
Approximating the Solution to Mixed Packing and
Covering LPs in parallel Õ(ε−3) time
Michael W. Mahoney1, Satish Rao2, Di Wang2, and Peng Zhang3

1 International Computer Science Institute and Department of Statistics, UC
Berkeley,
Berkeley, USA
mmahoney@stat.berkeley.edu

2 Department of Electrical Engineering and Computer Sciences, UC Berkeley,
Berkeley, USA
wangd@eecs.berkeley.edu,satishr@berkeley.edu

3 Department of Computer Science, Georgia Tech,
Atlanta, USA
pzhang60@gatech.edu

Abstract
We study the problem of approximately solving positive linear programs (LPs). This class of
LPs models a wide range of fundamental problems in combinatorial optimization and operations
research, such as many resource allocation problems, solving non-negative linear systems, com-
puting tomography, single/multi commodity flows on graphs, etc. For the special cases of pure
packing or pure covering LPs, recent result by Allen-Zhu and Orecchia [2] gives Õ(1

ε3)-time par-
allel algorithm, which breaks the longstanding Õ(1

ε4) running time bound by the seminal work
of Luby and Nisan [10].

We present new parallel algorithm with running time Õ(1
ε3) for the more general mixed

packing and covering LPs, which improves upon the Õ(1
ε4)-time algorithm of Young [18,19]. Our

work leverages the ideas from both the optimization oriented approach [2,17], as well as the more
combinatorial approach with phases [18, 19]. In addition, our algorithm, when directly applied
to pure packing or pure covering LPs, gives a improved running time of Õ(1

ε2).

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity

Keywords and phrases Mixed packing and covering, Linear program, Approximation algorithm,
Parallel algorithm

Digital Object Identifier 10.4230/LIPIcs.ICALP.2016.52

1 Introduction

Mixed packing and covering linear programs (LPs) are LPs formulated with non-negative
coefficients, non-negative constraints and non-negative variables. They model a wide range
of fundamental problems in combinatorial optimization and operations research, thus have
long drawn interest in theoretical computer science [1,2,10,18]. Notable special cases include
pure packing LPs and pure covering LPs, which apply to most resource allocation problems,
and can be formulated respectively as maxx≥0{cTx : Ax ≤ b} and minx≥0{cTx : Ax ≥ b}
where c,A, b ≥ 0. More general than the pure packing and covering LPs, the mixed packing
and covering LPs further capture problems requiring both packing and covering constraints,
including solving non-negative linear systems, computing tomography, and single/multi com-
modity flows on graphs.

EA
T

C
S

© Michael Mahoney and Satish Rao and Di Wang and Peng Zhang;
licensed under Creative Commons License CC-BY

43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016).
Editors: Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi;
Article No. 52; pp. 52:1–52:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.52
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

52:2 Approximating the Solution to Mixed Packing and Covering LPs in parallel Õ(ε−3) time

Formally, the mixed packing and covering LP is the optimization problem

min{λ : Px ≤ λp,Cx ≥ c,x ≥ 0} (1)

where P,C ,p, c all have non-negative entries. A (1+ ε)-approximation is a feasible solution
λ,x achieving λ ≤ (1 + ε)λOPT.

Although one can use general LP solvers such as interior point method to solve packing
and covering with convergence rate of log(1

ε) [5,8,9], such algorithms usually have very high
per-iteration cost, as methods such as the computation of the Hessian and matrix inversion
are involved. With the abundance of large-scale datasets, as well as the growing reliance
on multiprocessors and cloud computing, low precision iterative solvers that can be highly
parallelized are often more popular choices. Such parallel solvers compute approximate
solutions usually in time with a poly-log dependence on the problem size, and nearly-linear
total work, but they have poly(1

ε) dependence on the approximation parameter ε.
Based on whether the running time depends on the width ρ, a parameter which typically

depends on the dimension and the largest entry of A, these algorithms can be divided
into width-dependent solvers and width-independent solvers. Width-dependent solvers are
usually pseudo-polynomial, as the running time depends at least linearly on ρOPT, which
itself can be large, while width-independent solvers are more efficient in the sense that they
provide truly polynomial-time approximation solvers.

In this paper we focus on width-independent algorithms that produce 1 + ε approxima-
tions in poly(logn, 1

ε) time and nearly-linear work. Time and work are standard notions from
parallel algorithms that correspond to the longest chain of dependent operations and the
total operations performed. In particular, time has a natural correspondence with iteration
count, and these two measures have been used to study the performance of packing/covering
LPs before [19]. Since the focus of this line of work is not on optimizing the log factors,
we will follow the standard practice of using Õ to hide poly-log factors (which are at most
log3 n) in our discussion1.

