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Abstract
We consider minimizing a smooth and strongly convex objective function using a
stochastic Newton method. At each iteration, the algorithm is given an oracle access
to a stochastic estimate of the Hessian matrix. The oracle model includes popular
algorithms such as Subsampled Newton and Newton Sketch, which can efficiently
construct stochastic Hessian estimates for many tasks, e.g., training machine learning
models. Despite using second-order information, these existingmethods do not exhibit
superlinear convergence, unless the stochastic noise is gradually reduced to zero during
the iteration, which would lead to a computational blow-up in the per-iteration cost.
We propose to address this limitationwithHessian averaging: instead of using themost
recent Hessian estimate, our algorithm maintains an average of all the past estimates.
This reduces the stochastic noise while avoiding the computational blow-up. We show
that this scheme exhibits local Q-superlinear convergence with a non-asymptotic rate
of (Υ

√
log(t)/t )t , where Υ is proportional to the level of stochastic noise in the

Hessian oracle. A potential drawback of this (uniform averaging) approach is that
the averaged estimates contain Hessian information from the global phase of the
method, i.e., before the iterates converge to a local neighborhood. This leads to a
distortion that may substantially delay the superlinear convergence until long after
the local neighborhood is reached. To address this drawback, we study a number of
weighted averaging schemes that assign larger weights to recent Hessians, so that the
superlinear convergence arises sooner, albeit with a slightly slower rate. Remarkably,
we show that there exists a universal weighted averaging scheme that transitions to
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local convergence at an optimal stage, and still exhibits a superlinear convergence rate
nearly (up to a logarithmic factor) matching that of uniform Hessian averaging.

Keywords Stochastic Newton method · Hessian averaging · Superlinear convergence

Mathematics Subject Classification 90-08 · 90-10 · 90C06 · 90C15 · 90C25

1 Introduction

We consider minimizing a smooth and strongly convex objective function:

min
x∈Rd

f (x), (1)

where f : R
d → R is twice continuously differentiablewithH(x) = ∇2 f (x) ∈ R

d×d

being its Hessian matrix. We suppose the Hessian H(x) satisfies

λmin · I � H(x) � λmax · I, ∀x ∈ R
d ,

for some constants 0 < λmin ≤ λmax, and we let κ = λmax/λmin denote its condition
number. We also let x� = argminx∈Rd f (x) be the unique global solution.

Problem (1) is arguably the most basic optimization problem, which nevertheless
arises in many applications in machine learning and statistics [7, 9, 35, 56]. There is
a plethora of methods for solving (1), and each (type of) method has its own benefits
under favorable settings. This paper particularly focuses on solving (1) via second-
order methods, where a (approximated) Hessian matrix is involved in the scheme.
Consider the classical Newton’s method of the form

xt+1 = xt − μtH−1
t ∇ ft , (2)

where ∇ ft = ∇ f (xt ), Ht = H(xt ), and μt is selected by passing a line search
condition. Classical results indicate that Newton’s method in (2) exploits a global
Q-linear convergence in the error of function value f (xt ) − f (x�); and a local Q-
quadratic convergence in the iterate error ‖xt −x�‖. More precisely, Newton’s method
has two phases, separated by a neighborhood

Nν = {x : ‖x − x�‖ ≤ ν}, for some ν > 0.

When xt /∈ Nν , (2) is in the damped Newton phase, where the objective f (xt ) is
decreased by at least a fixed amount in each iteration, and converges linearly. In this
phase, ‖xt − x�‖ may converge slowly (e.g., it provably converges R-linearly using
the fact that ‖xt − x�‖2 ≤ 2/λmin( f (xt ) − f (x�))). When xt ∈ Nν , (2) transits to
the quadratically convergent phase, where the unit stepsize is accepted and ‖xt − x�‖
converges quadratically. See [8, Section9.5] for the analysis. Compared to first-order
methods, although second-order methods often exploit a faster convergence rate and

123



Hessian averaging in stochastic Newton methods achieves…

behave more robustly to tuning parameters, they hinge on a high computational cost
of forming the exact Hessian matrix Ht at each step. To resolve such a computational
bottleneck, which is particularly pressing in large-scale data applications, a variety
of deterministic and stochastic methods have been proposed for constructing different
alternatives of the Hessian matrix.

When a deterministic alternative ofHt , say Ȟt , is employed in (2), whichmay come
from a finite difference approximation of the second-order derivative, or from a quasi-
Newton update such as BFGS or DFP, the convergence behavior is well understood.
Specifically, if {Ȟt }t are positive definite with uniform upper and lower bounds, the
damped phase is preserved by the same analysis as Newton’s method. Furthermore,
the quadratically convergent phase is weakened to a superlinearly convergent phase,
and the superlinear convergence occurs if and only if the celebrated Dennis-Moré
condition [14] holds, i.e.,

lim
t→∞

‖(Ȟt − Ht )Ȟ
−1
t ∇ ft‖

‖Ȟ−1
t ∇ ft‖

= 0. (3)

See [47, Theorem3.7] for the analysis. Recently, a deeper understanding of quasi-
Newton methods for minimizing smooth and strongly convex objectives has been
reported in [31, 50–52]. These works enhanced the analyses based on Dennis-Moré
condition in (3) by performing a local, non-asymptotic convergence analysis, and
provided explicit superlinear rates for different potential functions of quasi-Newton
methods. The non-asymptotic superlinear results are more informative than asymp-
totic superlinear results established via (3), i.e., ‖xt+1 − x�‖/‖xt − x�‖ → 0 as
t → ∞. However, the analyses in [31, 50–52] highly rely on specific properties
of quasi-Newton updates in the Broyden class, and do not apply to general Hessian
approximations (e.g., finite difference approximation).

1.1 Stochastic Newtonmethods

A parallel line of research explores stochastic Newton methods, where a stochastic
approximation Ĥt is used in place of Ht in (2). The stochasticity of Ĥt may come
from evaluating the Hessian on a random subset of data points (i.e., subsampling),
or from projecting the Hessian onto a random subspace to achieve the dimension
reduction (i.e., sketching). To unify different approaches, we consider in this paper a
general Hessian approximation given by a stochastic oracle. In particular, we express
the approximation Ĥ(x) at any point x by

Ĥ(x) = H(x) + E(x), (4)

where E(x) ∈ S
d×d is a symmetric random noise matrix following a certain distribu-

tion (conditional on x) with mean zero. At iterate xt , we query the oracle to obtain an
approximation Ĥt = Ĥ(xt ), which (implicitly) comes from generating a realization
of the random matrix Et = E(xt ), and then adding Et to the true Hessian Ht . We do
not assume Et and Ht are accessible to us.
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Asmentioned, the popular specializations of stochastic oracle include subsampling
and sketching. For Hessian subsampling, a finite-sum objective is considered

f (x) = 1

n

n∑

i=1

fi (x). (5)

In the t-th iteration, a subset ξt ⊆ {1, 2, . . . , n} is sampled uniformly at random, and
the subsampled Hessian is defined as

Ĥt = 1

|ξt |
∑

i∈ξt

∇2 fi (xt ). (6)

We note that the components fi in (5) may not be convex even if the function f
is strongly convex.1 This is the so-called sum-of-non-convex setting [2, 25, 26, 55,
e.g., see ]. Our oracle model (4) allows for this, since Ĥt is not required to be positive
semidefinite, while the existing Subsampled Newton methods generally do not allow
it. See Sect. 1.3 and Example 1 for further discussion.

For Hessian sketching, one first forms the square-root Hessian matrix Mt ∈ R
n×d

satisfying Ht = M�
t Mt , where n is the number of data points. Then, one generates a

random sketch matrix St ∈ R
s×n with the sketch size s and the property E[S�

t St ] = I,
and the sketched Hessian is defined as

Ĥt = M�
t S

�
t StMt . (7)

In some cases, Mt can be easily obtained. One particular example is a generalized
linear model, where the objective has the form

f (x) = 1

n

n∑

i=1

fi (a�
i x)

with {ai }ni=1 ∈ R
d being n data points. In this case,Mt = 1√

n
·diag( f ′′

1 (a�
1 xt )

1/2, . . . ,

f ′′
n (a�

n xt )
1/2)A where A = (a1, . . . , an)� ∈ R

n×d is the data matrix.
Another family of stochastic Newton methods is based on the so-called Sketch-

and-Project framework (e.g., [28]), where a low-rank Hessian estimate is used to
construct a Newton-like step (with the Moore-Penrose pseudoinverse instead of the
matrix inverse). For example, in one approach [27], the Newton-like step in the t-th
iteration is obtained by generating a sketching matrix St ∈ R

s×d to construct a rank-s
approximate of the inverse Hessian, resulting in the update:

xt+1 = xt − μtS�
t (StHtS�

t )†St∇ f (xt ).

1 A concrete example is finding the leading eigenvector of a covariance matrix A = 1
n
∑n

i=1 aia
�
i . Here,

the objective can be structured as fb,ν (x) = 1
n
∑n

i=1(x
�(νI − aia�

i )x − b�x), where ν > ‖A‖ and b are
given. See [25] for details.
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While linear convergence rates have been derived for these methods (e.g., [16]), they
do not fit into our stochastic oracle framework due to an intrinsic bias arising in the
Hessian estimates (see Sect. 1.3 for further discussion).

Numerous stochastic Newton methods using (6) or (7) with various types of con-
vergence guarantees have been proposed [1, 6, 10, 11, 15, 17, 18, 22, 24, 32, 34, 48,
53]. We review these related references later and point to [4] for a recent brief sur-
vey. However, the existing approaches to stochastic Newton methods share common
limitations, which we now discuss.

The majority of literature studies the convergence of stochastic Newton by estab-
lishing a high probability error recursion. For example, [1, 22, 48, 53] all showed,
roughly speaking, that stochastic Newton methods exploit a local linear-quadratic
recursion:

‖xt+1 − x�‖ ≤ c1‖xt − x�‖ + c2‖xt − x�‖2 with probability 1 − δ, (8)

for some constants c1, c2 > 0 and δ ∈ (0, 1). These constants depend on the sam-
ple/sketch size at each step. Based on (8), one often applies the result for t =
0, 1, . . . , T recursively, uses the union bound, and establishes local convergence with
probability 1 − T δ. This approach has the following key drawbacks.

(a) The presence of the linear term with coefficient c1 > 0 in the recursion means
that, once xt is sufficiently close to x�, the algorithm can only achieve the linear
convergence, as opposed to the quadratic or superlinear convergence achieved by
deterministic methods. Prior works (e.g., [6, 53]) discussed how to achieve local
superlinear convergence by diminishing the coefficient c1 = c1,t gradually as t
increases. However, since c1 is proportional to the magnitude of stochastic noise
in the Hessian estimates, diminishing it requires increasing the sample size for
estimating the Hessian, which results in a blow-up of the per-iteration computa-
tional cost. To be specific, c1 is proportional to the reciprocal of the square root
of the sample size; thus this blow-up in terms of the sample size can be as fast as
exponential if we wish to attain the quadratic convergence rate, and linear if we
wish to attain the superlinear convergence rate established in this paper later.

(b) The presence of the failure probability δ in (8) means that after T iterations, a
convergence guarantee may only hold with probability 1 − T δ. Thus, the failure
probability explodes when T → ∞. To resolve this issue one can gradually
diminish δ, e.g., δ = δt = O(1/t2) such that

∑
t δt < ∞. However, once again,

such adjustment on δ leads to an increasing sample/sketch size as the algorithm
proceeds, although not as drastically as in (a) (it suffices to increase the sample size
logarithmically). Thus, in our stochastic oracle model, where the noise level (and
hence the sample size) remains constant, it is problematic to show any convergence
with high probability from (8) as T → ∞.

We note that some prior works [6, 42] showed the convergence in expectation
guarantees. Although the explosion of the failure probability in (b) is suppressed
by the direct characterization of the expectation, the drawback (a) still remains. In
addition, the convergence in expectation results require stronger assumptions. For
example, [6, (2.17)] and [42, Theorem 2] showed similar recursions to (8) for E[‖xt −
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x�‖]. However, these works assumed a bounded moments of iterates condition, i.e.,
E[‖xt − x�‖2] ≤ γ (E[‖xt − x�‖])2 for some constant γ > 0, and assumed each
component fi in (5) to be strongly convex. Both conditions are not needed in high
probability analyses. Note that the majority of high probability analyses assume that
each component fi is convex though not necessarily strongly convex [1, 53], while
we do not impose any conditions on fi , which significantly weakens the conditions
in the existing literature. Furthermore, the stepsize in [6, 42] was prespecified without
any adaptivity. [3] introduced a non-monotone line search to address the adaptivity
issue, while extra conditions such as the compactness of {xt }t were imposed for their
expectation analysis.

1.2 Main results: stochastic Newton with Hessian averaging

Concerned by the above limitations of stochastic Newton methods, we ask the follow-
ing question:

Can we design a stochastic Newton method that exploits global linear and
local superlinear convergence in high probability, even for an infinite iteration
sequence, and without increasing the computational cost in each iteration?

We provide an affirmative answer to this question by studying a class of stochastic
Newton methods with Hessian averaging. A simple intuition is that the approximation
error Et can be de-noised by aggregating all the errors {Ei }ti=0, inspired by the central
limit theorem for martingale differences. Thus, if we could reuse the past samples
and replace Et by 1

t+1

∑t
i=0 Ei , then the matrix Ht + 1

t+1

∑t
i=0 Ei would be more

precise than Ĥt = Ht + Et . However, since {Ei }ti=0 are unknown and only {Ĥi }ti=0
are known to us, in order to de-noise Et , we can only aggregate all the Hessian
estimates {Ĥi }ti=0 and derive

1
t+1

∑t
i=0 Ĥi = 1

t+1

∑t
i=0 Hi+ 1

t+1

∑t
i=0 Ei . Compared

to Ĥt , such a matrix does not preserve the information of the true Hessian Ht . Thus,
we observe a trade-off between de-noising the error Et and preserving the Hessian
information Ht : on one hand, we want to assign equal weights to all the past errors
to achieve the fastest concentration for the error average (see Remark 2); on the other
hand, we want to assign all weights to Ht to fully preserve the most recent Hessian
information. In this paper, we investigate this trade-off, and show how the Hessian
averaging resolves the drawbacks of existing stochastic Newton methods.

