
ro

r
ε̃ U

(t
)

sketch size t

The error ε̃U(t) is smaller than 0.02
with probability 0.95 when t = 550.

true 0.95-quantile
random evolution of ε̃U(t)
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Figure 1. Visual interpretation of the quantile qU(t).

In this way, if the unknown curve q
U
(·) were accessible, it

could tell the user if a given initial sketch size t0 is suffi-
cient, and it could also allow the user to predict what larger

sketch size t1 > t0 might be needed to achieve a smaller
error. With this motivation in mind, our proposed method
will allow the user to obtain an accurate approximation to
the curve q

U
(·). Furthermore, the method will produce the

approximate curve after only a single run of the sketching
algorithm at a single initial sketch size t0. Indeed, it is some-
what surprising that this is possible, considering that q

U
(·)

theoretically describes the error over many runs.

1.3. Main Contributions and Related Work

From a practical standpoint, the most significant contribu-
tion of our work is that it provides the first way to directly
estimate the errors of singular vectors/values in a sketched
SVD. By comparison, the most closely related methods only
provide indirect error estimates, since they are designed to
compute norm bounds with respect to A and a low-rank
approximant2 (e.g., Liberty et al., 2007; Woolfe et al., 2008;
Halko et al., 2011b; Sorensen & Embree, 2016; Yu et al.,
2018; Tropp et al., 2019). In particular, these types of ap-
proaches have mostly been limited to either the Frobenius
or spectral norms, and generally produce upper bounds on
the norms that are conservative (cf. Yu et al., 2018, p.1342).
On the other hand, our approach is very flexible with respect
to the choice of error measure, and it does not suffer from
conservativeness because it targets the quantiles of ε̃

U
(t),

ε̃Σ(t), and ε̃
V
(t). Another crucial distinction is that the cited

approaches generally require 1 or more extra passes over A,
whereas our approach requires no extra passes.

Other related work. In recent years, bootstrap methods for
error estimation have been considered in a number of related
settings. In the statistics literature, the papers (El Karoui &
Purdom, 2019; Naumov et al., 2019) have analyzed the boot-
strap as a way to estimate the errors of sample eigenvalues
and sample eigenvectors in the context of large covariance
matrices, which is a topic originating from the classical re-
sults in (Beran & Srivastava, 1985). However, due to their
focus on covariance matrices, these works are not directly
applicable to analyzing both the left and right singular vec-
tors of a sketched SVD. Also, the theoretical setups in these
works do not cover the important case of row-sampling
sketches that is handled by our analysis. More generally,
bootstrapping and other statistical approaches have recently
been applied to quantify the errors of randomized least-
squares and Newton methods (Ahfock et al., 2017; Lopes
et al., 2018; Dobriban & Liu, 2019; Chen & Lopes, 2020),
matrix multiplication (Lopes et al., 2019b;a), and gradient
descent (Fang et al., 2018; Li et al., 2018; Su & Zhu, 2018;
Fang, 2019). See also the forthcoming survey (Martinsson &
Tropp, 2020, §4.5-4.6) for additional discussion of bootstrap
methods in RandNLA.

2Note that the top singular vectors/values of two matrices can
be close even when a norm distance between the matrices is large.
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2. Method for Error Estimation
Intuition. If it were possible to generate many independent
samples of the error variables ε̃

U
(t), ε̃Σ(t), and ε̃

V
(t), it

would be straightforward to construct estimates of q
U
(t),

q
Σ
(t) and q

V
(t). For instance, if an oracle provided 100

independent samples, say ε̃
V ,1(t), . . . , ε̃V,100(t), of the error

variable ε̃
V
(t), then the 95th percentile of those 100 numbers

would generally be a good estimate of q
V
(t) when α is

chosen as 0.05. However, in practice, generating these
samples is infeasible, because it would require the user to
re-run the sketching algorithm many times, and then find
the (unknown) sketching error for each run. In spite of this
difficulty, it turns out that it is possible to efficiently generate
approximate samples of the error variables, and this is the
essence of the bootstrap approach.