1.1 Previous work
Most of the works on mixed packing and covering LPs, as well as the works on the spe-
cial cases of pure packing and pure covering LPs, take one of the two approaches. The
first approach is based on turning the constrained LPs into convex and smooth objective
functions with trivial or no constraints. Approximately solving the LP is then reduced to
approximately optimizing the smoothed function (see [13]), and general-purpose optimiza-
tion schemes are usually applied directly. This approach traditionally gives algorithms that
work in more general settings, but are width-dependent in the case of packing and covering
(e.g., [3, 12, 13, 16]). Recent breakthroughs in [1, 2] leverage the insight from optimization
([21]) and the special structure of packing and covering problems, and get the first width-
independent algorithms using first order optimization methods. In particular, [2] gives a
parallel algorithm that takes Õ(1

ε3) time and Õ(Nε3) work. Here N is the size of the input,
i.e., the total number of non-zeros in the constraint matrices P and C . The result can be
improved to run in Õ(1

ε2) time and Õ(Nε2) work with simple modifications [17]. As for sequen-
tial algorithms, the remarkable result in [1] combines width-independence with Nesterov-like
acceleration ([13,14]), and gets a randomized algorithm with running time Õ(Nε). However,

1 Õ(f(n)) is often used to denote O(f(n) logO(1)(f(n))), we modify it to include an additional factor of
logO(1) n.

M. Mahoney and S. Rao and D. Wang and P. Zhang 52:3

both results in [1, 2] are limited to pure packing and pure covering problems, and prior to
our work no methods are able to obtain a time of Õ(1

ε3) or better for mixed covering and
packing LPs [19].

The other approach is based on the Lagrangian-relaxation framework, where, similar
to the optimization approach, certain hard constraints are replaced by a soft scalar-value
penalty function, and the partial solution is iteratively updated to satisfy the remaining
constraints while minimizing the increase of the penalty function. The analysis of the
Lagrangian-relaxation algorithms have more of a combinatorial flavor compared to the opti-
mization schemes. Examples include the seminal work of Luby and Nisan [10], which gives
the first width-independent algorithm for packing and covering, as well as subsequent works
which improve the Luby and Nisan result in various ways [4, 6, 7, 11, 18, 19]. Among them,
only [11, 18, 19] work with mixed packing and covering LPs, while others only work in the
pure packing and pure covering setting. For algorithms working on mixed packing and cov-
ering, the results in [18, 19] have the best theoretical guarantee on parallel running time,
with Õ(1

ε4) running time and Õ(Nε2) total work. The result in [11] has worse bounds, but is
stateless, which is a computational model on distributed algorithms with more restrictions
on the processors (see [4]).

1.2 Our results
In this paper, we present a parallel algorithm that, given a mixed packing and covering LP
with m variables and n total constraints, in Õ(1

ε3) iterations computes a (1+ε)-approximate
solution, or correctly reports the original mixed packing and covering LP is infeasible. The
algorithm is deterministic and width-independent.

The bottleneck of each iteration is a matrix-vector multiplication, and can be imple-
mented in O(logN) depth, in which case the running time of our algorithm is Õ(1

ε3). The
total work of the algorithm we present in the paper is Õ(Nε3). In particular, our result
improves upon the current fastest parallel algorithm of mixed packing and covering LPs
in [18, 19], where the running time is Õ(1

ε4). The work of the parallel algorithm in [18, 19]
is Õ(Nε2). We note that using a simple lazy update modification on the algorithm, which
is the same technique used in [18, 19], we can reduce the work of our algorithm to Õ(Nε2).
Same as in [18, 19], this comes at the cost of requiring a centralized step in the parallel
algorithm. Since the iteration count is the more interesting side of this line of work, we will
not incorporate the lazy update in our algorithm for simplicity.

Furthermore, in the case of pure packing problem or pure covering problem, our algo-
rithm allows a similar but simplified analysis, and will converge in Õ(1

ε2) iterations. This
matches the running time achieved by the line of work [2, 17], but has the advantage of
being deterministic and without centralized steps. We note that the technique we use in the
analysis of the potential function in this work can be applied in a straightforward way to
improve the result of [2] to have Õ(1

ε2) running time.

2 Technical overview

To compute (1 + ε)-approximation of a mixed packing and covering LP in the optimization
form (1), via standard reduction and scaling (e.g., see [18]), it suffices to solve a (1 +O(ε))-
feasibility problem as specified in (3) and (4).

At a high level, our work follows the Lagrangian-relaxation approach as in [18, 19]. In
particular, we replace the hard packing and covering constraints with a scalar-valued po-
tential function, which is continuous and smooth. The potential function measures how far

ICALP 2016

52:4 Approximating the Solution to Mixed Packing and Covering LPs in parallel Õ(ε−3) time

away the current solution is from satisfying all the captured constraints. As in [18], we use
the soft-max lmax(Px) and soft-min lmin(Cx) in our potential function

lmax(Px) = ln(
∑
j

exp(Px)j), and lmin(Cx) = − ln(
∑
j

exp(−Cx)j).

In particular, these functions give smooth approximation to maxj(Px)j and minj(Cx)j :

max
j

(Px)j ≤ lmax(Px) ≤ max
j

(Px)j + lnn

min
j

(Cx)j ≥ lmin(Cx) ≥ min
j

(Cx)j − lnn.
(2)

The potential function we use will be

f(x) = lmax(Px)− lmin(C (t)x),

which is approximately the difference between maxj(Px)j and minj(Cx)j .
The overall framework is to start with a x of very small values, and iteratively increase

x while keeping f(x) small. Roughly, when x is large enough so that

max{max
j

(Px)j ,min
j

(Cx)j} ≥
1
ε
f(x),

we know that maxj(Px)j ≤ (1 +O(ε)) minj(Cx)j .
Same as in [18, 19], each iteration a subset of the variables are picked based on the

gradients of the potential function, and are updated within a local smooth region so we can
bound the change of the potential function. In particular, for each variable xi we compute
the packing gradient ai = ∇i lmax(Px), and the covering gradient bi = ∇i lmin(Cx). We
want to update variables without increasing f(x), and since ∇if(x) = ai − bi, a variable
will be included in the update subset only when its covering gradient bi is larger than its
packing gradient ai.