1.2.1 The proposed method

We consider an online averaging scheme (we let H̃−1 = 0):

H̃t = wt−1

wt
H̃t−1 +

(
1 − wt−1

wt

)
Ĥt , t = 0, 1, 2, . . . , (9)

where {wt }∞t=−1 is a prespecified increasing non-negative weight sequence starting

with w−1 = 0. By online we mean that we only keep an average Hessian H̃t in each
iteration, and update it as (9) when we obtain a new Hessian estimate. This scheme
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Algorithm 1 Stochastic Newton Method with Hessian Averaging

1: Input: iterate x0, weights {wt }∞t=−1, scalars β ∈ (0, 1/2), ρ ∈ (0, 1), and H̃−1 = 0;
2: for t = 0, 1, 2, . . . do
3: Obtain a stochastic Hessian approximation Ĥt = Ht + Et ;

4: Compute the Hessian average via (9): H̃t = wt−1
wt

H̃t−1 +
(
1 − wt−1

wt

)
Ĥt ;

5: Compute the Newton direction pt by solving: H̃tpt = −∇ ft ;

6: if H̃tpt = −∇ ft is not solvable or ∇ f �
t pt ≥ 0, then skip iteration with xt+1 = xt ;

7: Compute a stepsize μt = ρ jt , where jt is the smallest nonnegative integer such that

Armijo condition : f (xt + μtpt ) ≤ f (xt ) + μtβ∇ f �
t pt

8: Update xt+1 = xt + μtpt ;
9: end for

is in contrast to keeping all the past Hessian estimates. By the scheme (9), we note
that, at iteration t , we re-scale the weights of {Ĥi }t−1

t=0 equally by a factor of wt−1/wt ,
instead of completely redefining all the weights.We note that such an online averaging
scheme ismemory and computation efficient: compared to stochastic Newtonmethods
without averaging, we only require an extra O(d2) space to save H̃t and O(d2) flops
to update it, which is negligible in the setting of stochastic Newton methods where
the Hessian vector product requires O(d2) flops and solving the exact Newton system
requires O(d3) flops. In (9), we use the ratio factorswt−1/wt instead of direct weights
merely to simplify our later presentation. Furthermore, (9) can be reformulated as a
general weighted average as follows:

H̃t =
t∑

i=0

zi,t Ĥi , with zi,t := (wi − wi−1)/wt . (10)

In particular, by setting wt = t + 1, we obtain zi,t = 1/(t + 1) and further have
H̃t = 1

t+1

∑t
i=0 Ĥi . Thus,we recover simple uniform averaging. Ifwe let the sequence

wt grow faster-than-linearly, this results in a weighted average that is skewed towards
the more recent Hessian estimates.

Our proposedmethod replacesHt by H̃t when computing the Newton direction (2).
The detailed procedure is displayed in Algorithm 1. We make two comments about
the algorithm.

First, Algorithm 1 supposes that, unlike the Hessian, the function values and gra-
dients are known deterministically. As a result, the method generates a monotonically
decreasing sequence of f (xt ). If, on the other hand, f (xt ) and ∇ f (xt ) were known
with random noise, we would have to relax the Armijo condition by adding extra error
terms (hence, f (xt ) would be potentially non-monotonic), and analyze the resulting
method under a randommodel framework such as in [5, 12].We leave these non-trivial
extensions to future work.

Second, for early iterates, the average Hessian H̃t may not be a good approximate
ofHt . For example, H̃t may be indefinite (or even singular) so that pt is not a descent
direction. In that case, we skip the line search step and let xt+1 = xt (see Line
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6 of Algorithm 1). Further, even if H̃t is positive definite, it may not be properly
bounded, and thus leads to an extremely small stepsize μt . However, as analyzed
later in Lemmas 2 and 7, the errors {Ei }ti=0 are sufficiently concentrated for large t
with high probability, so that H̃t is properly bounded from above and below. Thus,
Algorithm 1 is well defined and can be performed for any iteration t , while it behaves
like the classical Newton method only after a few iterations (the threshold is provided
in Lemmas 2 and 7).

1.2.2 Main results

We conduct convergence analysis for Algorithm 1 with different weight sequences
{wt }∞t=−1. Throughout the analysis, we only assume the oracle noise E(x) has a
sub-exponential tail, which in particular includes Hessian subsampling and Hessian
sketching as special cases. Our convergence guarantees rely on the quality of the aver-
age Hessian approximation H̃t ; thus, we do not require Ĥt to be a good approximation
ofHt . In other words, our scheme is applicable even if we generate a single sample for
forming the subsampled Hessian estimator, and applicable even if some components
fi are non-convex. This is because the noise Et can always be reduced by averaging
(ensured by the central limit theorem) even if it has a large variance.

We show that, with high probability, Algorithm 1 has four convergence phases with
three transition points:

(a) Global phase: xt converges from any initial iterate x0 to a local neighborhood of
x�, in which the unit stepsize starts being accepted.

(b) Steady phase: xt stays in the neighborhood.
(c) Slow superlinear phase: xt starts converging superlinearly with a rate gradually

increasing.
(d) Fast superlinear phase: the superlinear acceleration reaches its full potential and

is maintained for all the following iterations.

We mention that the superlinear rate is measured with respect to the error ‖xt −
x�‖H� := √

(xt − x�)�H�(xt − x0) where H� = H(x�). Before introducing the main
results in Theorems 1 and 2, we summarize them in Table 1, showing the transition
points for two weight sequences. The transitions for general weights are provided in
Sect. 4. We use Υ to denote the noise level of stochastic Hessian oracle (see Assump-
tion 1 for a formal definition; typically Υ = O(κ)). We also use O(·) to suppress
the logarithmic factors and the dependence on other constants except Υ and κ . We
emphasize that all results of the paper require that the (weighted) average of the errors
{Ei }ti=0 is sufficiently concentrated; thus, they hold with high probability.

The first main result studies the uniform averaging scheme, which is infor-
mally stated below. We refer to Theorem 4 for a formal statement.

Theorem 1 (Uniform averaging; informal) Consider Algorithm 1 with wt = t + 1.
With high probability, the algorithm satisfies:

1. After T = O(κ2 + Υ 2) iterations, xt converges to a local neighborhood of x�.
2. After O(T κ) iterations, xt converges superlinearly to x�.
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Table 1 Three transitions of two averaging schemes: uniform averaging (wt = t + 1, see Theorem 1) and
our proposed weighted averaging scheme (wt = (t + 1)log(t+1), see Theorem 2)

Weights wt First transition Second transition Third transition

t + 1 (Thm. 1) O(κ2 + Υ 2) O(κ · {κ2 + Υ 2}) O(κ2/Υ 2 · {κ2 + Υ 2}2)
(t + 1)log(t+1) (Thm. 2) O(κ2 + Υ 2) O(κ2 + Υ 2) O(κ2 + Υ 2)

For each weight sequence, the three transitions occur with high probability

3. After O(T 2κ2/Υ 2) iterations, the superlinear rate reaches (Υ
√
log(t)/t )t , and

this rate is maintained as t → ∞.

First, we observe that our convergence guarantee holds with high probability for the
entire infinite iteration sequence, which addresses the issue of the blow-up of failure
probability associated with the existing stochastic Newton methods (see part (b) in
Sect. 1.1).

Second, the parameter Υ characterizes the noise level of the stochastic Hessian
oracle. When the Hessian is generated by subsampling or sketching, Υ depends on
the adopted sample/sketch sizes. As illustrated in Examples 1 and 2, Υ = O(κ)

for popular Hessian estimators when sample/sketch sizes are independent of κ . In
this case, T = O(κ2). We require T ≥ O(Υ 2) only to ensure that {H̃t }t≥T are
positive definite with condition numbers scaling as κ , so that the Newton step based
on H̃t leads to a usual decrease of the objective. On the other hand, popular stochastic
Newton methods often generate a larger sample size (which depends on κ) to enforce
‖Et‖ ≤ ελmin for any t ≥ 0with an ε ∈ (0, 1) (e.g., see Lemma 2 and Equation 3.10 in
[48, 53] respectively). In that case, {Ĥt }t≥0 are positive definite and so are {H̃t }t≥0.
Importantly, our method does not require such well-conditioned Hessian oracles.

Third, we notice that the uniform averaging approach has three transitions outlined
in Theorem1. For the iterations before T , the error in function value decreases linearly,
implying that xt converges R-linearly. The first transition occurs after T iterations
when xt reaches the local neighborhood, where second-order information starts being
useful. T is also where the exact Newtonmethods would reach quadratic convergence.
However, the averaged Hessian estimates still carry inaccurate Hessian information
from the global phase, which is only gradually forgotten. From T to O(T κ) itera-
tions, the algorithm gradually forgets the Hessian estimates in the global phase, while
xt still converges R-linearly. The second transition occurs after O(T κ) iterations,
when xt starts converging superlinearly (with a slow rate). The third transition occurs
after O(T 2κ2/Υ 2), when the superlinear rate is accelerated to (Υ

√
log(t)/t )t and

stabilized. This rate comes from the central limit theorem of averaging out the oracle
noise; thus, this rate cannot be further improved.

Note that ifwewere to reset the averagedHessian estimate H̃t after thefirst transition
(so that the Hessian average does not include information from the global phase), then
the algorithm would immediately reach the superlinear rate (Υ

√
log(t)/t )t after T

iterations (i.e., all transitions would occur at once). However, the algorithm does not
knowaprioriwhen this transitionwill occur.As a result, the uniformHessian averaging
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incurs a potentially significant delay of up to O(T 2κ2/Υ 2) iterations before reaching
the desired superlinear rate.

In our second main result, we address the delayed transition to superlinear conver-
gence that occurs in the uniform averaging. Specifically, we ask:

Does there exist a universal weighted averaging scheme that achieves superlinear
convergencewithout a delayed transition, andwithout any prior knowledge about
the objective?

Remarkably, the answer to this question is affirmative. The weighted/non-uniform
averaging scheme we present below puts more weight on recent Hessian estimates,
so that the second-order information from the global phase is forgotten more quickly,
and the transition to a fast superlinear rate occurs after only O(T ) iterations. Thus,
the superlinear convergence occurs without any delay (up to constant factors). Such a
scheme will necessarily have a slightly weaker superlinear rate than the uniform aver-
aging as t → ∞, but we show that this difference is merely an additional O(

√
log t)

factor (see Theorem 5 and Example 5 for a formal statement).

Theorem 2 (Weighted averaging; informal) Consider Algorithm 1 with wt = (t +
1)log(t+1). With high probability, after O(T ) = O(κ2 + Υ 2) iterations, xt achieves a
superlinear convergence rate (Υ log(t)/

√
t )t , which is maintained as t → ∞.

We note that, given some knowledge about the global/local transition points (e.g.,
if the algorithm knows κ , or if some convergence criterion is used for estimating
the transition point), it is possible to switch from the more conservative weighted
averaging to the asymptotically more effective uniform averaging within one run of
the algorithm.However, since knowing transition points is difficult and rare in practice,
we leave such considerations to future work, and only focus on problem-independent
averaging schemes.

It is also worth mentioning that this paper only considers a basic stochastic New-
ton scheme based on (2), where we suppose exact function and gradient information
and solutions to the Newton systems are known exactly. Some literature allows one to
access inexact function values and/or gradients, and/or apply Newton-CG orMINRES
to solve the linear systems inexactly [23, 37, 53, 63]. Applying our sample aggregation
technique under these setups is promising, but we defer it to future work. The basic
scheme purely reflects the benefits of Hessian averaging, which is the main inter-
est of this work. Additionally, some literature deals with non-convex objectives via
stochastic trust region methods [5, 12] or stochastic Levenberg-Marquardt methods
[39]. The averaging scheme may not directly apply for these methods due to potential
bias brought by Hessianmodifications for addressing non-convexity, while our sample
aggregation idea is still inspiring.We leave the generalization to non-convex objectives
to future work as well. Some literature addressed the superlinearity of stochastic New-
ton methods under distributed or federated learning settings [30, 49, 54]. These works
are not fully compatible with our Hessian oracle framework, since they exploit some
distributed nature of problem to produce Hessian estimates with noise diminishing to
zero (as opposed to the bounded noise in this paper).
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1.3 Literature review

Stochastic Newton methods have recently received much attention. The popular Hes-
sian approximation methods include subsampling and sketching.

For subsampled Newton methods, aside from extensive empirical studies on dif-
ferent problems [33, 40, 41, 62], the pioneering work in [10] established the very first
asymptotic global convergence by showing that ‖∇ ft‖ → 0 as t → ∞, while the
quantitative rate is unknown. Furthermore, [11, 24] studied Newton-type algorithms
with subsampled gradients and/or subsampled Hessians, and established global Q-
linear convergence in the error of function value f (xt ) − f (x�). However, the above
analyses neglected the underlying probabilistic nature of the subsampled Hessian Ĥt ,
and required Ĥt to be lower bounded away from zero deterministically. Such a con-
dition holds only if each fi in (5) is strongly convex, which is restrictive in general.
Erdogdu andMontanari [22] relaxed such a condition by developing a novel algorithm,
where the subsampled Hessian is adjusted by a truncated eigenvalue decomposition.
With the exact gradient information and properly prespecified stepsizes, the authors
showed a linear-quadratic error recursion for ‖xt − x�‖ in high probability. Arguably,
the convergence of standard subsampledNewtonmethods is originally analyzed in [53]
and [6] from different perspectives. In particular, for both sampling and not sampling
the gradient, [53] showed a global Q-linear convergence for f (xt )− f (x�) and a local
linear-quadratic convergence for ‖xt −x�‖ in high probability. Under some additional
conditions, [6] derived a global R-linear convergence for the expected function value
E[ f (xt ) − f (x�)] and a (similar) local linear-quadratic convergence for the expected
iterate errorE[‖xt −x�‖]. For both works, the authors also discussed how to gradually
increase the sample size for Hessian approximation to achieve a local Q-superlinear
convergence with high probability and in expectation, respectively. Building on the
two studies, various modifications of subsampled Newtonmethods have been reported
with similar convergence guarantees.We refer to [3, 36, 61, 64] and references therein.
We note that [32] designed a scheme that allows for a single sample in each iteration of
subsampled Newton. That work established a local linear convergence in expectation,
while we obtain a superlinear convergence in high probability.