Generating approximate samples. In order to generate
approximate samples of ε̃

U
(t), ε̃Σ(t), and ε̃

V
(t), the key idea

is to create randomly “perturbed versions” of the sketched
singular vectors/values. For example, the randomly per-
turbed version of ṽj is denoted as ṽ∗j , and it is intended
to satisfy the following property. Namely, for each j, the
fluctuations of ṽ∗j around ṽj should be statistically similar
to the fluctuations of ṽj around vj . In other words, this idea
can be understood in terms of a parallel “bootstrap world”,
where the vectors ṽj and ṽ∗j respectively play the roles of
exact and sketched solutions.

The only remaining ingredient to address is the ran-
dom mechanism for computing the perturbed versions of
(ũ1, σ̃1, ṽ1), . . . , (ũk, σ̃k, ṽk). In short, this is done by form-
ing a matrix Ã∗ ∈ Rt×d whose rows are sampled with
replacement from the rows of Ã, and then doing computa-
tions with Ã∗ that are analogous to the ones in the original
sketching algorithm. These details are given in Algorithm 1.

As a matter of notation for expressing the outputs of Al-
gorithm 1, it is necessary to define the empirical (1 − α)-
quantile of a list of real numbers x1, . . . , xB . This quan-
tity is written as quantile[x1, . . . , xB ; 1 − α], and is de-
fined as inf{q ∈ R |FB(q) ≥ 1 − α}, where we write
FB(q) := 1

B

∑B
b=1 1{xb ≤ q} for the empirical distribu-

tion function associated with x1, . . . , xB .

Remarks. To clarify a couple of small items, we do not use
a subscript b on the right sides of equations (2), (3), and (4)
because only the left sides need to be stored. With regard
to the number of bootstrap samples B, our experiments in
Section 5 will show that the modest choice B = 30 works
well in our settings of interest.

3. Computational Considerations
Given that sketching algorithms from RandNLA are in-
tended to improve the efficiency of computations, it is im-

Algorithm 1 (Bootstrap estimation of sketching error).

Input: The sketch Ã ∈ Rt×d, the sketched sequence
(σ̃1, ṽ1), . . . , (σ̃k, ṽk), and the number of samples B.

• Compute the vectors Ãṽ1, . . . , Ãṽk and let ŭ1, . . . , ŭk denote
their normalized versions with respect to the `2-norm.

• For b = 1, . . . , B do in parallel

1. Form a matrix Ã∗ ∈ Rt×d whose rows are obtained by
sampling t rows with replacement from Ã.

2. Compute the top k singular values and right singular vectors
of Ã∗, denoted as σ̃∗1 , . . . , σ̃∗k and ṽ∗1 , . . . , ṽ∗k . Then,
compute the bootstrap samples

ε̃∗
Σ,b

(t) := max
j∈J
|σ̃∗j − σ̃j | (2)

ε̃∗
V,b

(t) := max
j∈J

ρ(ṽ∗j , ṽj). (3)

3. Compute the vectors Ãṽ∗1 , . . . , Ãṽ∗k and let ŭ∗1, . . . , ŭ∗k
denote their normalized versions with respect to the `2-norm.
Then, compute the bootstrap sample

ε̃∗
U,b

(t) := max
j∈J

ρ(ŭ∗j , ŭj). (4)

Return: The estimates q̂U(t), q̂Σ(t), and q̂V(t). They are defined
as q̂U(t) := quantile[ε̃∗

U,1
(t), . . . , ε̃∗

U,B
(t); 1− α], and similarly

for q̂Σ(t), and q̂V(t) using the samples generated in (2) and (3).

portant to explain why the extra step of error estimation
does not interfere with this goal. Below, we describe some
special aspects of Algorithm 1 that make error estimation
affordable.

Pass efficiency and scalability. Because the inputs to Al-
gorithm 1 consist entirely of sketched objects, it follows
that error estimation requires no access to the full matrix
A (i.e., zero extra passes). Furthermore, this also means
that the processing cost of Algorithm 1 is independent of
the large dimension n. To put these two features of Algo-
rithm 1 into context, it is worth noting that the sketched
SVD typically requires at least 1 or 2 passes over A, and
typically has a processing cost that is linear in n. Hence,
from this standpoint, if the user can afford to compute a
sketched SVD, then the extra step of error estimation should
be affordable as well.