However, unlike the parallel algorithm in [18, 19] that multiplicatively updates all vari-
ables in the subset with a uniform step size, we further incorporate the gradients a and b
into step sizes of individual variables’ updates. This discriminative multiplicative step size
allows more aggressive updates on average, and is directly motivated by the line of works
using gradient based optimization methods [1,2,17]. However, we move away from the opti-
mization oriented view of these update steps in favor of more localized and adhoc analyses,
which was developed to analyze direct adaptations of Young’s algorithm for purely-packing
SDPs [15], leading to bounds similar to the optimization based approaches [20].

Similar to Young’s algorithm [18], the overall progress of the algorithm is captured by
how large the constraints become. A sufficient termination condition for the algorithm is
when a variable is increased by more than a certain amount, so we know maxj(Px)j and
minj(Cx)j are large enough. To bound the number of iterations before any variable gets too
large, we combine the notion of phases from [18] with the more refined analysis of gradient
updates from more recent works [17]. This is owing to the clearer combinatorial structure
of our interpretation of discriminative multiplicative steps.

On a high level, the analysis considers phases, where each phase is a consecutive sequence
of iterations. The definition of a phase captures a local window, where the algorithm only
makes limited global progress. The limited global progress ensures that inside a single
phase the landscape doesn’t change too much, which translate to certain monotonicity-like
property on the gradients within the interactions captured by a single phase. In [18], each

M. Mahoney and S. Rao and D. Wang and P. Zhang 52:5

phase is defined to cover very little overall progress, which gives a very strong monotonicity-
like property. In particular, any variable being increased at the last iteration of a phase
must have been increased in every iteration of the phase, which, coupled with a lower bound
on each increase, gives a bound of the number of iterations in a phase.

In our analysis, we significantly expand the phases to capture larger global progress,
leading to a smaller number of phases. The larger phases lead to a weaker monotonicity-like
property on the gradients within a phase, and we develop a new approach to bound the
number of iterations in our phase. We divide the iterations into two groups: some initial
warm-up bad iterations followed by subsequent good iterations containing more interesting
segments of the path to convergence (see Definition 7 for formal definitions). The bad
iterations are ones where packing gradients are much smaller than covering gradients. These
are the easy iterations to deal with, since a small ratio of the packing gradient over the
covering gradient is a clear signal to increase a variable by a lot. An analysis identical to
Young’s algorithm [18] shows that they must occur near the very start of a phase, and there
cannot be too many of them. In the subsequent good iterations, the packing gradients for
all variables are relatively large comparing to their covering counterparts. These iterations
capture the more difficult part of the path to convergence, since we only get weak signals as
to which variables to update, and we can only increase them by small steps. We can show
that as long as the problem is feasible, there cannot be too many good iterations in a phase.
Intuitively, if the primal LP is feasible, the dual solution certifies that there must be some key
variable(s) we increase during the phase to achieve the fixed global progress. Particularly,
we know that there is at least one variable that on average has smaller packing gradients
than covering gradients. Moreover, since in the good iterations, the packing gradients are all
at least on the same scale as the covering gradients, an argument in the spirit of Markov’s
inequality then implies that the corresponding variable was increased by a large amount,
which in turn leads to a bound on the number of iterations of a phase.

2.1 Remarks
We note that the phases in our result are virtual: we only need them in the analysis, but
not in the actual execution of the algorithm. In particular, this modification to Young’s
algorithm [18] removes the dependency of updates on the phase of the overall algorithm as
well as the current gradient. We believe this direct removal of phases also apply to other
variants of Young’s algorithm [19].

Furthermore, we believe that there is a more natural variant of the analysis that does
not rely on phases, and treats all the iterations in a completely symmetric manner. Such an
analysis is likely crucial for extending our results to the SDP setting, where the gradients
exhibit much weaker monotonicity behaviors [20]. We are optimistic that it will lead to
an Õ(1

ε2) bound for the mixed packing-covering case, which we believe is the more likely
asymptotic behaviors of phase-less, gradient update variants of Young’s algorithm [18,19].

3 Parallel Algorithm for Mixed Packing and Covering LPs

3.1 Preliminaries
To compute (1 + ε)-approximation of a mixed packing and covering LP in the optimization
form (1), via standard reduction and scaling (e.g., see [18]), it suffices to solve the following
(1 +O(ε))-feasibility problem, that is, either find x ≥ 0 such that

0 < max
j

(Px)j ≤ (1 + ε) min
j

(Cx)j . (3)

ICALP 2016

52:6 Approximating the Solution to Mixed Packing and Covering LPs in parallel Õ(ε−3) time

or conclude the following LP is infeasible

Cx ≥ 1
Px ≤ (1− 10ε)1

x ≥ 0.
(4)

We present our parallel Õ(1/ε3) routine in Algorithm 1 for solving the (1 +O(ε))-feasibility
problem above, that is, either find x ≥ 0 satisfying (3), or certify the infeasibility of (4).
The input contains a packing constraint matrix P ∈ RnP×m≥0 , a covering constraint matrix
C ∈ RnC×m≥0 , and an error parameter ε > 0. That is, there are m variables, nP packing
constraints, and nC covering constraints. We also use n = nP + nC to denote the total
number of constraints.