As a parallel approach to subsampling, Newton sketch has also been broadly
investigated. Pilanci and Wainwright [48] proposed a generic Newton sketch method
that approximates the Hessian via a Johnson–Lindenstrauss (JL) transform (e.g., the
Hadamard transform), and the gradient is exact. Furthermore, [1, 15, 17, 18] pro-
posed different Newton sketch methods with debiased or unbiased Hessian inverse
approximations. Dereziński et al. [19] relied on a novel sketching technique called
LeverageScoreSparsified (LESS) embeddings [20] to construct a sparse sketchmatrix,
and studied the trade-off between the computational cost of Ĥt and the convergence
rate of the algorithm. Similar to subsampled Newton methods, the aforementioned
literature established a local linear-quadratic (or linear) recursion for ‖xt − x�‖ in
high probability. A recent work [34] adaptively increased the sketch size to let the
linear coefficient be proportional to the iterate error, which leads to a quadratic con-
vergence. However, the per-iteration computational cost is larger than typicalmethods.
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See [4] for a review of subsampled and sketched Newton, and their connections to,
and empirical comparisons with, first-order methods.

Sketching has also been used to construct low-rankHessian approximations through
the Sketch-and-Project framework, originally developed by [28] for solving linear
systems, and extended to general convex/nonconvex optimization by [21, 27, 38, 44].
The convergence properties of this family of methods have been thoroughly stud-
ied: they achieve linear convergence in expectation, with the rate controlled by a
so-called stochastic condition number, which is defined as the smallest eigenvalue of
the expectation of the low-rank projection matrix defined by the sketch [28]. While
the per-iteration cost of stochastic Newton methods based on Sketch-and-Project is
generally lower than that of the aforementioned Newton sketch methods, their con-
vergence rates are more sensitive to the spectral properties of the Hessian. The precise
characterizations of the convergence rates are given in [16, 18, 43]. Moreover, the
Sketch-and-Project estimates are generally biased, so they are not appropriate for
averaging.

In summary, none of the aforementioned existing works achieve superlinear con-
vergence with a fixed per-iteration computational cost. Additionally, high probability
convergence guarantees generally fail as t → ∞, with potent exceptions of certain
stochastic trust-region methods [12] that enjoy almost sure convergence. However, the
per-iteration computation of the exceptions is not fixed and the local rate is unknown.
Further, for finite-sum objectives, the existing literature on stochastic Newtonmethods
assumes each fi to be strongly convex [6] or convex [53]. However, fi needs not be
convex even if f is strongly convex. See [2, 25, 26, 55] and references therein for
first-order algorithms designed under such a setting. We address the above limitations
of stochastic Newton methods by reusing all the past samples to average Hessian
estimates. Our scheme is especially preferable when we have a limited budget for
per-iteration computation (e.g., when we use very few samples in subsampled New-
ton, resulting in an ill-conditioned Hessian estimate). Our established non-asymptotic
superlinear rates are stronger than the existing results, and our numerical experiments
demonstrate the superiority of Hessian averaging.

Notation: Throughout the paper, we use I to denote the identity matrix, and 0 to
denote the zero vector or matrix. Their dimensions are clear from the context. We use
‖ · ‖ to denote the 
2 norm for vectors and spectral norm for matrices. For a positive
semidefinitematrixA, we let ‖x‖A = √

x�Ax. For two scalars a, b, a∨b = max(a, b)
and a ∧ b = min(a, b). For two matrices A,B, A ≺ (�)B if B − A is a positive
(semi)definite matrix. Recall that we reserve the notation λmin, λmax to denote the
lower and upper bounds of the true Hessian, and κ = λmax/λmin is the condition
number.

Structure of the paper: In Sect. 2 we present the preliminaries on matrix concentration
that are needed for our results. Then, we establish convergence results for the uniform
averaging scheme in Sect. 3. Section 4 establishes convergence for general weight
sequences. Numerical experiments and conclusions are provided in Sects. 5 and 6,
respectively.
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2 Preliminaries onmatrix concentration

In this section, we present the key results on the concentration of sums of random
matrices, which we then use to bound the noise of the averaged Hessian estimates.
The Hessian estimates constructed by our algorithm are not independent, and hence
standard matrix concentration results do not apply. However, they do satisfy a martin-
gale difference condition, which we will exploit to derive useful concentration results.

Given a sequence of stochastic iterates {xt }∞t=0, we let F0 ⊆ F1 ⊆ F2 ⊆ . . . be a
filtration where Ft = σ(x0:t ), ∀t ≥ 0, is the σ -algebra generated by the randomness
from x0 to xt . With such a filtration, we denote the conditional expectation by Et [·] =
E[· | Ft ] and the conditional probability by Pt (·) = P(· | Ft ). We suppose x0 is
deterministic, so that F0 is a trivial σ -algebra.

For a given weight sequence {wt }∞t=−1 with w−1 = 0, the scheme (9) leads to

H̃t
(10)=

t∑

i=0

zi,t Ĥi
(4)=

t∑

i=0

zi,tHi

︸ ︷︷ ︸
Hessian averaging

+ Ēt for Ēt :=
t∑

i=0

zi,tEi

︸ ︷︷ ︸
noise averaging

(11)

where zi,t = (wi−wi−1)/wt . Note that
∑t

i=0 zi,t = 1 and zi,t ∝ zi := wi−wi−1, i.e.,
zi,t is proportional to an un-normalized weight zi . We see from (11) that H̃t consists
of the Hessian averaging and noise averaging with the same weights. In principle,
the Hessian averaging

∑t
i=0 zi,tHi → H� as xt → x�, while the noise averaging∑t

i=0 zi,tEi → 0 due to the central limit theorem. We will show that the Hessian
averaging (eventually) converges faster than the noise averaging.

To study the concentration of noise averaging Ēt , we use the fact that {Et }∞t=0 is
a martingale difference sequence, and rely on concentration inequalities for matrix
martingales. These concentration inequalities require a sub-exponential tail condition
on the noise. We say that a random variable X is K -sub-exponential if E[|X |p] ≤
p! · K p/2 for all p = 2, 3, . . . , which is consistent (up to constants) with all standard
notions of sub-exponentiality (see Sect. 2.7 in [59]).

Assumption 1 (Sub-exponential noise) We assume thatE(x) is mean zero and ‖E(x)‖
isΥE -sub-exponential for allx. Also,wedefineΥ := ΥE/λmin to be the scale-invariant
noise level.

Remark 1 The sub-exponentiality of ‖E(x)‖ implies that E(x) has sub-exponential
matrix moments: E[E(x)p] � p! · Υ

p
E /2 · I for p = 2, 3, . . . . In fact, our analysis

immediately applies under this slightly weaker condition. We impose the moment
condition on ‖E(x)‖ purely because it is easier to check in practice. Also, we note
that sometimes the noise H(x)−1/2E(x)H(x)−1/2 is more natural to study, e.g., for
sketching-based oracles where we additionally have Ĥ(x) � 0. Thus, we can alterna-
tively impose Υ̃ -sub-exponentiality on ‖H(x)−1/2E(x)H(x)−1/2‖. Our analysis can
also be adapted to this alternate condition, and leads to tighter convergence rates (in
terms of the dependence on κ) for particular sketching-based oracles. However, this
adaptation loses certain generality, and thus we prefer to impose conditions directly
on the oracle noise E(x).
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Assumption 1 is weaker than assuming ‖E(x)‖ to be uniformly bounded byΥE , and
it is satisfied by all of the popular Hessian subsampling and sketching methods. For
example,whenusingGaussian sketching, the noise is not boundedbut sub-exponential.
Further, the sub-exponential constant ΥE (and hence Υ ) reflects how the stochastic
noise depends on the sample/sketch size, as illustrated in the examples below (see
Appendix A for rigorous proofs).

Example 1 Consider subsampled Newton as in (6) with sample size s = |ξt |, and
suppose ‖∇2 fi (x)‖ ≤ λmaxR for some R > 0 and for all i . Then, we have Υ =
O(κR

√
log(d)/s). If we additionally assume that all fi (x) are convex, then Υ is

improved to Υ = O(
√

κR log(d)/s + κR log(d)/s ).

Example 2 Consider Newton sketch as in (7) with S ∈ R
s×n consisting of i.i.d.

N (0, 1/s) entries. Then, we have Υ = O(κ(
√
d/s + d/s)).

From the above two examples, we observe that Υ scales as O(κ) when holding
everything else fixed. Also, Example 1 illustrates that ourHessian oraclemodel applies
to subsampled Newton even when some components fi (x) are non-convex (while
f (x) is still convex), although this adversely affects the sub-exponential constant. For
Gaussian sketch in Example 2, we can show that Υ̃ = O(

√
d/s + d/s) (where Υ̃

was defined in Remark 1). Thus, the dependence on κ can be avoided for the sub-
exponential constant of noise H(x)−1/2E(x)H(x)−1/2. Analogous noise bounds can
be proved for other sketching matrices S, including sparse sketches and randomized
orthogonal transforms.

We now show concentration inequalities for Ēt in (11) under Assumption 1. We
state the following preliminary lemma, which is a variant of Freedman’s inequality
for matrix martingales.

Lemma 1 (Adapted from Theorem 2.3 in [57]) Let t ≥ 0 be a fixed integer. Consider
a d-dimensional martingale difference {Ei }ti=0 (i.e.,Ei [Ei ] = 0). Suppose there exists
a function gt : Θt → [0,∞] with Θt ⊆ (0,∞), and a sequence of matrices {Ui }ti=0,
such that for any i = 0, 1, . . . , t ,2

Ei
[
exp (θEi )

] � exp (gt (θ)Ui ) almost surely for each θ ∈ Θt . (12)

Then, we have for any scalars η ≥ 0 and σ 2 > 0,

P

(∥∥∥
t∑

i=0

Ei

∥∥∥ ≥ η and
∥∥∥

t∑

i=0

Ui

∥∥∥ ≤ σ 2

)

≤ 2d · inf
θ∈Θt

exp
(
−θη + gt (θ)σ 2

)
.

The function gt in [57, Theorem 2.3] is defined on the full positive set (0,∞), but
the proof applies to any subset Θt . We use Lemma 1 to show the next result.

2 The matrix exponential is defined by power series expansion: exp(A) = I +∑∞
i=1 A

i /i !.
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Theorem 3 (Concentration of sub-exponential martingale difference)Under Assump-
tion 1, for any integer t ≥ 0 and scalar η ≥ 0, Ēt in (11) satisfies

P
(∥∥Ēt

∥∥ ≥ η
) ≤ 2d · exp

(

− η2/2

Υ 2
E

∑t
i=0 z

2
i,t + z(max)

t ΥEη

)

(13)

where z(max)
t = maxi∈{0,...,t} zi,t .

Proof See Appendix C.1. ��
The martingale concentration in Theorem 3 matches the matrix Bernstein results

for independent noises {Ei }ti=0 (cf. Theorems 6.1, 6.2 in [58]). For any δ ∈ (0, 1), if
we let the right hand side of (13) be δ/(t + 1)2, then we obtain that, with probability
at least 1 − δ/(t + 1)2,

∥∥Ēt
∥∥ ≤ 8ΥE

√

log

(
d(t + 1)

δ

)⎛

⎝

√√√√
t∑

i=0

z2i,t ∨
√

log

(
d(t + 1)

δ

)
· z(max)

t

⎞

⎠ . (14)

We provide the following remark to discuss the fastest concentration rate.

Remark 2 To achieve the fastest concentration rate, we minimize the right hand side
of (14) under the restriction

∑t
i=0 zi,t = 1. Note that the minimum of both

∑t
i=0 z

2
i,t

and z(max)
t is attained with equal weights, that is zi,t = 1/(t + 1), for i = 0, 1, . . . , t .

Thus, the fastest concentration rate is attained with equal weights. Furthermore, a
union bound over t leads to

P

(

∀t : ∥∥Ēt
∥∥ ≤ 8ΥE

(√
log(d(t + 1)/δ)

t + 1
∨ log(d(t + 1)/δ)

t + 1

))

≥ 1 −
∞∑

t=0

δ

(t + 1)2
= 1 − π2δ

6
. (15)

We note that the square root term
√
log(d(t + 1)/δ)/t + 1 dominates the error bound

for large t . Recalling from (11) that zi,t = (wi − wi−1)/wt , we know wt = t + 1
for the equal weights. If fact, the concentration rate of ‖Ēt‖ relates to the superlinear
convergence rate of xt (see Theorem 1), because, as shown in the following sections,
the convergence rate of xt is proportional to ‖Ēt‖ when xt is sufficiently close to x�.

3 Convergence of uniform Hessian averaging

We now study the convergence of stochastic Newton with Hessian averaging. We
consider the uniform averaging scheme, i.e., wt = t + 1, ∀t ≥ 0. Our first result
suggests that, with high probability, H̃t � 0 for all large t . This implies that the
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Newton direction pt = −(H̃t )
−1∇ ft will be employed from some t onwards (cf. Line

6 of Algorithm 1). We recall that Υ = ΥE/λmin, and e denotes the natural base.

Lemma 2 Consider Algorithm 1 with wt = t + 1, ∀t ≥ 0. Under Assumption 1, we
let δ, ε ∈ (0, 1) with d/δ ≥ e. We also let

T1 = 4 (1 ∨ (8Υ /ε))2 log (d/δ · {1 ∨ (8Υ /ε)}) . (16)

Then, with probability 1 − δπ2/6, the event

E =
∞⋂

t=T1

{

‖Ēt‖ ≤ 8ΥE

√
log(d(t + 1)/δ)

t + 1

}

(17)

occurs, which implies (1 − ε)λmin · I � H̃t � (1 + ε)λmax · I, ∀t ≥ T1.

Proof See Appendix C.2. ��
By Lemma 2, we initialize the convergence analysis from the iteration t = T1, and

condition on the event E . For 0 ≤ t < T1, the Newton system may or may not be
solvable and the lower and upper bounds of H̃t may or may not scale as λmin and
λmax (cf. Line 6 of Algorithm 1). Thus, for the iterates x0:T1 , we do not generally
have guarantees on the convergence rate, but only know that the objective value is
non-increasing, that is, f (x0) ≥ · · · ≥ f (xT1).

We next provide a Q-linear convergence for the objective value f (xt ) − f (x�) for
t ≥ T1.

Lemma 3 Conditioning on the event (17), we let

φ = 4ρβ(1 − β)(1 − ε)

κ2(1 + ε)

and have f (xt+1)− f (x�) ≤ (1−φ)( f (xt )− f (x�)), ∀t ≥ T1, which implies R-linear
convergence of the iterate error,

‖xt − x�‖ ≤
{

2

λmin
( f (x0) − f (x�))(1 − φ)t−T1

}1/2
, t ≥ T1,

‖xt − x�‖H� ≤
{
2κ( f (x0) − f (x�))(1 − φ)t−T1

}1/2
, t ≥ T1.