Parallelism and cloud/serverless computing. The loop
in Algorithm 1 can be executed in an embarrasingly parallel
manner, since each iteration b = 1, . . . , B is independent
of the others. In addition, the computations at each itera-
tion only have a small O((t ∨ k)d) memory requirement,
which is well-suited to modern distributed computing envi-
ronments, such as cloud/serverless computing (cf. Kleiner
et al., 2014; Jonas et al., 2019). Likewise, it is natural to con-
sider distributing the B iterations across O(B) machines,
and in this case, the processing cost of Algorithm 1 is only
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O(tdk) on a per-machine basis (for common choices of ρ).
In fact, our experiments in Section 5 show that when A is
on the order of 100GB, it is possible to obtain high quality
error estimates in a matter of seconds when Algorithm 1 is
distributed across B machines.

Extrapolation. One more valuable feature of Algorithm 1
is that it can be substantially accelerated via an extrapolation
rule. At a high level, this refers to a two-step process of
(1) computing a “rough” sketched SVD based on an initial
sketch size t0, and then (2) using Algorithm 1 to forecast
what larger sketch size t1 > t0 is sufficient to achieve
a desired error tolerance. At a more technical level, the
extrapolation rule may be derived from the fact that the error
variables ε̃

U
(t), ε̃

Σ
(t), and ε̃

V
(t) tend to have fluctuations on

the order of 1/
√
t (due to the central limit theorem).

Based on this anticipated scaling behavior, the error ε̃
U

(t0)
at an initial sketch size t0 should be larger than the error
ε̃
U

(t1) at a sketch size t1 > t0 by a factor of about
√
t1/t0.

Hence, this suggests that if we use Algorithm 1 to obtain an
error estimate q̂

U
(t0) from the initial sketched SVD, then

we can re-scale this estimate by a factor of
√
t0/t1 to get a

“free” estimate of q
U

(t1). In other words, we may define the
extrapolated error estimate

q̂ ext
U

(t1) :=
√
t0√
t1
q̂
U
(t0) (5)

for any choice of t1 greater than t0, and likewise for q̂ ext
Σ

(t1)
and q̂ ext

V
(t1).

The crucial point to notice about the extrapolation rule (5)
is that running Algorithm 1 based on a sketch of size t0
is much cheaper than a sketch of size t1 (by a factor of
t1/t0 per iteration). Moreover, it turns out that this rule
provides accurate estimates even when t1 is larger than t0
by an order of magnitude, and this will be demonstrated
empirically in Section 5. Altogether, this allows the user to
allocate computational resources in a way that is adaptive
to the input at hand.

4. Theory
In this section, we present our main theoretical result (Theo-
rem 1), which shows that all three quantile estimates q̂

U
(t),

q̂
Σ
(t), and q̂

V
(t) produced by Algorithm 1 are asymptotically

valid substitutes for the unknown quantiles q
U
(t), qΣ(t), and

q
V
(t). Furthermore, the result is applicable to either of the

cases where n� d or d� n. For brevity, we will deal only
with the former case, because the latter case can be handled
by considering the transpose of A.

Theoretical setup. Our result is formulated in terms of
a sequence of deterministic matrices An ∈ Rn×d indexed
by n = 1, 2, . . . , such that d remains fixed as n → ∞.
Likewise, the number k ∈ {1, . . . , d} and the set of indices
J ⊂ {1, . . . , k} remain fixed as well. In addition, for

each n, there is an associated random sketching matrix
Sn ∈ Rtn×n and a number of bootstrap samples Bn such
that tn →∞ andBn →∞ as n→∞. Here, it is important
to note that we make no restriction on the sizes of tn andBn
relative to n, and hence we allow tn/n→ 0 andBn/n→ 0.
Lastly, in order to lighten notation in Theorem 1, we will
suppress dependence on n for the outputs of Algorithm 1,
as well the exact singular vectors/values (uj , vj , σj) of An
and their sketched versions (ũj , ṽj , σ̃j).