To certify that (4) is infeasible, we rely on the dual LP of (4).

I Lemma 1. By duality, (4) is infeasible if there exists y, z ≥ 0 s.t.

(1− 10ε)CT z
1T z

<
PTy
1Ty

. (5)

Proof. Eqn. (5) is a direct reformulation of the dual LP of (4). Since we only need the
sufficient condition, the result is by weak duality. If there exists any x ≥ 0 satisfying (4),
we have

(1− 10ε)xTCT z
1T z

≥(1− 10ε)1T z
1T z

= 1− 10ε,

xTPTy
1Ty

≤(1− 10ε)1Ty
1Ty

= 1− 10ε.

Together they give 1 < 1, contradiction. J

3.2 Algorithm
We start with small x(0)

i = 1
m‖P:,i‖∞

,∀ i ∈ [m], and keep increasing x properly, until it
reaches the termination condition in line 4, that is, max{maxj(Px)j ,minj(Cx)j} ≥ K =
10 lnn
ε . The reason of the chosen K value is stated in Lemma 5.
In each iteration of the while-loop, we first delete all covering constraints which have

already reached K. Since x never decreases, we know that once a row is deleted, we no
longer need to look at it. Note the covering matrix cannot be empty, since we enter the
iteration with minj(Cx)j < K. We compute the vectors y, z, which are exponentials of
the values of the packing and covering constraints respectively. We then compute a and
b, which can be considered as gradients of lmax(Px) and lmin(Cx) respectively, and use
them to guide our update on x. In particular, we update xi if ai ≤ (1 − ε/50)bi (i.e.,
i ∈ B). Furthermore, we update xi multiplicatively by a factor depends on the ratio of ai

bi ,
as specified in Eqn. (6) and line 12. Note that the smallest update in our algorithm is by a
factor of (1 + Ω(ε2

lnn)), which is the same as the fixed update step size in [19], and in general
our updates take larger steps.

Note that in our analysis, we equivalently view z as the full nC-dimensional vector,
where the coordinates corresponding to deleted constraints are filled by 0’s. In particular,
the matrix-vector product of the original C with the nC-dimensional z will be the same as
the product of the reduced covering matrix C (t) and reduced z.

M. Mahoney and S. Rao and D. Wang and P. Zhang 52:7

Algorithm 1 Parallel algorithm for mixed packing and covering LPs
Input: P,C , ε

Output: “infeasible" or x ≥ 0 s.t. maxj(Px)j ≤ (1 + ε) minj(Cx)j

1: Let K = 10 lnn
ε , α = 1

K , where n is the number of constraints.
2: Initialize x(0)

i = 1
m‖P:,i‖∞

,∀ i ∈ [m], where m is the number of variables.
3: Let t = 0.
4: while maxj(Px)j < K and minj(Cx)j < K do
5: Let C (t) be C with rows j such that

(
Cx(t))

j
≥ K deleted.

6: Let y(t) = exp
(
Px(t)) , z(t) = exp

(
−C (t)x(t)

)
.

7:
8: a(t) = PT y(t)

1T y(t) , b(t) = (C(t))T z(t)

1T z(t) .
9: Define B(t) = {i : a(t)

i ≤ (1− ε
50)b(t)

i }.
10: If B(t) = ∅, then return “infeasible".
11: Let

∆(t)
i =

 1
2 (1− a(t)

i

b(t)
i

) ∈ [ε/100, 1
2] if i ∈ B(t)

0 if i 6∈ B(t)
(6)

12: x(t+1)
i ← x(t)

i (1 + α∆(t)
i).

13: t← t+ 1.
14: end while
15: return x = x(t)

K .

3.3 Proof of Correctness
In this section we will show Algorithm 1 will terminate, and output the correct answer.

Lemma 2 shows that empty B certifies the infeasibility of the input instance (4), which
proves the correctness if we end up in the case of line 10.

I Lemma 2. If the problem instance (4) is feasible, then

∀ x ≥ 0, B = {i : ai ≤ (1− ε

50)bi} 6= ∅.

Proof. Assume by contradiction, ∃ x ≥ 0,∀ i ∈ [m],a(t)
i > (1 − ε

50)b(t)
i . By definition of

a, b, it is equivalent to ∃ y, z ≥ 0 such that

(1− ε

50)CT z
1T z

<
PTy
1Ty

.

Then the result follows directly from Lemma 1. J

If Algorithm 1 does not terminate with line 10, it must increase at least one variable by
at least a factor of (1 + ε2

10 lnn) each iteration, so the algorithm must reach the termination
condition of the while loop at some point, and we need to show the output x satisfies (3).
Recall that we use the potential function,

f(x(t)) = lmax(Px(t))− lmin(C (t)x(t)) = ln(1Ty(t)) + ln(1T z(t)).