Proof See Appendix C.3. ��
We next show that xt stays in a neighborhood around x� for all large t . For this, we

need a Lipschitz continuity condition.

Assumption 2 (Lipschitz Hessian) We assume H(x) is L-Lipschitz continuous. That
is ‖H(x1) − H(x2)‖ ≤ L‖x1 − x2‖ for any x1, x2 ∈ R

d .
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Combining Lemma 3 with Assumption 2 leads to the following corollary.

Corollary 1 Consider Algorithm 1 with wt = t +1, ∀t ≥ 0. Under Assumptions 1 and
2, we let δ, ε ∈ (0, 1) with d/δ ≥ e, and define the neighborhood Nν as

Nν = {x : ‖x − x�‖H� ≤ ν · λ
3/2
min/L} for ν ∈ (0, 1]. (18)

Then, with probability 1− δπ2/6, we have xt ∈ Nν , for all t ≥ T where T = T1 +T2
with T1 defined in (16) and

T2 = κ2(1 + ε)

4ρβ(1 − β)(1 − ε)
log

(
3L2( f (x0) − f (x�))

ν2λ3min

)

. (19)

Proof See Appendix C.4. ��
Combining (16) and (19), and using O(·) to neglect logarithmic factors and all

constants except κ and Υ , we have T = O(Υ 2 + κ2) with high probability. Building
on Corollary 1, we then show that the unit stepsize is accepted locally.

Lemma 4 Under Assumption 2, suppose pt = −(H̃t )
−1∇ ft . Then μt = 1 if xt ∈ Nν

and (1 − ψ)Ht � H̃t � (1 + ψ)Ht with ν, ψ satisfying

0 < ν ≤ 2

3
(1/2 − β), 0 < ψ ≤ 1/2 − β

3/2 − β
. (20)

Proof See Appendix C.5. ��
The unit stepsize enables us to show a linear-quadratic error recursion.

Lemma 5 Under Assumption 2 and suppose pt = −(H̃t )
−1∇ ft , xt ∈ Nν , and (1 −

ψ)Ht � H̃t � (1 + ψ)Ht with ν, ψ satisfying (20). Then, we have

∥∥xt+1 − x�
∥∥
H� ≤ 3

{
L

λ
3/2
min

‖xt − x�‖2H� + ‖I − H−1/2
t H̃tH

−1/2
t ‖ · ‖xt − x�‖H�

}

.

Proof See Appendix C.6. ��
Lemma 5 suggests that ‖xt − x�‖ exhibits local Q-linear convergence.

Corollary 2 Under Assumption 2 and suppose pt = −(H̃t )
−1∇ ft , xt ∈ Nν , and

(1 − ψ)Ht � H̃t � (1 + ψ)Ht with ν, ψ satisfying (20). Then, we have

‖xt+1 − x�‖H� ≤ 3(ν + ψ)‖xt − x�‖H� ,

which implies linear convergence provided 3(ν + ψ) < 1.

Given all the presented lemmas, we state the final convergence guarantee.
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Theorem 4 Consider Algorithm 1 with wt = t + 1, ∀t ≥ 0. Under Assumptions 1, 2,
we let δ ∈ (0, 1) satisfy d/δ ≥ e, and let ε, ν ∈ (0, 1) satisfy

ε ∨ ν ≤ 1

3

0.5 − β

1.5 − β
∧ 1

48
. (21)

Define the neighborhoodNν as in (18), and define T = T1 +T2 with T1 given by (16)
and T2 given by (19). We also let J = 4T κ/ν. Then, with probability 1 − δπ2/6, we
have that xT1:T +J converges R-linearly, xT :T +J ∈ Nν , and

‖xT +J+t+1 − x�‖H� ≤ 12ρt‖xT +J+t − x�‖H� , ∀t ≥ 0

with

ρt = 4T κ

T + J + t + 1
+ 8Υ

√
log(d(T + J + t + 1)/δ)

T + J + t + 1

satisfying 24ρt ≤ 1, ∀t ≥ 0. ��
Proof See Appendix C.7. ��

We note from Theorem 4 that the condition on ε and ν does not depend on unknown
quantities of objective function and noise level. The convergence rate ρt consists of
two terms. The first term is due to the fact that T = O(Υ 2 + κ2) Hessians are
accumulated in the global phase, and each of them contributes an error (in norm ‖·‖H�)
as large asκ . Given these impreciseHessians, themethod cannot immediately converge
superlinearly after T iterations. That is, ρt � 1 if J = t = 0. We need J = O(T κ)

iterates to suppress the effect of these imprecise Hessians. The second term is due
to the noise averaging, i.e., ‖Ēt‖, which decays slower than the first term. Thus, for
sufficiently large t , the noise averaging will finally dominate the convergence rate.

We present the above observation in the following corollary. It suggests that the
averaging scheme has three transition points; thus four convergence phases.

Corollary 3 Under the setup of Theorem 4, Algorithm 1 has three transitions:
(a): From x0 to xT : the algorithm converges to a local neighborhood Nν from any
initial point x0.
(b): From xT to xT +J : the sequence xt stays in the neighborhood Nν .
(Starting from xT1 , the sequence xt exhibits R-linear convergence)
(c): From xT +J to xT +J+K: the algorithm converges Q-superlinearly with

‖xt+1 − x�‖H� ≤ 12ρ(1)
t ‖xt − x�‖H� for ρ

(1)
t = 8T κ

t + 1
,

where

0 ≤ t − T − J ≤ K, K := T 2κ2

4Υ 2 log(dT /δ)
− T − J .

(d): From xT +J+K: the algorithm converges Q-superlinearly with

‖xt+1 − x�‖H� ≤ 12ρ(2)
t ‖xt − x�‖H� for ρ

(2)
t = 16Υ

√
log(d(t + 1)/δ)

t + 1
,
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where t ≥ T + J + K.

Proof See Appendix C.8. ��
For an infinite iteration sequence {xt }∞t=0 and with high probability, Corollary

3(a) suggests that the first transition is T = O(κ2 + Υ 2); Corollary 3(b) suggests
that the second transition is J = O(T κ); Corollary 3(c) suggests that the third
transition is K = O(T 2κ2/Υ 2); and Corollary 3(d) suggests that the final rate is
ρ

(2)
t = O(Υ

√
log t/t). This recovers Theorem 1. Recalling that Υ typically does not

exceed κ , in this case, we have T = O(κ2), J = O(κ3), and K = O(κ6/Υ 2). This
suggests a trade-off between the final superlinear rate and the final transition. When
the oracle noise level Υ is small, a faster superlinear rate is finally attained, butK also
increases, meaning that the time to attain the final rate is further delayed. By Examples
1 and 2, Υ decays as sample/sketch size increases. Thus, the final superlinear rate is
improved by increasing the sample/sketch size s, however the effect of this change
may be delayed due to the rate/transition trade-off. Fortunately, as we will see in the
following section, this trade-off can be optimized via weighted Hessian averaging.

4 Convergence of averaging with general weights

Although the superlinear convergence of stochastic Newton with uniform Hessian
averaging (Corollary 3) is promising, since the scheme eventually attains the optimal
superlinear rate implied by the central limit theorem, a clear drawback is the delayed
transition—the scheme spends quite a long time before attaining the final rate. In this
section, we study the relationship between transitions and general weight sequences.
We consider performing Algorithm 1 with a weight sequence wt that satisfies the
following general condition.

Assumption 3 We assume wt = w(t) for all integer t ≥ 0, where w(·) : R → R is a
real function satisfying (i)w(·) is twice differentiable; (ii)w(−1) = 0,w(t) > 0, ∀t ≥
0; (iii)w′(−1) ≥ 0; (iv)w′′(t) ≥ 0,∀t ≥ −1; (v)w(t+1)/w(t)∨w′(t+1)/w′(t) ≤ Ψ ,
∀t ≥ 0 for some Ψ ≥ 1.

By the above assumption, we specialize the result of noise averaging in (14) as
follows.

Lemma 6 Under Assumptions 1 and 3, for any t ≥ 0, with probability 1− δ/(t + 1)2,

‖Ēt‖ ≤ 8Ψ ΥE

(√

log

(
d(t + 1)

δ

)
w′(t)
w(t)

∨ log

(
d(t + 1)

δ

)
w′(t)
w(t)

)

. (22)

Proof See Appendix C.9. ��
Naturally, to have ‖Ēt‖ concentrate, we require limt→∞ log( d(t+1)

δ
)
w′(t)
w(t) = 0. It

is easy to see that for some weight sequences, such as w(t) = exp(t) − exp(−1),
such a requirement cannot be satisfied, which makes convergence fail. On the other
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hand, this is reasonable since zi,t ∝ zi = wi − wi−1 = exp(i) − exp(i − 1) =
(1 − 1/e) exp(i), which means that we assign an exponentially large weight to the
current Hessian estimate. Such an assignment preserves recent Hessian information
better, but it diminishes the previous estimates too quickly to let the noise averaging
concentrate.

Given the above concentration results, we have a similar result to Lemma 2.

Lemma 7 Consider Algorithm 1 with wt satisfying Assumption 3. Under Assumption
1, for any δ, ε ∈ (0, 1), we let

I1 := I1(ε, δ) = sup
t

{
t : log

(
d(t + 1)

δ

)
w′(t)
w(t)

≥
( ε

8Ψ Υ
∧ 1

)2}+ 1. (23)

Then, with probability 1 − δπ2/6, the event

E =
∞⋂

t=I1

{

‖Ēt‖ ≤ 8Ψ ΥE

√

log

(
d(t + 1)

δ

)
w′(t)
w(t)

}

(24)

occurs, which implies (1 − ε)λmin · I � H̃t � (1 + ε)λmax · I, ∀t ≥ I1.

Proof See Appendix C.10. ��
We note that Lemma 3 and Corollary 1 still hold for general weight sequences.

Thus, we let

I := I(ε, δ, ν) = I1(ε, δ) + T2
(19)= I1(ε, δ) + κ2(1 + ε)

4ρβ(1 − β)(1 − ε)
log

(
3L2( f (x0) − f (x�))

ν2λ3min

)

, (25)

and know that xt ∈ Nν for all t ≥ I. Lemmas 4, 5 and Corollary 2 also carry over to
the setting of general weight sequences. Building on these results, we state the final
convergence guarantee.

Theorem 5 Consider Algorithm 1 with wt satisfying Assumption 3. Under Assump-
tions 1, 2, we let δ, ε, ν ∈ (0, 1) and ε, ν satisfy

ε ∨ ν ≤ 1

5

0.5 − β

1.5 − β
∧ 1

48Ψ
. (26)

Define the neighborhood Nν as in (18), and define I as in (25). We also let U be
w(I +U) = 2w(I − 1)κ/ν. Then, with probability 1− δπ2/6, we have that xI1:I+U
converges R-linearly, xI:I+U ∈ Nν , and

‖xI+U+t+1 − x�‖H� ≤ 6θt‖xI+U+t − x�‖H� , ∀t ≥ 0,
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with

θt = 6w(I − 1)κ

w(I + U + t)
+ 8Ψ Υ

√

log

(
d(I + U + t + 1)

δ

)
w′(I + U + t)

w(I + U + t)

satisfying 12Ψ θt ≤ 1, ∀t ≥ 0.

Proof See Appendix C.11. ��
The proof of Theorem 5 is more involved than the one of Theorem 4. In particular,

when dealing with a critical term
∑I+U+t

j=I (w( j)−w( j−1))‖x j −x�‖H� , the analysis
of Theorem 4 uses the facts that w( j) − w( j − 1) = 1 and x j converges linearly (cf.
Corollary 2). However, that analysis does not apply for general weights, since plugging
the setup w( j) = j +1 masks some critical properties of w(·), such as w′( j) ≥ 0 and
w( j + 1)/w( j) ≤ Ψ , ∀ j ≥ 0 (Ψ = 2 for w( j) = j + 1). In contrast, for Theorem 5,
we separate the above term into two terms,

∑I+U
j=I (w( j)−w( j −1))‖x j −x�‖H� and

∑I+U+t
j=I+U+1(w( j) − w( j − 1))‖x j − x�‖H� . The first term is bounded by w(I +U)ν

since x j ∈ Nν for I ≤ j ≤ I + U . The second term, which is proven to have the
same bound as the first term, not only utilizes the linear convergence of x j with a rate
depending on Ψ (proved by induction), but also utilizes general properties of w(·) in
Assumption 3.

We arrive at the following corollary for the iteration transitions. The proof is the
same as for Corollary 3, and is omitted.

Corollary 4 Under the setup of Theorem 5, Algorithm 1 has three transitions:
(a): From x0 to xI : the algorithm converges to a local neighborhood Nν from any
initial point x0.
(b): From xI to xI+U : the sequence xt stays in the neighborhood Nν .
(Starting from xI1 , the sequence xt exhibits R-linear convergence)
(c): From xI+U to xI+U+V : the algorithm converges Q-superlinearly with

‖xt+1 − x�‖H� ≤ 6θ(1)
t ‖xt − x�‖H� for θ

(1)
t := 14w(I − 1)κ

w(t)
,

where

0 ≤ t−I−U ≤ V, V := argmin
t≥I+U

{
w(t)w′(t) log

(
d(t + 1)

δ

)
≥ w(I − 1)2κ2

Ψ 2Υ 2

}
.