With regard to the choice of error measure ρ for the sketched
singular vectors, we will focus on the “sine distance” ρsin,
defined for any Euclidean unit vectors w and w′ of the same
dimension as

ρsin(w,w′) :=
√

1− (w>w′)2. (6)

This is a standard error measure in the analysis of SVD,
because it is invariant to sign changes of w and w′, and
hence automatically handles the sign ambiguity of singular
vectors (cf. Stewart & Sun, 1990; Anderson et al., 1999).
Its name derives from the fact that it can be interpreted as
the sine of the acute angle between the one-dimensional
subspaces spanned by w and w′.

Next, we state some assumptions for analyzing different
types of sketching matrices. When Sn is a Gaussian random
projection, we make the following assumption.

Assumption RP. There is a positive definite matrix G∞
in Rd×d such that 1

nA
>
nAn → G∞ as n → ∞, and the

eigenvalues of G∞ each have multiplicity 1.

In the case when Sn is a row-sampling matrix, we will use
an assumption that augments Assumption RP with a few
conditions. To state these conditions, let (p1, . . . , pn) de-
note the row-sampling probabilities for Sn, and let al ∈ Rd
denote the lth row of An. In addition, let r̃n ∈ Rd de-
note the first row of the re-scaled sketch

√
t√
n
SnAn, and let

v1, v2 ∈ Rd denote the top two eigenvectors of G∞.

Assumption RS. The following conditions hold in addi-
tion to Assumption RP. For any fixed matrix C ∈ Rd×d,
the sequence var(r̃>nCr̃n) converges to a finite limit `(C),
possibly zero, as n → ∞. Furthermore, if C is chosen
as C = v1v

>
1 or C = v1v

>
2 , then the limit `(C) is positive.

Lastly, the condition max1≤l≤n ‖ 1√
npl

al‖2 = o(t
1/8
n ) holds

as n→∞.

Remarks. To provide some explanation for Assumptions
RP and RS, the first mostly plays the role of a “stability”
condition, which ensures that various functions of An have
well-behaved limits as n→∞. In particular, the 1

n prefac-
tor of the matrix 1

nA
>
nAn is natural because it allows the

matrix to be written as the average 1
n

∑n
l=1 ala

>
l . Also, the

requirement that the eigenvalues of G∞ have multiplicity 1
is used so that tools from matrix calculus can be applied to
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the matrix 1
nA
>
nAn within a neighborhood of G∞. (Without

a requirement of this type, the functions that send a matrix
to its eigenvectors/values become non-differentiable (Mag-
nus & Neudecker, 2019, Ch. 9.8).) Next, the conditions in
Assumption RS are needed to rule out certain extreme types
of matrices An that interfere with techniques related to the
central limit theorem. (For instance, if all the rows ofAn are
identical, then all sketches obtained by row sampling will be
identical, and then the error variables will have degenerate
distributions.) Lastly, in the supplementary material, we
provide detailed examples of matrices An that satisfy both
assumptions.

In a nutshell, our main result shows that for large problems,
Algorithm 1 provides estimates q̂

U
(t), q̂

Σ
(t), and q̂

V
(t) that

nearly achieve the ideal coverage probability of 1 − α, as
in (1). In addition, it is worth noting that the probability P
in Theorem 1 accounts for all sources of randomness (both
from the sketching matrix and bootstrap sampling).
Theorem 1. Suppose that Assumption RP holds when Sn is
a Gaussian random projection, or that Assumption RS holds
when Sn is a row-sampling matrix. Also, let q̂

U
(tn), q̂Σ(tn),

and q̂
V

(tn) denote the outputs of Algorithm 1. Then, for any
fixed set J ⊂ {1, . . . , k} containing 1, and any α ∈ (0, 1),
the following three limits hold as n→∞,

P
(

max
j∈J

ρsin(ũj , uj) ≤ q̂
U
(tn)

)
−→ 1− α, (7)

P
(

max
j∈J
|σ̃j − σj | ≤ q̂

Σ
(tn)

)
−→ 1− α, (8)

P
(

max
j∈J

ρsin(ṽj , vj) ≤ q̂
V
(tn)