ICALP 2016

52:8 Approximating the Solution to Mixed Packing and Covering LPs in parallel Õ(ε−3) time

We first quantify the changes of lmax and lmin when we update the variables. This type of
smoothness analysis is standard in analyzing algorithms that make updates using gradient
information. Similar results are derived in other works on packing and covering (see [2,18]).
The particular analysis we develop can deal with larger gradient steps. In particular, the
approach of our analysis allows updates that may move the gradients of some variables out of
their respective coordinate-wise smooth regions, as long as we can still bound the combined
impact on the potential function from updates of all variables. This approach can extend
straightforwardly to show larger updates also work in [2], and improve their pure packing
algorithm to run in Õ(1

ε2) iterations. Since the proof is straightforward but technically
tedious, we omit it.

I Lemma 3. At each iteration t,

lmax(Px(t+1)) ≤ lmax(Px(t)) + α〈a(t), (1 + ∆(t)) ◦∆(t) ◦ x(t)〉

and

lmin(C (t+1)x(t+1)) ≥ lmin(C (t)x(t)) + α〈b(t), (1−∆(t)) ◦∆(t) ◦ x(t)〉,

where ∆ ◦ x is the entry-wise product vector, i.e., (∆ ◦ x)i = ∆ixi.

With the above bounds on the changes of the two components lmax(Px) and lmin(Cx), we
can show how our updates move the potential function f(x).

I Lemma 4. Given maxj(Px(t))j < 10 lnn
ε and minj(Cx(t))j < 10 lnn

ε , we always have
f(x(t)) ≤ 2 lnn during the execution of Algorithm 1.

Proof. Initially, x(0)
i = 1

m‖P:,i‖∞
, we have Px(0) ≤ 1 and Cx ≥ 0, thus f(x(0)) ≤ 2 lnn.

To show f(x) ≤ 2 lnn for all iterations t before terminate, it suffices to show that f(x) is
non-increasing during the process. From Lemma 3,

f(x(t+1))− f(x(t)) ≤ α〈a, (1 + ∆) ◦∆ ◦ x(t)〉 − α〈b, (1−∆) ◦∆ ◦ x(t)〉

=
∑
i

α∆ixi(ai(1 + ∆i)− bi(1−∆i)).

For each i ∈ [m], by our update rule (6), either ∆i, or ∆i = 1
2 (1− ai

bi), in which case

ai(1 + ∆i)− bi(1−∆i) = 3aibi − a2
i

2bi
− ai + bi

2 = 2aibi − a2
i − b2

i

2bi
≤ 0,

so all the summands are non-positive, thus f(x) is non-increasing. J

The above lemma guarantees that the difference between lmax(Px) and lmin(Cx) is bounded
by 2 lnn, which by Eqn. (2) suggests maxj(Px)j ≤ minj(Cx)j + O(lnn). Then when the
two terms are large at termination, we are approximately feasible as the difference is a factor
of ε smaller.

I Lemma 5. If Algorithm 1 terminates with line 15, then it returns an x ≥ 0 with 0 <

maxj(Px)j ≤ (1 + ε) minj(Cx)j.

Proof. Suppose the algorithm terminates at iteration T , that is, maxj(Px(T))j ≥ 10 lnn
ε or

minj(Cx(T))j ≥ 10 lnn
ε . Consider iteration T − 1, the covering matrix is not empty (other-

wise, the algorithm terminates before iteration T). Since x(T) = x(T−1) ◦ (1 + α∆(T−1)) ≤
(1 + 5ε

lnn)x(T−1), we have maxj(Px(T−1))j ≥ 5 lnn
ε or minj(Cx(T−1))j ≥ 5 lnn

ε .

M. Mahoney and S. Rao and D. Wang and P. Zhang 52:9

By Lemma 4,

max
j

(Px(T−1))j ≤ lmax(Px(T−1)) ≤ lmin(C (T−1)x(T−1)) + 2 lnn

≤min
j

(Cx(T−1))j + 2 lnn.

Since 2 lnn ≤ ε · 5 lnn
ε , we have

max
j

(Px(T−1))j ≤ (1 + ε) min
j

(Cx(T−1))j .

This also gives maxj(Px(T))j ≤ (1 + ε) minj(Cx(T))j , since xT is within in multiplicative
factor 1 + ε

10 lnn of xT−1. Since we start with x > 0, and only increase x, we also have
maxj(Px)j > 0. So the x we return at the end satisfies (3). J

3.4 Analysis of Convergence
So far we have proved that Algorithm 1 will terminate, and will either output x satisfying (3)
at the end, or terminate earlier and correctly certify (4) is infeasible. In this section we show
that if (4) is feasible, Algorithm 1 must finish with the first case in Õ(1

ε3) iterations, so if
the algorithm takes more than 1000 lnn ln(mε)

ε3 iterations to complete, we can terminate it, and
correctly output that (4) is infeasible.