(d): From xI+U+V : the algorithm converges Q-superlinearly with

‖xt+1 − x�‖H� ≤ 6θ(2)
t ‖xt − x�‖H� for θ

(2)
t = 14Ψ Υ

√
w′(t)
w(t)

log

(
d(t + 1)

δ

)
,

where t ≥ I + U + V .
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Table 2 Comparison of different averaging schemes, in terms of how many iterations it takes to transition
to each superlinear phase, and the convergence rates achieved

Weights wt Initial superlinear phase Final superlinear phase

U rate θ
(1)
t V rate θ

(2)
t

t + 1 (Ex. 3) κ3 κ3/t κ6/Υ 2 Υ
√
log(t)/t

(t + 1)p (Ex. 4) κ2+1/p κ2p+1/t p κ
4p+2
2p−1 /(pΥ 2)

1
2p−1 Υ

√
p log(t)/t

(t + 1)log(t+1) (Ex. 5) κ2 κ4 log(κ)+1/t log(t) κ2 Υ log(t)/
√
t

We drop constant factors as well as logarithmic dependence on d and 1/δ, and assume that 1/poly(κ) ≤
Υ ≤ O(κ)

Given Corollary 4, we provide the following examples. Again, we use O(·) to
neglect the logarithmic factors and the dependence on all constants except κ and Υ .
We emphasize that for an iteration sequence, the three transition points occur onlywith
high probability. For sake of presentation, we will not repeat “with high probability”
for each O(·). As mentioned, typically, Υ = O(κ) in practice. We note that for
all considered wt sequences, Assumption 3 is satisfied and I1 has the same order
as T1 (cf. (16)), so that I = O(T ) = O(Υ 2 + κ2). In other words, the weighted
averaging and uniform averaging take the same order of iterations to get into the same
local neighborhood. In the following examples, we show how the second and third
transition points U and V , as well as the superlinear rates θ

(1)
t and θ

(2)
t , change for

different weight sequences (see Table 2 for a summary of the case Υ ≤ O(κ), i.e.
I = O(κ2)).

Example 3 (Uniform averaging) Let wt = t + 1. Then, the superlinear rates are:

θ
(1)
t = O

(Iκ

t

)
, θ

(2)
t = O

(

Υ

√
log(dt/δ)

t

)

.

Moreover, the second and third transition points are given by U = O(I · κ) and
V = O(I2κ2/Υ 2). The above example recovers Corollary 3 (up to constant scaling
factors). It achieves the best final rate θ

(2)
t ensured by the central limit theorem, but

the initial rate θ
(1)
t is sub-optimal. Thus, this scheme takes a long time for the iterates

to reach the final rate.

Example 4 (Accelerated initial rate) Let wt = (t + 1)p for p ≥ 1. The superlinear
rates are:

θ
(1)
t = O

(I pκ

t p

)
, θ

(2)
t = O

(

Υ

√

p · log(dt/δ)
t

)

.

Moreover, the second and third transition points are given by

(I + U)p = O(I pκ) ⇐� U = O(I · κ1/p),
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pV2p−1 log(dV/δ) ≥ I2pκ2/Υ 2 ⇐� V = O
(
I

2p
2p−1 ·

{
κ2/(pΥ 2)

} 1
2p−1

)
.

In the above example, we substantially accelerate the initial superlinear rate θ
(1)
t , while

preserving the final rate θ
(2)
t up to a constant factor p. We observe that the transitions

U and V are both improved upon Example 3. In particular, the dependence of κ in U
is improved from κ to κ1/p, and the dependence of I in V is improved from I2 to
I2p/(2p−1). An important observation is that both U and V contract to I as p goes to
∞, which inspires us to consider the following sequence.

Example 5 (Optimal transition points) Let wt = (t + 1)log(t+1). Then, the superlinear
rates are:

θ
(1)
t = O

(
I log(I)κ

t log(t)

)

, θ
(2)
t = O

(

Υ

√

log(t)
log(dt/δ)

t

)

,

We now derive the second and third transition points. In particular, U can be obtained
from:

(I + U)log(I+U) = O(I logIκ)

⇐� I + U = O

(
exp

(√
log

(
I logIκ

))) = O(I) ⇐� U = O(I),

where the first implication uses the fact y = x log x ⇐⇒ x = exp(
√
log y), as well as

the fact log κ ≤ (log I)2. The third transition V can be obtained from:

V2 logV−1 logV log dV/δ ≥ I2 logIκ2/Υ 2

⇐� (2 logV − 1) logV ≥ (2 log I + 1) log I + 2 log

(
1

Υ

)
,

where the implication uses κ2 ≤ I. To let the right hand side hold, we let V = ξ · I
and require

((2 log ξ − 2) + 2 log I + 1) (log I + log ξ) ≥ (2 log I + 1) log I + 2 log

(
1

Υ

)

⇐�
{
2 log ξ − 2 ≥ 1

log ξ log κ ≥ log(1/Υ )
⇐� ξ ≥ exp (1.5 ∨ log(1/Υ )/ log κ) .

Thus, the final transition point V can be chosen as

V = O

(
I · exp

(
1 + log 1/Υ

log κ

))
.

Note that, as long as the oracle noise Υ is bounded below as Υ ≥ 1/poly(κ), we
have V = O(I). Since, as we mentioned, in practice the oracle noise actually grows
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proportionally with κ , this is an extremely mild condition. However, it is technically
necessary, since, if the Hessian oracle always returned the true Hessian, i.e., Υ = 0,
then θ

(2)
t = 0, so we would necessarily have V = ∞ (i.e., Hessian averaging is not

helpful when we have the exact Hessian). In the above example, all of the transition
points I,U ,V are within constant factors of one another (not even logarithmic fac-
tors), while we sacrifice only

√
log(t) in the final superlinear rate. The above results

recover Theorem 2. This suggests that, using the weight sequencewt = (t+1)log(t+1),
the averaging scheme transitions from the global phase to the local superlinearly con-
vergent phase smoothly, and the local neighborhood that separates the two phases is
consistent with the neighborhood of classical Newtonmethods that separate the global
phase (i.e., the damped Newton phase) and the local quadratically convergent phase
(cf. Lemma 5 with H̃t = Ht ).

5 Numerical experiments

We implement the proposed Hessian averaging schemes and compare them with pop-
ular baselines including BFGS, subsampled Newton methods and sketched Newton
methods3. We focus on the regularized logistic regression problem

min
x∈Rd

1

n

n∑

i=1

log
(
1 + exp

(− bia�
i x
))+ ν

2
‖x‖2 ,

where {(bi , ai )}ni=1 with bi ∈ {−1, 1} are input-label pairs. We let A = (a1, a2, . . . ,
an)� ∈ R

n×d be the data matrix.

Data generating process: We generate several data matrices with (n, d, ν) =
(1000, 100, 10−3), varying their properties. First, we vary the coherence of A, since
higher coherence leads to higher variance for subsampled Hessian estimates, com-
pared to sketched Hessian estimates. We use τA to denote the coherence of A, which
is defined as

τA = n

d
· max
i=1,...,n

‖Ui,·‖2

where A = U˝V� is the reduced singular value decomposition of A with U ∈ R
n×d

and V ∈ R
d×d . Second, we vary the condition number κA of A, since (as suggested

by our theory), higher condition number leads to slower convergence and delayed
transitions to superlinear rate. The detailed generalization of A is as follows. We fix
V = I ∈ R

d×d . For low coherence, we generate a n × d random matrix with each
entry being independently generated from N (0, 1), and let U be the left singular
vectors of that matrix. For high coherence, we divide each row of U by

√
zi , where

zi is independently sampled from Gamma distribution with shape 0.5 and scale 2. We
observe that the coherence of the low coherence matrix is ≈ 1 (minimal), while the
coherence of the high coherence matrix is ≈ 10 = n/d (maximal). For either low
or high coherence, we vary κA = {d0.5, d, d1.5}. For each κA, we let singular values

3 All results can be reproduced via https://github.com/senna1128/Hessian-Averaging.

123

https://github.com/senna1128/Hessian-Averaging


Hessian averaging in stochastic Newton methods achieves…

in ˝ vary from 1 to κA with equal spacing, and finally form the matrix A = U˝ . We
also generate a random vector x ∼ N (0, 1/d · I), and the response bi ∈ {−1, 1} with
P(bi = 1) = 1/(1 + exp(−a�

i x)), ∀i = 1, . . . , n.

Methods:We implement the deterministic BFGS method, and stochastic subsampled
and sketched Newton methods. Given a batch size s, the subsampled Newton method
computes the Hessian as

Ĥ(x) = 1

s

∑

j∈ξ

l j · a ja�
j + ν · I with l j = exp(−b ja�

j x)
(
1 + exp(−b ja�

j x)
)2 ,

where the index set ξ has size s and is generated uniformly from [1, n]without replace-
ment. The sketched Newton method instead computes the Hessian as

Ĥ(x) = A�D1/2S�SD1/2A + ν · I with D = diag (l1, . . . , ln) ,

where S ∈ R
s×n is the sketch matrix. We consider three sketching methods, one dense

(slow and accurate) and two sparse variants (fast but less accurate).

(i) Gaussian sketch: we let Si, j
i id∼ N (0, 1).

(ii) CountSketch [13]: for each column of S, we randomly pick a row and realize a
Rademacher variable.
(iii) LESS-Uniform [19]: for each row of S, we randomly pick a fixed number of
nonzero entries and realize a Rademacher variable in each nonzero entry. We let the
number of nonzero entries in each row to be 0.1d.
For (i)–(iii), the sketches are scaled appropriately so that E[Ĥ(x)] = H(x).

For each of the above Hessian oracles (both sketched and subsampled), we consider
three variants of the stochastic Newton methods, depending on how the final Hessian
estimate is constructed.
(1) NoAvg: the standard method that uses the oracle estimate directly;
(2) UnifAvg: the uniform Hessian averaging (i.e., wt = t + 1 from Theorem 1);
(3) WeightAvg: the universal weighted Hessian averaging (i.e., wt = (t + 1)log(t+1)

from Theorem 2).
The overall results are summarized in Table 3, where we show the number of

iterations until convergence for each experiment (we use ‖xt − x�‖H� ≤ 10−6 as
the criterion). We display the median over 50 independent runs. The first general
takeaway is that our proposed WeightAvg performs best overall, and it is the most
robust to different problem settings, when varying the coherence τA, condition number
κA, sample size s, and sketch/sample type. In particular, among the three variants of
NoAvg/UnifAvg/WeightAvg, the latter is the only one to beat BFGS in all settings
with sample size as small as s = 0.5d, as well as the only one to successfully converge
within the iteration budget (999 iterations) for all Hessian oracles. Nevertheless, there
are a few problem instances where either NoAvg or UnifAvg perform somewhat better
thanWeightAvg, which can also be justified by our theory. In the cases where NoAvg
performs best, the oracle noise is particularly small (due to the use of a dense Gaussian
sketch and/or a large sketch size), whichmeans that averaging out the noise is not help-
ful until long after the method has converged very close to the optimum. On the other
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Table 3 We show the median over 50 runs of the number of iterations until convergence, i.e., until ‖xt −
x�‖H� ≤ 10−6, where “—” indicates exceeding 999 iterations

Setup Newton Sketch Subsampled BFGS

τA κA s Gaussian CountSketch LESS-uniform Newton

1 d0.5 0.25d 67/29/35 67/29/35 66/29/35 67/29/36 177

0.5d 53/22/25 53/22/25 53/21/25 53/22/25

d 38/17/19 38/17/18 37/17/19 38/16/18

5d 16/11/11 16/11/11 16/11/12 12/9/9

d 0.25d —/41/52 —/41/52 —/41/53 —/45/60 219

0.5d —/31/34 —/31/35 —/31/35 —/34/39

d 244/24/24 246/24/24 243/24/24 315/26/26

5d 20/16/14 20/17/14 20/16/14 18/15/13

d1.5 0.25d —/—/80 —/—/81 —/—/98 —/—/371 295

0.5d —/—/67 —/—/66 —/—/72 —/—/217

d 270/—/59 —/—/59 —/—/59 —/—/122

5d 27/—/54 97/—/54 38/—/54 —/—/54

10 d0.5 0.25d 60/29/34 60/29/33 60/33/37 57/60/51 178

0.5d 48/22/24 47/22/24 46/25/26 45/45/41

d 38/17/18 35/17/18 34/20/20 34/36/33

5d 15/11/11 16/11/11 16/12/12 26/17/15

d 0.25d —/91/52 —/90/51 —/117/63 —/242/147 252

0.5d —/74/35 —/74/36 —/93/44 —/164/106

d 101/65/27 121/63/27 151/74/31 308/114/69

5d 21/51/19 27/52/18 25/55/19 77/74/25

d1.5 0.25d —/538/80 —/549/78 —/754/110 —/—/294 273

0.5d —/518/62 —/499/63 —/575/77 —/946/187

d 235/475/51 429/489/53 729/510/59 —/659/121

5d 35/431/43 53/422/43 42/438/43 321/462/51

In the case of stochastic methods, we provide three numbers for (the best one in bold):NoAvg,UnifAvg, and
WeightAvg,which correspond to the standardmethod (withoutHessian averaging), themethodwith uniform
averaging (wt = t + 1, as in Theorem 1), and the method with weighted averaging (wt = (t + 1)log(t+1),
as in Theorem 2), respectively. For the setup, we use τA to denote the coherence number ofA; κA to denote
the condition number of A; and s to denote the sample/sketch size for the stochastic methods

hand, the cases where UnifAvg performs best are characterized by a well-conditioned
objective function, where the superlinear phase of the optimization is reached almost
instantly, so the slightly weaker superlinear rate of WeightAvg compared to UnifAvg
manifests itself before reaching convergence (i.e., the additional factor of

√
log(t) in

Theorem 2).
To investigate the performance of Hessian averaging more closely, we present

selected convergence plots in Fig. 1. The figure shows decay of the error in the log-
scale, so that a linear slope indicates linear convergence whereas a concave slope
implies superlinear rate. Here, we used subsampling as the Hessian oracle, varying
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Fig. 1 Convergence plots for Subsampled Newton with several Hessian averaging schemes, compared to
the standard method without averaging (NoAvg) and to BFGS. For all of the plots, we have (n, d, ν) =
(1000, 100, 10−3). We vary the data coherence τA, condition number κA and the subsample size s

the coherence τA, the condition number κA, and sample size s, and compared the Hes-
sian averaging schemes UnifAvg and WeightAvg against the baselines of standard
Subsampled Newton (i.e., NoAvg) and BFGS. We make the following observations:

(a) Subsampled Newton with Hessian averaging (UnifAvg andWeightAvg) exhibits a
clear superlinear rate, observable in how its error plot curves away from the linear
convergence of NoAvg. We note that BFGS also exhibits a superlinear rate, but
only much later in the convergence process.

(b) The gain from Hessian averaging (relative to NoAvg) is more significant both for
highly ill-conditioned problems (large condition number κ) and for noisy Hessian
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Fig. 2 Convergence rates for different Hessian oracles and averaging schemes, with (τA, κA, s) = (1, d, d).
We truncate iterations at 20 to highlight the superlinear rate of UnifAvg and WeightAvg

oracles (small sample size s). For example, in the setting of (κ, s) = (d1.5, d)

for both low and high coherence, standard Subsampled Newton (NoAvg) con-
verges orders of magnitude slower than BFGS, and yet after introducing weighted
averaging (WeightAvg), it beats BFGS by a factor of at least 2.5.