)
−→ 1− α. (9)

Remarks. The proof is deferred to the appendices due
its length. The main theoretical challenge is to es-
tablish central limit theorems for each of the random
variables maxj∈J ρsin(ũj , uj), maxj∈J |σ̃j − σj |, and
maxj∈J ρsin(ṽj , vj), as well as their bootstrap analogues.
In carrying this out, some of the essential technical ingredi-
ents are explicit formulas for matrix differentials (Jacobians)
associated the functions that send a matrix to its eigenvec-
tors/values (Magnus & Neudecker, 2019, Ch. 9.8). More
specifically, these formulas play an important role in deter-
mining the asymptotic variance in the central limit theorems
just mentioned. Another notable technical point is that the
analysis handles the left singular vectors (in Rn) and the
right singular vectors (in Rd) in a streamlined way — even
though the left singular vectors have a diverging dimension
as n→∞.

Lastly, to understand how Theorem 1 fits into the broader
context of the literature on sketched SVD, it should be
emphasized that our analysis is based on distributional ap-
proximation, whereas most other theoretical work has been
based on tail bounds. The key benefit of distributional ap-

proximation is that it allows us to show that the coverage
probabilities of q̂

U
(tn), q̂Σ(tn) and q̂

V
(tn) approach the ideal

value of 1− α. By contrast, tail bounds are often only able
to quantify such probabilities up to constants that may be
unspecified or conservative.

5. Experiments
In this section, we present a collection of synthetic and nat-
ural examples that demonstrate the practical performance
of Algorithm 1. In particular, we show that the extrapola-
tion rule (5) accurately predicts error as a function of the
sketch size t. For simplicity, all the synthetic examples in
Section 5.1 deal with the approximation of the leading triple
(u1, σ1, v1), so that the error variables ε̃

U
(t), ε̃

Σ
(t), and ε̃

V
(t)

correspond to the index set J = {1}. Other choices of the
index set J are considered for real data in Section 5.2, as
well as for synthetic data in the supplementary material.
Also, the sine distance (6) will be used in all examples as
the measure of error for the singular vectors, and α will
always be set to 0.05.

5.1. Synthetic Examples

First, we consider tall synthetic matrices with (n, d) =
(105, 3000) that are characterized by low effective rank and
varying degrees of singular value decay.

Parameter settings. The matrix A was specified in terms
of the three factors U , Σ, and V of its SVD. The factors U
and V were generated at random from the uniform (Haar)
distributions on the sets of orthonormal matrices of sizes
n× d and d× d respectively. The singular values of A were
chosen as Σ = diag(1−β , 2−β , . . . , d−β) for three choices
of the decay parameter β ∈ {0.5, 1.0, 2.0}.
Design of experiments. For each choice of the sketch size
t in a grid ranging from 500 up to 6000, we generated 500 in-
dependent sketching matrices S ∈ Rt×n, which yielded 500
realizations of Ã ∈ Rt×d. Here, we used “squared-length
sampling” (Frieze et al., 2004) to construct the sketch Ã in
each trial, since it is a popular option for row sampling. (In
the supplement, we also provide experiments with sketches
obtained from the subsampled randomized Hadamard trans-
form (Ailon & Chazelle, 2006).) Next, each realization of
Ã yielded error variables ε

U
(t), ε

Σ
(t), and ε

V
(t). In turn, we

treated the empirical 95th percentiles of these 500 realiza-
tions as ground truth for the ideal quantiles q

U
(t), q

Σ
(t), and

q
V
(t), plotted with black dashed lines in Figure 2.

Algorithm 1 was applied to the sketched SVD resulting from
each of the 500 matrices Ã at each sketch size t in the grid,
using a choice of B = 30 in every instance. In total, this
produced 500 realizations of q̂

U
(t), q̂Σ(t) and q̂

V
(t) at each

t. The respective averages of these 500 estimates at each t
are plotted with solid blue lines in Figure 2.