We adapt the concept phase from Young’s algorithm. Note phase is only used in our
analysis, and our algorithm does not contain phase. Formally, phase s contains the iterations
t such that

nP
nC
· 2s ≤ 1Ty(t)

1T z(t) <
nP
nC
· 2s+1

where nP is the number of packing constraints and nC is the number of covering constraints.
Since we only increase x, 1T y

1T z is monotonically increasing, so each phase covers a con-
secutive sequence of iterations. Furthermore, as ln(1T y

1T z) = lmax(Px) + lmin(Cx) measures
global progress towards termination, each phase captures a fixed amount of progress. From
our definition of phases, and the termination condition, we have the following lemma.

I Lemma 6. The total number of phases in Algorithm 1 is O(logn
ε).

Proof. Since x is monotonically increasing, y = exp(Px) and z = exp(−Cx) are mono-
tonically increasing and decreasing respectively, which implies that the quantity 1T y

1T z is
monotonically increasing. Initially Px(0) ≥ 0,Cx(0) ≥ 0, we know 1T y(0)

1T z(0) ≥ nP
nC

. By the ter-
mination condition in Algorithm 1, the ratio never goes beyond nP exp(10 logn

ε). Therefore,
the total number of phases is O(logn

ε). J

We now bound the number of iterations in a single phase. The iterations of a phase are
divided into two groups, the bad iterations and the good iterations, formally defined as
follows.

I Definition 7. If in an iteration t, we have for all i

a(t)
i

b(t)
i

>
1
3 , (7)

then we call it a good iteration. Otherwise we call it a bad iteration.

ICALP 2016

52:10 Approximating the Solution to Mixed Packing and Covering LPs in parallel Õ(ε−3) time

Note that it is also possible for a phase to contain only bad iterations or only good iterations.
We bound the total number of iterations in the two groups separately.

As discussed earlier, the bad iterations capture the initial warm-up iterations of a phase,
where in any bad iteration, we can identify some variable xi with a strong signal (i.e.,
ai
bi ≤

1
3), so we can increase the variable by a lot. This restricts the warm-up sequence from

getting too long, and we formalize the intuition in the following lemma.

I Lemma 8. In a single phase, the number of bad iterations is at most O(lnn ln(mε)/ε).

Proof. We will prove the result by showing that there cannot be any bad iteration after the
initial 100 lnn ln(mε)/ε iterations of a phase. By contradiction, if for any variable i, after
Ω(lnn ln(mε)/ε) iterations of a phase, we have at iteration t such that for some i,

a(t)
i

b(t)
i

= (PTy(t))i
1Ty(t)

1T z(t)

(CT z(t))i
≤ 1

3 ,

then this ratio is at most 2
3 in all previous iterations of this phase, since (PT y)

i

(CT z)
i

is monoton-

ically increasing, and 2s ≤ 1T y
1T z < 2s+1 in this phase. Equivalently, this is saying ai ≤ 2

3 bi,
so i ∈ B in all previous Ω(lnn ln(mε)/ε) iterations of the phase, and ∆i ≥ 1

6 in all those
iterations.

Each iteration the multiplicative update on xi is (1+α∆i), which is (1+Θ(ε
10 lnn)) since

∆i ≥ 1
6 . As xi starts with 1

m‖P:,i‖∞
, after 100 lnn ln(mε)/ε updates, we have xi � 10 lnn

ε‖P:,i‖∞
,

which gives maxj(Px)j � 10 lnn
ε , so the algorithm must have terminated. J

The above lemma guarantees that all iterations after the first 100 lnn ln(mε)/ε must be good
iterations, so we proceed to bound the number of these good iterations in a single phase.
Without loss of generality, we index these good iterations in a phase as 1, . . . , T by shifting t.

We first identify one variable that must be updated extensively in these iterations.

I Lemma 9. Suppose the instance (4) is feasible, then There exists i ∈ [m] such that
T∑
t=1

b(t)
i − a(t)

i ≥ 10ε
T∑
t=1

b(t)
i . (8)

Proof. Define y and z to be the sum of the normalized gradients of iterations 1, . . . , T , that
is,

y =
T∑
t=1

y(t)

1Ty(t) , z =
T∑
t=1

z(t)

1T z(t) .

Note 1Ty = 1T z = T . Recall a(t)
i and b(t)

i are respectively (PT y(t))i
1T y(t) and (CT z(t))i

1T z(t) , then

T∑
t=1

a(t)
i = T (PTy)i

1Ty
,

T∑
t=1

b(t)
i = T (CT z)i

1T z
.

Assume by contradiction, ∀ i ∈ [m],
∑T
t=1 a(t)

i > (1− 10ε)
∑T
t=1 b(t)

i , that is,

PTy
1Ty

> (1− 10ε)CT z
1T z

.

By Lemma 1, y, z certify infeasibility of the instance (4), which contradicts the assumption.
J

M. Mahoney and S. Rao and D. Wang and P. Zhang 52:11

The above claim gives us a variable that on average has smaller packing gradients than
covering gradients in this iteration. Together with the property we have on the good itera-
tions (7), we can bound the number of good iterations.

I Lemma 10. In a single phase, the number of good iterations is at most O(lnn ln(mε)/ε2).