(c) For small condition number, the two Hessian averaging schemes (UnifAvg and
WeightAvg) perform similarly, although in the setting of (κ, s) = (

√
d, d), the

superlinear rate of UnifAvg is slightly better than that of WeightAvg (cf. Fig. 1a),
which aligns with a slightly better rate in Theorem 1 compared to Theorem 2.

(d) For highly ill-conditioned problems,WeightAvg converges much faster than Uni-
fAvg. This is because, as suggested byTheorem1, it takesmuch longer for UnifAvg
to transition to its fast rate. In fact, in the settings of (τA, κA, s) = (1, d1.5, 5d)

and (τA, κA, s) = (10, d, 5d), UnifAvg initially trails behind NoAvg, which is a
consequence of the distortion of the averaged Hessian by the noisy estimates from
the early global convergence.

We next investigate the convergence rate of different methods, and aim to show that
Hessian averaging leads to Q-superlinear convergence, while subsampled/sketched
Newton (with fixed sample/sketch size) only exhibit Q-linear convergence. Figure
2 plots ‖xt+1 − x�‖H�/‖xt − x�‖H� versus t . From the figure, we indeed observe
that our method with different weight sequences (UnifAvg and WeightAvg) always
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exhibits a Q-superlinear convergence, and the superlinear rate exhibits the trend of
(1/t)t/2 matching the theory up to logarithmic factors. We also observe that subsam-
pled/sketched Newtonmethods with different sketch matrices (NoAvg) always exhibit
a Q-linear convergence. These observations are all consistent with our theory.

6 Conclusions

This paper investigated the stochastic Newton method with Hessian averaging. In
each iteration, we obtain a stochastic Hessian estimate and then average it with all
the past Hessian estimates. We proved that the proposed method exhibits a local
Q-superlinear convergence rate, although the non-asymptotic rate and the transition
points are different for different weight sequences. In particular, we proved that uni-
formHessian averaging finally achieves (Υ

√
log t/t)t superlinear rate, which is faster

than the other weight sequences, but it may take as many as O(Υ 2+κ6/Υ 2) iterations
with high probability to get to this rate. We also observe that using weighted averaging
wt = (t + 1)log(t+1), the averaging scheme transitions from the global phase to the
superlinear phase smoothly after O(Υ 2 + κ2) iterations with high probability, with
only a slightly slower rate of (Υ log t/

√
t)t .

One of the future works is to apply our Hessian averaging technique on constrained
nonlinear optimization problems. [45, 46] designed various stochastic second-order
methods based on sequential quadratic programming (SQP) for solving constrained
problems, where the Hessian of the Lagrangian function was estimated by subsam-
pling. These works established the global convergence for stochastic SQP methods,
while the local convergence rate of these methods remains unknown. On the other
hand, based on our analysis, the local rate of Hessian averaging schemes is induced
by the central limit theorem, which we can also apply on the noise of the Lagrangian
Hessian oracles. Thus, it is possible to design a stochastic SQP method with Hessian
averaging and show a similar local superlinear rate for solving constrained nonlinear
optimization problems. We note that a recent work [44] utilized the Hessian averag-
ing to prove a local sublinear rate for stochastic SQP methods, while that result is not
as strong as the one in this paper. Further, for unconstrained convex optimization prob-
lems, generalizing our analysis to enable stochastic gradients and function evaluations
as well as inexact Newton directions is also an important future work, which can fur-
ther improve the applicability of the algorithm. Finally, given any iteration threshold
T , establishing the probability that the first/second/third transition occurs before T is
an interesting open question.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
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A Examples of sub-exponential noise

Lemma 8 Consider subsampled Newton as in (6) with sample size s and sup-
pose ‖∇2 fi (x)‖ ≤ λmaxR for some R > 0 and for all i . Then, we have Υ =
O(κR

√
log(d)/s). If we additionally assume all fi are convex, then we can improve

this to Υ = O(
√

κR log(d)/s + κR log(d)/s ).

Proof The argument follows from the matrix Chernoff and Hoeffding inequalities
[58, Theorems 1.1 and 1.3]. Note that the standard version of these concentration
inequalities applies to sampling with replacement, namely

Ĥ(x) = 1

s

s∑

j=1

∇2 f I j (x),

where indices I1, I2, . . . , Is are sampled from an index set uniformly at random.
Alternate matrix concentration inequalities for sampling without replacement are also
known, e.g., see [29, 60]. We thus take sampling with replacement as an example.

We start with the case where fi may not be convex. By the matrix Hoeffding
inequality (Theorem 1.3, [58]), we have for some small constants c, c′, c′′ > 0 and
any η > 0:

P
(‖Ĥ(x) − H(x)‖ ≥ η

)

≤ 2d exp

(
− cη2s

λ2maxR
2

)
= exp

(
− log(2d)

( cη2s

λ2maxR
2 log(2d)

− 1
))

≤ 2 exp

(
− c′η2s

λ2maxR
2 log(2d)

)
≤ 2 exp

(
− c′′η

λmaxR
√
log(d)/s

)
,

where the last step follows because if the expression in the exponent is larger than
− log(2), then the bound is vacuous, since the probability must lie in [0, 1]. Thus,
it follows that ‖Ĥ(x) − H(x)‖ = ‖E(x)‖ is a sub-exponential random variable with
parameter ΥE = O(λmaxR

√
log(d)/s) (see Sect. 2.7 of [59]). The claim now easily

follows.
Next, suppose that fi are convex. This means that all∇2 fi (x) are positive semidef-

inite, and so is Ĥ(x). Thus we can use the matrix Chernoff inequality (Theorem 1.1
[58]), which provides a sharper guarantee:

P
(‖Ĥ(x) − H(x)‖ ≥ η

)

≤ 2d exp

(
− cmin

{
η2s

λminλmaxR
,

ηs

λmaxR

})

≤ 2 exp

(
− c′ min

{
η2s

λminλmaxR log(d)
,

ηs

λmaxR log(d)

})

≤ 2 exp

(
− c′′ min

{
η

√
λminλmaxR log(d)/s

,
η

λmaxR log(d)/s

})
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≤ 2 exp

(
− c′′η
√

λminλmaxR log(d)/s + λmaxR log(d)/s

)
.

It follows that ‖E(x)‖ is a sub-exponential random variable with parameter
ΥE = O(λmaxR log(d)/s + √

λminλmaxR log(d)/s) = O(λmin(
√

κR log(d)/s +
κR log(d)/s)), and we get the claim. ��
Lemma 9 Consider Newton sketch as in (7) with S ∈ R

s×n consisting of i.i.d.
N (0, 1/s) entries. Then, we have Υ = O(κ(

√
d/s + d/s)).

Proof In fact, the result holds as long as
√
s S has independent mean zero unit vari-

ance sub-Gaussian entries. Froma standard result on the concentration of sub-Gaussian
matrices (Theorem 4.6.1 in [59]), there exists a constant c ≥ 1 such that, with proba-
bility 1 − 2 exp(−t2),

‖H(x)−1/2Ĥ(x)H(x)−1/2 − I‖ ≤ δ ∨ δ2 for any δ ≥ c
(√

d/s + t/
√
s
)

.

(A.1)

Thus, for any η > 0 such that η ∧ √
η ≥ c

√
d/s ⇐� η ≥ c2(d/s + √

d/s), we let
t = √

s(η ∧ √
η)/c and have

c
(√

d/s + t/
√
s
)

= c
√
d/s + η ∧ √

η ≤ 2(η ∧ √
η).

Plugging δ = 2(η ∧ √
η) into (A.1), we obtain for a small constant c′ > 0 that

P
(
‖H(x)−1/2Ĥ(x)H(x)−1/2 − I‖ ≥ 4η

)
≤ 2 exp(−s · (η ∧ η2)/c2)

≤ 2 exp
(

− c′η√
1/s + 1/s

)
.

This further implies that, for a small constant c′′ > 0,

P(‖H(x)−1/2E(x)H(x)−1/2‖ ≥ η) ≤ 2 exp(− c′′η√
d/s + d/s

), ∀η > 0.

Thus, ‖H(x)−1/2E(x)H(x)−1/2‖ is sub-exponential with constant K = O(
√
d/s +

d/s). The claim follows by noting that ‖E(x)‖ ≤ λmax · ‖H(x)−1/2E(x)H(x)−1/2‖. ��

B Preliminary lemmas

Lemma 10 Let d ≥ 1 and δ ∈ (0, 1). If d/δ ≥ e, then for any 0 < a ≤ 1,

t ≥ 2 log(d/(δa))

a
�⇒ log(dt/δ)

t
≤ a,

and moreover, the right hand side inequality fails if t = log(d/(δa))/a and d/δ > e.
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Proof Let t = 2 log(d/(δa))/a. We will show for this t that t ≥ log(dt/δ)/a. We
have

t − log(dt/δ)

a
= 2 log(d/(δa))

a
− log(d/(δa)) + log(2 log(d/(δa)))

a

= log(d/(δa)) − log(2 log(d/(δa)))

a

= 1

a
log

( x

2 log(x)

)
≥ 0, for x = d

δa
,

where the last step is due to the fact that x ≥ 2 log(x) for all x > 0. Now, we consider
the function f (t) = log(dt/δ)/t . For any t ≥ 1, its derivative is bounded as

∂ f (t)

∂t
= 1 − log(dt/δ)

t2
≤ 0,

which implies that for t ≥ 2 log(d/(δa))/a ≥ 1 we get log(dt/δ)/t = f (t) ≤
f (2 log(d/(δa))/a) ≤ a. Finally, if t = log(d/(δa))/a and d/δ > e, then
log(dt/δ)/a = log(d/(δa))/a + log(log(d/(δa)))/a > t , which completes the
proof. ��
Lemma 11 Define the neighborhood N̄ν = {x : f (x) ≤ f (x�)+νλ3min/L

2} for ν > 0.
Suppose Assumption 2 holds, then the following relation holds

N̄ν2/3 ⊆ Nν ⊆ N̄ν2 , for any ν ∈ (0, 1]
where Nν is defined in (18).

Proof By Assumption 2, we have

∣∣∣∣ f (x) − f (x�) − 1

2

∥∥x − x�
∥∥2
H�

∣∣∣∣ ≤ L

6

∥∥x − x�
∥∥3 . (B.1)

Suppose x ∈ N̄ν2/3 for ν ∈ (0, 1], we have

f (x�) + λmin

2
‖x − x�‖2 ≤ f (x) ≤ f (x�) + ν2λ3min

3L2 �⇒ ‖x − x�‖ ≤
√
2νλmin√
3L

.

(B.2)

Combining (B.1) and (B.2), we know that x ∈ N̄ν2/3 for ν ∈ (0, 1] leads to

f (x�) + ν2λ3min

3L2

≥ f (x)
(B.1)≥ f (x�) + 1

2
‖x − x�‖2H� − L

6
‖x − x�‖3

≥ f (x�) + 1

2

∥∥x − x�
∥∥2
H� − L

6

∥∥x − x�
∥∥ · ‖x − x�‖2H�

λmin
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= f (x�) +
(
1

2
− L‖x − x�‖

6λmin

)
‖x − x�‖2H�

(B.2)≥ f (x�) +
(
1

2
−

√
2ν

6
√
3

)

‖x − x�‖2H� ≥ f (x�) + ‖x − x�‖2H�

3
,

which further implies ‖x−x�‖H� ≤ νλ
3/2
min/L and x ∈ Nν . On the other hand, suppose

x ∈ Nν , we have

f (x)
(B.1)≤ f (x�) + 1

2

∥∥x − x�
∥∥2
H� + L

6

∥∥x − x�
∥∥3

≤ f (x�) +
(
1

2
+ L ‖x − x�‖H�

6λ3/2min

)
∥∥x − x�

∥∥2
H�

≤ f (x�) +
(
1

2
+ ν

6

)∥∥x − x�
∥∥2
H� ≤ f (x�) + ∥∥x − x�

∥∥2
H� ≤ f (x�) + ν2λ3min

L2 .

Thus, we have x ∈ N̄ν2 . This completes the proof. ��
Lemma 12 Suppose Assumption 2 holds, then we have

‖H(x1)−1/2H(x2)H(x1)−1/2 − I‖ ≤ L

λ
3/2
min

‖x1 − x2‖H� , ∀x1, x2 ∈ R
d .

Proof We note that

‖H(x1)−1/2H(x2)H(x1)−1/2 − I‖ ≤ 1

λmin
‖H(x1) − H(x2)‖

≤ L

λmin
‖x1 − x2‖ ≤ L

λ
3/2
min

‖x1 − x2‖H� .

��

C Proofs

C.1 Proof of Theorem 3

For any t ≥ 0 and scalar θ > 0, we have from Assumption 1 that

Ei
[
exp

(
θ zi,tEi

)]

= I + θ zi,tEi [Ei ] +
∞∑

j=2

(θ zi,t ) jEi [E j
i ]

j !

� I +
∞∑

j=2

(θ zi,tΥE ) j−2 · (θ zi,tΥE )2

2
· I
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= I + (θ zi,tΥE )2

2(1 − θ zi,tΥE )
· I � exp

(
(θ zi,tΥE )2

2(1 − θ zi,tΥE )
· I
)

, ∀i = 0, 1, . . . , t,

where the second equality holds for
{
θ : θ zi,tΥE < 1

}
. Therefore, we let Θt := {θ :

θ < 1/(z(max)
t ΥE )}, and have for all i = 0, 1, . . . , t ,

Ei
[
exp

(
θ zi,tEi

)] � exp

(
(θ zi,tΥE )2

2(1 − θ z(max)
t ΥE )

· I
)

, ∀θ ∈ Θt .

The above inequality suggests that the condition (12) in Lemma 1 holds with

gt (θ) = θ2

2(1 − θ z(max)
t ΥE )

and Ui = z2i,tΥ
2
E · I.

Let σ 2 = ‖∑t
i=0 Ui‖ = Υ 2

E

∑t
i=0 z

2
i,t in Lemma 1. Then we have for any η ≥ 0,

P
(∥∥Ēt

∥∥ ≥ η
) ≤ 2d · inf

θ∈Θt
exp

(
−θη + gt (θ)σ 2

)
.