Error Estimation for Sketched SVD

1000 2000 3000 4000 5000 6000
0.010

0.020

0.030

0.040

true 0.95-quantile
ave. bootstrap quantile
extrapolation (±1 sd)

ε̃ Σ
(t

)
β = 0.5

1000 2000 3000 4000 5000 6000

0.005

0.010

0.015

0.020

β = 1.0

1000 2000 3000 4000 5000 6000

0.002

0.004

0.006

β = 2.0

(s
in

gu
la

rv
al

ue
s)

1000 2000 3000 4000 5000 6000

0.050

0.075

0.100

0.125

0.150

ε̃ V
(t

)

1000 2000 3000 4000 5000 6000
0.010

0.020

0.030

0.040

0.050

1000 2000 3000 4000 5000 6000

0.005

0.010

0.015

0.020

(r
ig

ht
si

ng
ul

ar
ve

ct
or

s)

1000 2000 3000 4000 5000 6000

0.020

0.040

0.060

0.080

sketch size t

ε̃ U
(t

)

1000 2000 3000 4000 5000 6000
0.005

0.010

0.015

0.020

sketch size t
1000 2000 3000 4000 5000 6000

0.001

0.002

0.003

0.004

sketch size t

(l
ef

ts
in

gu
la

rv
ec

to
rs

)

Figure 2. We consider artificial matrices of dimension (n, d) = (105, 3 × 103) that have singular value decay profiles of the form
σj = j−β for j ∈ {1, . . . , d} with β ∈ {0.5, 1.0, 2.0}. The error variables correspond to the index set J = {1}, and the simulations
involve 500 trials and 30 bootstraps per trial. The three rows of plots correspond to the error quantiles for the singular values (top), right
singular vectors (middle), and left singular vectors (bottom).

To study the performance of the extrapolation rule (5), we
applied it to each of the 500 quantile estimates produced at
t0 = 500, which resulted in 500 realizations of each of the
curves q̂ ext

U
(·), q̂ ext

Σ
(·), and q̂ ext

V
(·). The respective averages

of each type of curve are plotted with solid red lines in
Figure 2, and the light red envelopes represent ±1 standard
deviation around the average.

Results for synthetic examples. The results show that the
bootstrap quantile estimates, as well as their extrapolated
versions, are excellent approximations to the true quantiles
over the entire range of t. This behavior is also consistent
across the different decay parameters β ∈ {0.5, 1.0, 2.0}.
Moreover, we see that this performance holds when the true
quantiles range over several different orders of magnitude.
Hence, even in situations where the sketching errors are
larger, the bootstrap is helfpul because it can tell the user
that a higher precision SVD algorithm may be needed to
reach a given error tolerance.

5.2. Examples from Applications

Now we turn to some examples arising from applications in
climate science and fluid dynamics.

Sea surface temperature data. In the analysis of sea-
surface temperature (SST) data, principal components
(henceforth called “modes”) play an important role in visu-

alizing the structure of climate patterns. Due to the massive
scale of such data, it is impractical to use classical SVD
algorithms, but fortunately, it is often possible to gain clear
physical insights from approximate computations. Conse-
quently, this application is well-suited to sketching algo-
rithms (Erichson et al., 2020; 2019).

We consider satellite-based recordings of SST data collected
during the years 1981 to 2019, comprising d = 14001 tem-
poral snapshots (Reynolds et al., 2007). Each snapshot
measures the daily temperature means at n = 691150 spa-
tial grid points across the globe. In total, the data requires
72GB in storage.

The left panel of Figure 3 shows the performance of the
bootstrap estimate q̂

U
(t), where the experiments were or-

ganized in the same way as in Section 5.1, and the results
are plotted in the same format. In addition to the fact that
the extrapolated estimates are fairly accurate, there are two
other aspects of this example that are especially encour-
aging: (1) The intial sketch size t0 = 500 corresponds
to an extremely small fraction (500/691150 ≈ 0.0007) of
the data. (2) When Algorithm 1 was distributed across 30
machines, it was possible to generate B = 30 bootstrap
samples at t0 = 500 in less than 4 seconds (including over-
head costs). Thus, this is fast enough to provide the user
with error estimates on a time scale that is compatible with
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Figure 3. Bootstrap error estimates for the 1st and 4th sketched left singular vectors of the SST dataset (691150× 14001), using squared-
length sampling. The error variable in the top left plot corresponds to the index set J = {1} and the error variable in the bottom left plot
corresponds to J = {4}. The simulations involve 500 trials and 30 bootstraps per trial. In addition we show the (exact) deterministic
mode and a single instance of a sketched mode using t = 3000. At this sketch size, we can see that with 95% probability, the error (sine
distance) is less than 0.002 for J = {1}, and less than 0.2 for J = {4}. In the globe plots, red indicates warm temperatures, while blue
indicates cold temperatures.

interactive data analysis.