Proof. Let xi be a variable satisfying Eqn. (8). We want to turn Eqn. (8) into some lower
bound on the total multiplicative update on xi through these iterations. Intuitively, a bad
case is that in some iteration t, a(t)

i , b(t)
i are much larger than the values in other iterations,

since they can dominate the terms from other iterations in Eqn. (8), but not much to the
total update of xi, since their ratio is what matters to the update. However, since we are
inside one single phase, and only looking at good iterations, we can show the bad scenario
will not show up.

Formally, let l = a(1)
i and u = b(1)

i . Since (PTy)i monotonically increases, and 1Ty will
increase but not by more than a factor of 2 in a phase, we have

a(t)
i = (PTy(t))i

1Ty(t) ≥ l/2 ∀t = 1, . . . , T. (9)

Similarly, we have

b(t)
i = (CT z(t))i

1T z(t) ≤ 2u ∀t = 1, . . . , T. (10)

Furthermore, since we are looking at the good iterations, we have

l ≥ 1
3u. (11)

The inequalities above allow us to turn the difference-based guarantee from Eqn. (8) into
lower bounds on ratios we need.

By the update (6), we have

∆(t)
i ≥

(1− ε
50)b(t)

i − a(t)
i

2b(t)
i

.

So we can lower bound the total update on xi as follows

x(T)
i ≥x(1)

i exp
(
α
∑
t ∆(t)

i

2

)

=x(1)
i exp

(
α

4
∑
t

(1− ε
50)b(t)

i − a(t)
i

b(t)
i

)

≥x(1)
i exp

(
α

4
∑
t

(
b(t)
i − a(t)

i

2u − ε

50

))
where we used (10) in the last line.

From Eqn. (8), we have∑
t

b(t)
i − a(t)

i ≥10ε
∑
i

b(t)
i

≥ 10ε
1− 10ε

∑
t

a(t)
i

≥ εuT

1− 10ε ≥ εuT.

ICALP 2016

52:12 Approximating the Solution to Mixed Packing and Covering LPs in parallel Õ(ε−3) time

The first two lines both follow from Eqn. (8), the next line follows from a(t)
i ≥ l/2 ≥ u/6.

Thus

x(T)
i ≥ x(1)

i exp
(
εαT

8 − εαT

200

)
≥ 1
m ‖P:,i‖∞

exp
(
εαT

10

)
.

If T ≥ 100 lnn ln m
ε

ε2 ≥ 100 ln m
ε

εα , we have x(T)
i � 10 lnn

ε‖P:,i‖∞
. So the algorithm must have

terminated since maxj(Px)j � 10 lnn
ε . J

Lemma 8 and Lemma 10 bound the total number of iterations in a phase by Õ(1
ε2), together

with the bound on the number of phases, which is Õ(1
ε), we guarantee the total number of

iterations in Algorithm 1 is Õ(1
ε3) if the LP in (4) is feasible.

I Theorem 11. Algorithm 1 solves the (1+ε)-feasibility problem correctly. It runs in parallel
time Õ(1/ε3) with the total work Õ(N/ε3), where N is the number of non-zero entries in
the constraint matrix.

Proof. The correctness and convergence follows from the lemmas in the prior sections. We
only need to look at the running time and total work.

At each iteration, we compute all updated values in O(logN) parallel time. Since the
total number of iterations is Õ(1

ε3), the algorithm terminates in parallel time Õ(1
ε3).

To see the total work, consider the following implementation. For each i ∈ [m], we
maintain Pjixi if Pij 6= 0; similarly we maintain C jixi if C ij 6= 0. Besides, we maintain
the values of y, z,PTy,CT z,1Ty and 1T z. When we update xi, we update these values
accordingly, with work proportional to the number of non-zero entries in the ith column
of the constraint matrix. For each fixed variable xi, the total time of updates is at most
Õ(1

ε2). Thus, the work on this part is Õ(Nε2). Additionally, we need to compute the ai, bi
for all variables at the beginning of each iteration to determine which variables to update,
this takes Õ(N) work each iteration, so the total work is Õ(Nε3). J

I Remark. We see the majority of the work is actually on computing the gradients for the
variables we may not update. We point out that we can implement the same lazy update
as in [19], which on a high level is just that if a variable has a large ai

bi in an iteration, and
is not updated, we do not recompute its gradients, until 1T y

1T z grows by more than a factor
of 1 + ε. This can reduce the work to Õ(Nε2), but requires a centralized step to control the
phases. We omit the details as it is a straightforward adaptation.

4 Pure Packing and Pure Covering LPs

We point out that in the case of pure packing or pure covering LPs, Algorithm 1 converges in
Õ(1

ε2) iterations. This improves upon the result of [17], since our algorithm is deterministic,
and does not need centralized steps.

The analysis follows the same approach as the mixed case, but the result of Lemma 10 can
be improved to bound the total number of good iterations over all phases byO(lnn ln(mε)/ε2),
since for pure packing (or pure covering) LPs, the ai’s (or the bi’s) are constants through
the algorithm. We omit the details as the proof is a straightforward adaptation.

Acknowledgments. We thank Richard Peng for helpful discussions on results and
writing of the paper. DW was supported by ARO Grant W911NF-12-1-0541, SR was funded
by NSF Grant CCF-1118083, and MM acknowledges the support of the NSF, AFOSR, and
DARPA.