Plugging θ = η/(z(max)
t ΥEη + σ 2) ∈ Θt into the above right hand side, we obtain

P
(‖Ēt‖ ≥ η

) ≤ 2d · exp
(

− η2/2

σ 2 + z(max)
t ΥEη

)

.

This completes the proof.

C.2 Proof of Lemma 2

Let us define the event

Ē =
∞⋂

t=0

{
∥∥Ēt

∥∥ ≤ 8ΥE

(√
log(d(t + 1)/δ)

t + 1
∨ log(d(t + 1)/δ)

t + 1

)}

.

By Theorem 3 and (15), we know P(Ē) ≥ 1 − δπ2/6. We also note that

‖Ēt‖ ≤ ελmin ⇐� 8ΥE

(√
log(d(t + 1)/δ)

t + 1
∨ log(d(t + 1)/δ)

t + 1

)

≤ ελmin

⇐� log(d(t + 1)/δ)

t + 1
≤ ε2

64Υ 2 ∧ 1 =
( ε

8Υ
∧ 1

)2

⇐� t ≥ 4

(
8Υ

ε
∨ 1

)2

log

{
d

δ
·
(
8Υ

ε
∨ 1

)}
= T1. (Lemma 10)

(C.1)
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Therefore, with probability at least 1 − δπ2/6, we have for any t ≥ T1 that ‖Ēt‖ ≤
ελmin. This shows that the event E defined in (17) happens, and

(1 − ε)λmin · I � H̃t
(11)= 1

t + 1

t∑

i=0

Hi + Ēt � (λmax + ελmin) · I � (1 + ε)λmax · I.

This completes the proof.

C.3 Proof of Lemma 3

By Lemma 2, we know that pt = −(H̃t )
−1∇ ft for t ≥ T1. We apply Taylor’s expan-

sion:

f (xt − μt (H̃t )
−1∇ ft )

≤ f (xt ) − μt∇ f �
t (H̃t )

−1∇ ft + λmaxμ
2
t

2
∇ f �

t (H̃t )
−2∇ ft

≤ f (xt ) − μt∇ f �
t (H̃t )

−1∇ ft + κμ2
t

2(1 − ε)
∇ f �

t (H̃t )
−1∇ ft (Lemma 2)

= f (xt ) − μt

(
1 − κμt

2(1 − ε)

)
∇ f �

t (H̃t )
−1∇ ft .

Thus, the Armijo condition is satisfied if

1 − κμt

2(1 − ε)
≥ β ⇐⇒ μt ≤ 2(1 − β)(1 − ε)

κ
.

Therefore, the backtracking line search on Line 7 leads to a stepsize satisfying

μt ≥ 2ρ(1 − β)(1 − ε)

κ
. (C.2)

Moreover, we apply Lemma 2 and strong convexity of f , and have

∇ f �
t (H̃t )

−1∇ ft ≥ 1

(1 + ε)λmax
‖∇ ft‖2 ≥ 2

(1 + ε)κ
( f (xt ) − f (x�)). (C.3)

Combining (C.2), (C.3) with the Armijo condition, we have

f (xt+1) − f (x�) ≤ f (xt ) − f (x�) − μtβ∇ f �
t (H̃t )

−1∇ ft

≤ f (xt ) − f (x�) − 2ρβ(1 − β)(1 − ε)

κ
· 2

(1 + ε)κ
( f (xt ) − f (x�))

= (1 − φ)( f (xt ) − f (x�)), (C.4)
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which shows the first part of the statement. Furthermore, we apply (C.4) recursively,
apply strong convexity, and have

‖xt − x�‖2 ≤ 2( f (xt ) − f (x�))

λmin

(C .4)≤ 2(1 − φ)t−T1

λmin
( f (xT1) − f (x�))

≤ 2(1 − φ)t−T1

λmin
( f (x0) − f (x�)).

The last statement follows from ‖xt − x�‖2H� ≤ λmax‖xt − x�‖2. This completes the
proof.

C.4 Proof of Corollary 1

We condition on the event (17), which happens with probability 1−δπ2/6. By Lemma
3, we know that, for t ≥ T1,

f (xt ) − f (x�) ≤ (1 − φ)t−T1( f (xT1) − f (x�)) ≤ (1 − φ)t−T1( f (x0) − f (x�)).

By Lemma 11, to have xt ∈ Nν , it suffices to have xt ∈ N̄ν2/3. Thus, we let

(1 − φ)t−T1( f (x0) − f (x�)) ≤ ν2λ3min

3L2

⇐� t − T1 ≥
log

(
3L2( f (x0)− f (x�))

ν2λ3min

)

log
(

1
1−φ

) ⇐� t ≥ T1 + T2, (C.5)

where T2 is defined in (19) and the implication uses the fact that log(1/(1− φ)) ≥ φ.
Furthermore, since f (xt ) is always decreasing, we know after T1 + T2 iterations xt
stays in N̄ν2/3, and hence stays in Nν (cf. Lemma 11). This completes the proof.

C.5 Proof of Lemma 4

It suffices to show

f (xt − (H̃t )
−1∇ ft ) ≤ f (xt ) − β∇ f �

t (H̃t )
−1∇ ft .

By Assumption 2, we have

f (xt − (H̃t )
−1∇ ft )

≤ f (xt ) − ∇ f �
t (H̃t )

−1∇ ft + 1

2
∇ f �

t (H̃t )
−1Ht (H̃t )

−1∇ ft
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+ L

6
‖(H̃t )

−1∇ ft‖3

≤ f (xt ) − 1

2
∇ f �

t (H̃t )
−1∇ ft + 1

2
∇ f �

t (H̃t )
−1(Ht − H̃t )(H̃t )

−1∇ ft + L

6
‖(H̃t )

−1∇ ft‖3

≤ f (xt ) − 1

2
∇ f �

t (H̃t )
−1∇ ft + 1

2
‖(H̃t )

−1/2(Ht − H̃t )(H̃t )
−1/2‖∇ f �

t (H̃t )
−1∇ ft

+ L

6
‖(H̃t )

−1∇ ft‖∇ f �
t (H̃t )

−2∇ ft

≤ f (xt ) − 1

2
∇ f �

t (H̃t )
−1∇ ft + ψ

2(1 − ψ)
∇ f �

t (H̃t )
−1∇ ft

+ L‖(H̃t )
−1∇ ft‖

6(1 − ψ)λmin
∇ f �

t (H̃t )
−1∇ ft

= f (xt ) −
(
1

2
− ψ

2(1 − ψ)
− L‖(H̃t )

−1∇ ft‖
6(1 − ψ)λmin

)

∇ f �
t (H̃t )

−1∇ ft . (C.6)

For term ‖(H̃t )
−1∇ ft‖, we let Hη

t = H(xη
t ) with xη

t = x� + η(xt − x�) for some
η ∈ (0, 1), and have

‖(H̃t )
−1∇ ft‖2 = (xt − x�)�(H�)1/2(H�)−1/2Hη

t (H̃t )
−2Hη

t (H
�)−1/2(H�)1/2(xt − x�)

≤ ‖xt − x�‖2H�

(1 − ψ)λmin
‖(H�)−1/2Hη

t (H̃t )
−1Hη

t (H
�)−1/2‖

≤ ν2λ2min

(1 − ψ)L2 ‖(H�)−1/2(Hη
t )

1/2‖2‖(Hη
t )

1/2(H̃t )
−1(Hη

t )
1/2‖ (since xt ∈ Nν)

≤ ν2λ2min

(1 − ψ)L2 ‖(H�)−1/2Hη
t (H

�)−1/2‖‖(Hη
t )

1/2(Ht )
−1(Hη

t )
1/2‖‖H1/2

t (H̃t )
−1H1/2

t ‖

≤ ν2λ2min

(1 − ψ)2L2 ‖(H�)−1/2Hη
t (H

�)−1/2‖‖(Ht )
−1/2Hη

t (Ht )
−1/2‖. (C.7)

Noting that xη
t ∈ Nν if xt ∈ Nν , we apply Lemma 12 and have

‖(H�)−1/2Hη
t (H

�)−1/2‖ ∨ ‖(Ht )
−1/2Hη

t (Ht )
−1/2‖ ≤ 1 + ν ≤ 2. (C.8)

Combining (C.6), (C.7), and (C.8), we finally obtain

f (xt − (H̃t )
−1∇ ft ) ≤ f (xt ) −

(
1

2
− ψ

2(1 − ψ)
− ν

3(1 − ψ)2

)
∇ f �

t (H̃t )
−1∇ ft .

Thus, it suffices to let

1

2
− ψ

2(1 − ψ)
− ν

3(1 − ψ)2
≥ β ⇐� ψ

2(1 − ψ)
∨ ν

3(1 − ψ)2
≤ 1

2

(
1

2
− β

)

as implied by the conditions stated in the lemma. This completes the proof.
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C.6 Proof of Lemma 5

Since xt ∈ Nν with ν ≤ 2/3 · (0.5 − β), we apply Lemma 12 and have

‖(H�)−1/2(Ht − H�)(H�)−1/2‖ ≤ L

λ
3/2
min

‖xt − x�‖H� ≤ ν ≤ 0.5 − β.

Thus, we obtain
(0.5 + β)H� � Ht � (1.5 − β)H�. (C.9)

Since pt = −(H̃t )
−1∇ ft and μt = 1, we have

∥∥xt+1 − x�
∥∥
H� = ‖xt − (H̃t )

−1∇ ft − x�‖H�

(C .9)≤ 1√
0.5 + β

‖xt − (H̃t )
−1∇ ft − x�‖Ht

≤ 1√
0.5 + β

{
‖xt − H−1

t ∇ ft − x�‖Ht + ‖H−1
t ∇ ft − (H̃t )

−1∇ ft‖Ht

}
. (C.10)

For the second term on the right hand side, we have

‖H−1
t ∇ ft − (H̃t )

−1∇ ft‖Ht

=
√

∇ f �
t (H−1

t − (H̃t )−1)Ht (H
−1
t − (H̃t )−1)∇ ft

=
√

∇ f �
t H−1/2

t (I − H1/2
t (H̃t )−1H1/2

t )2H−1/2
t ∇ ft

≤ ‖I − H1/2
t (H̃t )

−1H1/2
t ‖ · ‖H−1

t ∇ ft‖Ht

≤ ‖I − H1/2
t (H̃t )

−1H1/2
t ‖

{
‖xt − H−1

t ∇ ft − x�‖Ht + ‖xt − x�‖Ht

}

(C .9)≤ ‖I − H1/2
t (H̃t )

−1H1/2
t ‖

{
‖xt − H−1

t ∇ ft − x�‖Ht +√
1.5 − β‖xt − x�‖H�

}
.

(C.11)

Combining (C.10) and (C.11),

‖xt+1 − x�‖H� ≤ 1√
0.5 + β

{
(1 + ‖I − H1/2

t (H̃t )
−1H1/2

t ‖)‖xt − H−1
t ∇ ft − x�‖Ht

+√
1.5 − β‖I − H1/2

t (H̃t )
−1H1/2

t ‖ · ‖xt − x�‖H�

}
. (C.12)

Since ‖I − H−1/2
t H̃tH

−1/2
t ‖ ≤ ψ ≤ 1/3, we have

(1 − ‖I − H−1/2
t H̃tH

−1/2
t ‖) · I � H−1/2

t H̃tH
−1/2
t � (1 + ‖I − H−1/2

t H̃tH
−1/2
t ‖) · I

and further

− ‖I − H−1/2
t H̃tH

−1/2
t ‖

1 + ‖I − H−1/2
t H̃tH

−1/2
t ‖

· I � H1/2
t (H̃t )

−1H1/2
t − I � ‖I − H−1/2

t H̃tH
−1/2
t ‖

1 − ‖I − H−1/2
t H̃tH

−1/2
t ‖

· I.
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Thus, we have

‖I − H1/2
t (H̃t )

−1H1/2
t ‖ ≤ ‖I − H−1/2

t H̃tH
−1/2
t ‖

1 − ‖I − H−1/2
t H̃tH

−1/2
t ‖

≤ 3

2
‖I − H−1/2

t H̃tH
−1/2
t ‖.

Combining the above inequality with (C.12), we obtain

‖xt+1 − x�‖H�

≤ 3

2
√
0.5 + β

‖xt − H−1
t ∇ ft − x�‖Ht

+ 3

2

√
1.5 − β

0.5 + β
· ‖I − H−1/2

t H̃tH
−1/2
t ‖ · ‖xt − x�‖H�

≤ 3
√
2

2
‖xt − H−1

t ∇ ft − x�‖Ht + 3
√
3

2
‖I − H−1/2

t H̃tH
−1/2
t ‖ · ‖xt − x�‖H� .

(C.13)

Furthermore,

‖xt − H−1
t ∇ ft − x�‖Ht

= ‖H−1/2
t (Ht (xt − x�) − ∇ ft )‖

≤ 1√
λmin

∥∥∥∥Ht (xt − x�) −
(∫ 1

0
H(x� + τ(xt − x�))dτ

)
(xt − x�)

∥∥∥∥

≤ ‖xt − x�‖2√
λmin

·
∫ 1

0
(1 − τ)Ldτ ≤ L

2λ3/2min

‖xt − x�‖2H� .

Combining the above inequality with (C.13), we complete the proof.

C.7 Proof of Theorem 4

We suppose the event (17) happens, which has probability 1−δπ2/6. By Lemma 3 and
Corollary 1, we know that xt converges R-linearly for all t ≥ T1, and xT :T +J ∈ Nν

for any J ≥ 0. Thus, it suffices to study the convergence after T + J . For any
t ≥ 0, to apply Lemmas 4 and 5, we characterize the difference between H̃T +J+t
and HT +J+t . We have

‖H−1/2
T +J+t H̃T +J+tH

−1/2
T +J+t − I‖

≤ ‖H−1/2
T +J+t (H̃T +J+t − H�)H−1/2

T +J+t‖ + ‖H−1/2
T +J+tH

�H−1/2
T +J+t − I‖

Lemma 12≤ ‖H−1/2
T +J+t (H̃T +J+t − H�)H−1/2

T +J+t‖ + L

λ
3/2
min

‖xT +J+t − x�‖H� .