The right panel of Figure 3 gives a visual comparison be-
tween the exact and sketched versions of the 1st and 4th
modes. More specifically, the modes are visualized by pro-
jecting their 691150 entries onto a set of geospatial coordi-
nates. For the 1st mode, the extrapolated bootstrap method
would reliably tell the user that a sketch size of t = 3000
corresponds to a sine distance of less than 0.002 with 95%
probability, which conforms with the fact that the exact and
sketched modes are nearly indistinguishable to the human
eye. In the case of the 4th mode, the extrapolated bootstrap
method overestimates the error, but only by a small amount.

Large adjacency matrices in fluid dynamics. Computing
the eigenvectors of very large adjacency matrices is a fre-
quently encountered problem in many application domains.
When these matrices are dense, eigenvector computations
are especially costly, which makes sketching algorithms a
natural approach. As an illustration of this type of situa-
tion, we consider a dense symmetric adjacency matrix that
encodes dynamics in a fluid flow system. In this context,
the eigenvectors carry information about the strength of vor-
tices in the system. (We refer to (Bai et al., 2019) for further
background.) Specifically, the adjacency matrix is of size
n× n with n = 116964, which requires 101GB of storage.

The left panel of Figure 4 shows the performance of q̂
V

(t),
where we note that v1 corresponds to the top eigenvector,
since A is symmetric. (The experiments here were designed
in the same way as in Section 5.1.) From looking at the
left panel, we see that the extrapolated bootstrap estimates

are accurate over a large range of sketch sizes. Also, by
distributing Algorithm 1 across 30 machines, it was possible
to generate B = 30 bootstrap samples at t0 = 500 in only
11.5 seconds (including overhead costs). Indeed, this is a
remarkably short amount of time for error estimation in the
context of a 101GB matrix.

The right panel of Figure 4 gives a visual comparison of the
exact and sketched eigenvectors, where blue/red correspond
to strong/weak vortices. As in the case of the SST data, this
comparison shows that Algorithm 1 can provide the user
with reliable confirmation that the sketched approximation
is of high quality.

6. Conclusion
In this work, we developed a fully data-driven bootstrap
method that numerically estimates the actual error of
sketched singular vectors/values. From a practical stand-
point, this allows the user to inspect the quality of a rough
initial sketched SVD, and then adaptively predict how much
extra work is needed to reach a given error tolerance. Also,
our numerical results show that the estimates are accurate
for choices of A in a range of conditions, including some
large-scale applications related to fluid dynamics and cli-
mate science.

Computationally, our method readily scales to very large
problems by taking advantage of inherent speedups based
on parallelism and extrapolation. In fact, these speedups are
so substantial that even when A is on the order of 100GB,
it is possible to obtain high quality error estimates within a
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Figure 4. Bootstrap error estimates for the dominant two sketched eigenvectors of a dense adjacency matrix (116964× 116964), using
squared-length sampling. Here, the error variables correspond to the index set J = {1} (top) and J = {2} (bottom), respectively. The
simulations involve 500 trials and 30 bootstraps per trial. In addition we show the (cropped) deterministic and sketched mode using
t = 6000. At this sketch size, we can see that with 95% probability, the error (sine distance) is less than 0.03 for J = {1}, and less than
0.1 for J = {2}.

matter of seconds after a sketched SVD has been computed.

Theoretically, we have shown in Theorem 1 that the quantile
estimates q̂

U
(t), q̂

Σ
(t), and q̂

V
(t) are consistent, in the sense

that they achieve the desired coverage probability as the size
of the problem becomes large.
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