M. Mahoney and S. Rao and D. Wang and P. Zhang 52:13

References

1 Zeyuan Allen-Zhu and Lorenzo Orecchia. Nearly-linear time positive LP solver with faster
convergence rate. In Proceedings of the Forty-Seventh Annual ACM on Symposium on
Theory of Computing, STOC ’15, pages 229–236, 2015. Newer version available at http:
//arxiv.org/abs/1411.1124.

2 Zeyuan Allen-Zhu and Lorenzo Orecchia. Using optimization to break the epsilon barrier:
A faster and simpler width-independent algorithm for solving positive linear programs in
parallel. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’15, pages 1439–1456, 2015.

3 Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method:
a meta-algorithm and applications. Theory of Computing, 8(6):121–164, 2012.

4 Baruch Awerbuch and Rohit Khandekar. Stateless distributed gradient descent for posi-
tive linear programs. In Proceedings of the 40th Annual ACM Symposium on Theory of
Computing, Victoria, British Columbia, Canada, May 17-20, 2008, pages 691–700, 2008.

5 S. Boyd and L. Vandenberghe. Convex Optimization. Camebridge University Press, 2004.
6 Lisa Fleischer. A fast approximation scheme for fractional covering problems with variable

upper bounds. In Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2004, New Orleans, Louisiana, USA, January 11-14, 2004, pages 1001–
1010, 2004.

7 Christos Koufogiannakis and Neal E. Young. A nearly linear-time PTAS for explicit frac-
tional packing and covering linear programs. Algorithmica, 70(4):648–674, 2014.

8 Yin Tat Lee and Aaron Sidford. Path finding methods for linear programming: Solving
linear programs in õ(sqrt(rank)) iterations and faster algorithms for maximum flow. In 55th
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2014, Philadelphia,
PA, USA, October 18-21, 2014, pages 424–433, 2014.

9 Yin Tat Lee and Aaron Sidford. Efficient inverse maintenance and faster algorithms for lin-
ear programming. In IEEE 56th Annual Symposium on Foundations of Computer Science,
FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 230–249, 2015.

10 Michael Luby and Noam Nisan. A parallel approximation algorithm for positive linear
programming. In Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of
Computing, May 16-18, 1993, San Diego, CA, USA, pages 448–457, 1993.

11 Faraz Makari Manshadi, Baruch Awerbuch, Rainer Gemula, Rohit Khandekar, Julián
Mestre, and Mauro Sozio. A distributed algorithm for large-scale generalized match-
ing. PVLDB, 6(9):613–624, 2013. Available at http://www.vldb.org/pvldb/vol6/p613-
makarimanshadi.pdf.

12 Arkadi Nemirovski. Prox-method with rate of convergence O(1/t) for variational inequali-
ties with Lipschitz continuous monotone operators and smooth convex-concave saddle point
problems. SIAM Journal on Optimization, 15(1):229–251, 2004.

13 Yurii Nesterov. Smooth minimization of non-smooth functions. Math. Program.,
103(1):127–152, 2005.

14 Yurii Nesterov. Efficiency of coordinate descent methods on huge-scale optimization prob-
lems. SIAM Journal on Optimization, 22(2):341–362, 2012.

15 Richard Peng and Kanat Tangwongsan. Faster and simpler width-independent parallel
algorithms for positive semidefinite programming. In Proceedinbgs of the 24th ACM sym-
posium on Parallelism in algorithms and architectures, SPAA ’12, pages 101–108, 2012.
Available at http://arxiv.org/abs/1201.5135.

16 James Renegar. Efficient first-order methods for linear programming and semidefinite
programming. CoRR, abs/1409.5832, 2014.

ICALP 2016

http://arxiv.org/abs/1411.1124
http://arxiv.org/abs/1411.1124

52:14 Approximating the Solution to Mixed Packing and Covering LPs in parallel Õ(ε−3) time

17 Di Wang, Michael W. Mahoney, Nishanth Mohan, and Satish Rao. Faster parallel solver
for positive linear programs via dynamically-bucketed selective coordinate descent. CoRR,
abs/1511.06468, 2015.

18 Neal E. Young. Sequential and parallel algorithms for mixed packing and covering. In
42nd Annual Symposium on Foundations of Computer Science, FOCS 2001, 14-17 October
2001, Las Vegas, Nevada, USA, pages 538–546, 2001.

19 Neal E. Young. Nearly linear-time approximation schemes for mixed packing/covering and
facility-location linear programs. CoRR, abs/1407.3015, 2014.

20 Zeyuan Allen Zhu, Yin Tat Lee, and Lorenzo Orecchia. Using optimization to obtain
a width-independent, parallel, simpler, and faster positive SDP solver. In Proceedings
of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2016, Arlington, VA, USA, January 10-12, 2016, pages 1824–1831, 2016. Available at
http://arxiv.org/abs/1507.02259.

21 Zeyuan Allen Zhu and Lorenzo Orecchia. Linear coupling: An ultimate unification of
gradient and mirror descent. CoRR, abs/1407.1537, 2014.

	Introduction
	Previous work
	Our results

	Technical overview
	Remarks

	Parallel Algorithm for Mixed Packing and Covering LPs
	Preliminaries
	Algorithm
	Proof of Correctness
	Analysis of Convergence

	Pure Packing and Pure Covering LPs