(C.14)
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For the first term ‖H−1/2
T +J+t (H̃T +J+t − H�)H−1/2

T +J+t‖, we apply the formula (11)
and have

‖H−1/2
T +J+t (H̃T +J+t − H�)H−1/2

T +J+t‖
(11)≤ 1

λmin

∥∥ĒT +J+t
∥∥+ 1

T + J + t + 1

⎧
⎨

⎩

T −1∑

j=0

‖H−1/2
T +J+t (H j − H�)H−1/2

T +J+t‖

+
T +J+t∑

j=T
‖H−1/2

T +J+t (H j − H�)H−1/2
T +J+t‖

⎫
⎬

⎭

≤ 1

λmin
‖ĒT +J+t‖ + 2T κ

T + J + t + 1
+ L

λmin(T + J + t + 1)

T +J+t∑

j=T
‖x j − x�‖

(17)≤ 8Υ

√
log(d(T + J + t + 1)/δ)

T + J + t + 1
+ 2T κ

T + J + t + 1

+ L

λmin(T + J + t + 1)

T +J+t∑

j=T

×
√
2( f (x0) − f (x�))

λmin
(1 − φ)( j−T1)/2 (also use Lemma 3)

≤ 8Υ

√
log(d(T + J + t + 1)/δ)

T + J + t + 1
+ 2T κ

T + J + t + 1

+ L
√
2( f (x0) − f (x�))

λ
3/2
min(T + J + t + 1)

(1 − φ)T2/2
∞∑

j=0

(1 − φ) j/2

(C .5)≤ 8Υ

√
log(d(T + J + t + 1)/δ)

T + J + t + 1
+ 2T κ

T + J + t + 1

+
√
2ν√

3(T + J + t + 1)(1 − √
1 − φ)

≤ 8Υ

√
log(d(T + J + t + 1)/δ)

T + J + t + 1

+ 2T κ

T + J + t + 1
+ 2ν

(T + J + t + 1)φ

≤ 8Υ

√
log(d(T + J + t + 1)/δ)

T + J + t + 1

+ 4T κ

T + J + t + 1
= ρt . (since ν/φ ≤ 1/φ ≤ T κ) (C.15)

123



Hessian averaging in stochastic Newton methods achieves…

Combining (C.14) and (C.15) together, we obtain

‖H−1/2
T +J+t H̃T +J+tH

−1/2
T +J+t −I‖ ≤ ρt + L

λ
3/2
min

‖xT +J+t −x�‖H� ≤ ρt +ν ≤ ρ0+ν.

(C.16)
Thus, in order to apply Lemma 5 for all {xT +J+t }t≥0, we require ν ≤ 2/3 · (0.5−β)

and

ρ0 + ν ≤ 0.5 − β

1.5 − β

J=4T κ/ν⇐������ 8Υ

√
log(d(T + J )/δ)

T + J + 2ν ≤ 0.5 − β

1.5 − β

⇐� 8Υ

√
log(d(T + J )/δ)

T + J ∨ ν ≤ 1

3

0.5 − β

1.5 − β

(21)⇐� 8Υ

√
log(d(T + J )/δ)

T + J ≤ ε and ε ∨ ν ≤ 1

3

0.5 − β

1.5 − β
,

which is implied by (21) and (C.1). Thus, for any t ≥ 0, we apply Lemma 5 and obtain

‖xT +J+t+1 − x�‖H�

≤ 3

{
L

λ
3/2
min

‖xT +J+t − x�‖2H� + ‖H−1/2
T +J+t H̃T +J+tH

−1/2
T +J+t − I‖ · ‖xT +J+t − x�‖H�

}

(C .16)≤ 3

{
2L

λ
3/2
min

‖xT +J+t − x�‖2H� + ρt‖xT +J+t − x�‖H�

}

. (C.17)

We then claim that

2L

λ
3/2
min

‖xT +J+t − x�‖H� ≤ 3ρt , ∀t ≥ 0. (C.18)

We prove (C.18) by induction. For t = 0, we note that

2L

λ
3/2
min

‖xT +J − x�‖H� ≤ 2ν = 12T κ

6T κ/ν
≤ 12T κ

T + 4T κ/ν + 1
= 12T κ

T + J + 1
≤ 3ρ0.

Suppose (C.18) holds for t ≥ 0, then (C.17) leads to

2L

λ
3/2
min

‖xT +J+t+1 − x�‖H� ≤ 2L

λ
3/2
min

· 12ρt‖xT +J+t − x�‖H�

(C .18)≤ 36ρ2
t .

On the other hand, using (T + J + t + 2) ≤ 2(T + J + t + 1), ∀t ≥ 0, we know
ρt/2 ≤ ρt+1. Thus, it suffices to show 36ρ2

t ≤ 3ρt/2 ⇐⇒ 24ρt ≤ 1. Since ρt is
decreasing, we require 24ρ0 ≤ 1. Note that
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ρ0 ≤ 8Υ

√
log(dT /δ)

T + ν
(19)≤ ε + ν.

Thus, 24ρ0 ≤ 1 is guaranteed by (21). Combining (C.17) and (C.18) completes the
proof.

C.8 Proof of Corollary 3

We only need to note that

4T κ

T + J + t + 1
≤ 8Υ

√
log(d(T + J + t + 1)/δ)

T + J + t + 1

⇐⇒ T 2κ2

4Υ 2 ≤ (T + J + t + 1) log(d(T + J + t + 1)/δ)

⇐� T + J + t + 1 ≥ T 2κ2

4Υ 2 log(dT /δ)
.

This completes the proof.

C.9 Proof of Lemma 6

We characterize
∑t

i=0 z
2
i,t and z(max)

t in (14), where zi,t = (wi − wi−1)/wt and

z(max)
t = maxi∈{0,...,t} zi,t . We have

t∑

i=0

z2i,t = 1

w(t)2

t∑

i=0

(w(i) − w(i − 1))2

≤ 1

w(t)2

t∑

i=0

(w′(i))2 ≤ 1

w(t)2

∫ t+1

0
(w′(i))2 di

= 1

w(t)2

∫ t+1

0
(w(i)w′(i))′ − w(i)w′′(i)di

≤ w(t + 1)w′(t + 1)

w(t)2
≤ Ψ 2w′(t)

w(t)
, (C.19)

where the first two inequalities use the fact that w′(t) is non-negative and non-
decreasing; the second last inequality uses the fact that w(t)w′′(t) ≥ 0, ∀t ≥ −1;
and the last inequality uses Assumption 3(v). By the same derivation, we have

z(max)
t = max

i∈{0,...,t} zi,t = maxi∈{0,...,t}(w(i) − w(i − 1))

w(t)

≤ maxi∈{0,...,t} w′(i)
w(t)

= w′(t)
w(t)

. (C.20)
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Plugging (C.19) and (C.20) into (14) completes the proof.

C.10 Proof of Lemma 7

By Lemma 6, we know (22) holds for any t . By the definition of I1 in (23), we know

log

(
d(t + 1)

δ

)
w′(t)
w(t)

≤
( ε

8Υ Ψ

)2 ∧ 1, ∀t ≥ I1,

which implies ‖Ēt‖ ≤ ελmin. Using (11) and noting that λmin · I � ∑t
i=0(wi −

wi−1)Hi/wt � λmax · I, we complete the proof.

C.11 Proof of Theorem 5

We follow the same proof structure as Theorem 4.We suppose the event (24) happens,
which occurs with probability 1−δπ2/6.We only need to study the convergence after
I + U where U is chosen such that w(I + U) = 2w(I − 1)κ/ν. We claim that

‖xI+U+t+1 − x�‖H� ≤ 6θt‖xI+U+t − x�‖H� and
2L

λ
3/2
min

‖xI+U+t+1 − x�‖H� ≤ θt+1, ∀t ≥ 0. (C.21)

We prove (C.21) by induction. Before showing (C.21), we note that

θt ≤ ε + 3ν ≤ 1/(12Ψ ), θt+1 ≥ θt/Ψ , ∀t ≥ 0. (C.22)

The first result is implied by (26) and the second result is implied by Assumption 3(v).
For t = 0, we characterize the difference between H̃I+U and HI+U . We have

‖H−1/2
I+U H̃I+UH

−1/2
I+U − I‖

≤ ‖H−1/2
I+U (H̃I+U − H�)H−1/2

I+U‖ + ‖H−1/2
I+UH

�H−1/2
I+U − I‖

≤ ‖H−1/2
I+U (H̃I+U − H�)H−1/2

I+U‖ + L

λ
3/2
min

‖xI+U − x�‖H� . (Lemma 12) (C.23)

For the first term on the right hand side, we have

‖H−1/2
I+U (H̃I+U − H�)H−1/2

I+U‖
(11)≤ ‖ĒI+U‖

λmin
+ 1

w(I + U)

I+U∑

j=0

(w( j) − w( j − 1))‖H−1/2
I+U (H j − H�)H−1/2

I+U‖

= ‖ĒI+U‖
λmin

+ 1

w(I + U)
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×
⎧
⎨

⎩

⎛

⎝
I−1∑

j=0

+
I+U∑

j=I

⎞

⎠ (w( j) − w( j − 1))‖H−1/2
I+U (H j − H�)H−1/2

I+U‖
⎫
⎬

⎭

≤ ‖ĒI+U‖
λmin

+ 2w(I − 1)κ

w(I + U)
+ L

λminw(I + U)

I+U∑

j=I
(w( j) − w( j − 1))‖x j − x�‖

≤ ‖ĒI+U‖
λmin

+ 2w(I − 1)κ

w(I + U)

+
I+U∑

j=I

L(w( j) − w( j − 1))

λminw(I + U)

{
2( f (x0) − f (x�))

λmin
(1 − φ) j−I1

}1/2
(Lemma 3)

= ‖ĒI+U‖
λmin

+ 2w(I − 1)κ

w(I + U)

+
{
2L2( f (x0) − f (x�))

λ3min

(1 − φ)T2
}1/2 U∑

j=0

w(I + j) − w(I + j − 1)

w(I + U)
(1 − φ) j/2

(C .5)≤ ‖ĒI+U‖
λmin

+ 2w(I − 1)κ

w(I + U)
+ ν

U∑

j=0

w(I + j) − w(I + j − 1)

w(I + U)

≤ ‖ĒI+U‖
λmin

+ 2w(I − 1)κ

w(I + U)
+ ν = ‖ĒI+U‖

λmin
+ 4w(I − 1)κ

w(I + U)
≤ θ0. (C.24)

Combining (C.23) and (C.24), we know that, to apply Lemma 5, we need ν ≤ 2/3 ·
(0.5 − β) and

θ0 + ν ≤ 0.5 − β

1.5 − β

(C .22)⇐� ε + 4ν ≤ 0.5 − β

1.5 − β
⇐� ε ∨ ν ≤ 1

5

0.5 − β

1.5 − β
,

as implied by (26). Thus, Lemma 5 leads to

‖xI+U+1−x�‖H� ≤ 3

{
2L

λ
3/2
min

‖xI+U − x�‖2H� + θ0‖xI+U − x�‖H�

}

≤ 6θ0‖xI+U −x�‖H� ,

where the last inequality is due to xI+U ∈ Nν and 2ν ≤ θ0. Furthermore, we can see
that

2L

λ
3/2
min

‖xI+U+1 −x�‖H� ≤ 2L

λ
3/2
min

·6θ0‖xI+U −x�‖H� ≤ 6θ20 = (6Ψ θ0) · θ0

Ψ

(C .22)≤ θ1.

Thus, (C.21) holds for t = 0. Suppose (C.21) holds for t − 1 with t ≥ 1, we prove
(C.21) for t . We still characterize the difference between H̃I+U+t and HI+U+t . We
have
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‖H−1/2
I+U+t H̃I+U+tH

−1/2
I+U+t − I‖

≤ ‖H−1/2
I+U+t (H̃I+U+t − H�)H−1/2

I+U+t‖ + ‖H−1/2
I+U+tH

�H−1/2
I+U+t − I‖

Lemma 12≤ ‖H−1/2
I+U+t (H̃I+U+t − H�)H−1/2

I+U+t‖ + L

λ
3/2
min

‖xI+U+t − x�‖H� .

(C.25)

For the first term on the right hand side, we have

‖H−1/2
I+U+t (H̃I+U+t − H�)H−1/2

I+U+t‖
(11)≤ ‖ĒI+U+t‖

λmin
+ 1

w(I + U + t)⎧
⎨

⎩

⎛

⎝
I−1∑

j=0

+
I+U∑

j=I
+

I+U+t∑

j=I+U+1

⎞

⎠ (w( j) − w( j − 1))‖H−1/2
I+U+t (H j − H�)H−1/2

I+U+t‖
⎫
⎬

⎭

≤ ‖ĒI+U+t‖
λmin

+ 2w(I − 1)κ + w(I + U)ν

w(I + U + t)

+
t∑

j=1

L(w(I + U + j) − w(I + U + j − 1))

λ
3/2
minw(I + U + t)

‖xI+U − x�‖H�

(2Ψ ) j

≤ ‖ĒI+U+t‖
λmin

+ 2w(I − 1)κ + w(I + U)ν

w(I + U + t)
+ ν

w(I + U + t)

t∑

j=1

w(I + U + j)

(2Ψ ) j

≤ ‖ĒI+U+t‖
λmin

+ 2w(I − 1)κ + w(I + U)ν

w(I + U + t)
+ νw(I + U)

w(I + U + t)

t∑

j=1

w(I + U + j)

w(I + U)(2Ψ ) j

≤ ‖ĒI+U+t‖
λmin

+ 2w(I − 1)κ + 2w(I + U)ν

w(I + U + t)
(Assumption 3(v))

≤ θt , (C.26)

where the second inequality uses the hypothesis and the fact that the convergence rate
6θt ≤ 1/(2Ψ ). Thus, combining (C.25) and (C.26),

‖H−1/2
I+U+t H̃I+U+tH

−1/2
I+U+t − I‖ ≤ θt + ν

(C .22)≤ ε + 4ν
(26)≤ 0.5 − β

1.5 − β
.

Thus, the conditions of Lemma 5 are satisfied, which leads to

‖xI+U+t+1 − x�‖H� ≤ 3

{
2L

λ
3/2
min

‖xI+U+t − x�‖2H� + θt‖xI+U+t − x�‖H�

}

≤ 6θt‖xI+U+t − x�‖H� .

(C.27)
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The last inequality uses the hypothesis. This shows the first result in (C.21). For the
second result, we have

2L

λ
3/2
min

‖xI+U+t+1 − x�‖H�

(C .27)≤ 2L

λ
3/2
min

· 6θt‖xI+U+t − x�‖H�

≤ 6θ2t = (6θtΨ ) · θt

Ψ

(C .22)≤ θt+1.

This completes the induction and finishes the proof.
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