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Abstract

Pruning is an effective method to reduce the memory
footprint and FLOPs associated with neural network mod-
els. However, existing structured-pruning methods often
result in significant accuracy degradation for moderate
pruning levels. To address this problem, we introduce a
new Hessian Aware Pruning (HAP) method coupled with
a Neural Implant approach that uses second-order sensi-
tivity as a metric for structured pruning. The basic idea
is to prune insensitive components and to use a Neural
Implant for moderately sensitive components, instead of
completely pruning them. For the latter approach, the mod-
erately sensitive components are replaced with a low rank
implant that is smaller and less computationally expensive
than the original component. We use the relative Hessian
trace to measure sensitivity, as opposed to the magnitude
based sensitivity metric commonly used in the literature. We
test HAP for both computer vision tasks and natural lan-
guage tasks, and we achieve new state-of-the-art results.
Specifically, HAP achieves less than 0.1%/0.5% degrada-
tion on PreResNet29/ResNet50 (CIFAR-10/ImageNet) with
more than 70%/50% of parameters pruned. Meanwhile,
HAP also achieves significantly better performance (up to
0.8% with 60% of parameters pruned) as compared to gra-
dient based method for head pruning on transformer-based
models. The framework has been open sourced and available
online: https://github.com/yaozhewei/HAP.

1. Introduction

There has been a significant increase in the computational
resources required for Neural Network (NN) training and
inference. This is in part due to larger input sizes (e.g.,
higher image resolution) as well as larger NN models requir-
ing more computation with a significantly larger memory
footprint. The slowing down of Moore’s law, along with
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challenges associated with increasing memory bandwidth,
has made it difficult to deploy these models in practice. Of-
ten, the inference time and associated power consumption is
orders of magnitude higher than acceptable ranges. This has
become a challenge for many applications, e.g., health care
and personalized medicine, which have restrictions on up-
loading data to cloud servers, and which have to rely on local
servers with limited resources. Other applications include in-
ference on edge devices such as mobile processors, security
cameras, and intelligent traffic control systems, all of which
require real-time inference. Importantly, these problems are
not limited to edge devices, and state-of-the-art models for
applications such as speech recognition, natural language
processing, and recommendation systems often cannot be
efficiently performed even on high-end servers.

A promising approach to address this is pruning. [3, 7,
14–17, 35, 36, 38, 39, 45, 47, 48, 52, 55, 61, 64, 65, 69, 75,
78, 79], However, an important challenge is determining
which parameters are insensitive to the pruning process. A
brute-force method is not feasible since one has to test each
parameter in the network separately and measure its sensitiv-
ity. The seminal work of [36] proposed Optimal Brain Dam-
age (OBD), a second-order based method to determine insen-
sitive parameters. However, this approach requires pruning
the parameters one at a time, which is time-consuming. To
address this problem, we propose a simple, yet effective,
modification of OBD by using the Hessian trace to prune a
group of parameters along with a low rank Neural Implant.
In more detail, our contributions are as follows:

• We propose HAP, a Hessian Aware Pruning method that
uses a fast second-order metric to find insensitive param-
eters in a NN model. In particular, we use the average
Hessian trace to weight the magnitude of the parameters
in the NN. Parameters with large second-order sensitivity
remain unpruned, and those with relatively small sensitiv-
ity are pruned. In contrast to OBD [36], HAP finds groups
of insensitive parameters, which is faster than pruning a
single parameter at a time. Details of the HAP method are
discussed in Section 3.

• We propose a novel Neural Implant (denoted by
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HAP+IMPLANT) technique to alleviate accuracy degra-
dation. In this approach, we replace moderately sensitive
model components with a low rank implant. The model
along with the implant is then fine-tuned. We find that
this approach helps boost the accuracy. For details, see
Section 3.2.

• We perform detailed empirical testing and show that HAP
achieves 94.3% accuracy (< 0.1% degradation) on PreRes-
Net29 (CIFAR-10), with only 31% parameters left (Fig. 2).
In comparison to EigenDamage, a recent second-order
pruning method, we achieve up to 1.2% higher accuracy
with fewer parameters and FLOPs (Fig. 2). Moreover, for
ResNet50, HAP achieves 75.1% top-1 accuracy (0.5%
degradation) on ImageNet, with only half of the parame-
ters left (Tab. 2). In comparison to prior state-of-the-art
HRank [40], HAP achieves up to 2% higher accuracy
with fewer parameters and FLOPs (Tab. 2). For head
pruning of RoBERTa on MRPC/QNLI, HAP achieves up
to 0.82%/0.89% higher accuracy than the gradient based
method [53] (Tab. 4).

• We perform detailed ablation experiments to illustrate
the efficacy of the second-order sensitivity metric. In
particular, we compare the second-order sensitivity with a
random method, and a reverse-order in which the opposite
order sensitivity order given by HAP is used. In all cases,
HAP achieves higher accuracy (Tab. 5).

2. Related work
Several different approaches have been proposed to make

NN models more efficient by making them more compact,
faster, and more energy efficient. These efforts could be
generally categorized as follows: (i) efficient NN design [25,
26, 30, 50, 59, 76]; (ii) hardware-aware NN design [5, 8, 13,
27, 43, 49, 60, 66, 70]; (iii) quantization [9, 10, 12, 29, 31,
32, 67]; (iv) distillation [24, 54, 57, 73]; and (v) pruning.

Here we briefly discuss the related work on pruning,
which can be broadly categorized into: unstructured prun-
ing [7, 37, 56, 68]; and structured pruning [22, 28, 41, 48,
74, 77]. Unstructured pruning prunes out neurons without
any structure. However, this leads to sparse matrix opera-
tions which are hard to accelerate and are typically memory-
bounded [4, 11]. This can be addressed with structured
pruning, where an entire matrix operation (e.g., an output
channel) is removed. However, the challenge here is that
high degrees of structured pruning often leads to significant
accuracy degradation.

In both approaches, the key question is to find which
parameters to prune. A simple and popular approach is
magnitude-based pruning. In this approach, the magnitude
of parameters is used as the pruning metric. The assumption
here is that small parameters are not important and can be
removed. A variant of this approach was used in [46], where
the scaling factor of the batch normalization layer is used as

the sensitivity metric. In particular, channels with smaller
scaling factors (or output values) are considered less impor-
tant and got pruned. Another variation is proposed by [39],
where channel-wise summation over weights is used as the
metric. Other methods have been proposed as alternative
sensitivity metrics. For instance, [40] uses channel rank
as sensitivity metric; [23] uses a LASSO regression based
channel selection criteria; and [21] uses the geometric me-
dian of the convolutional filters. An important problem with
magnitude-based pruning methods is that parameters with
small magnitudes can actually be quite sensitive. It is easy
to see this through a second-order Taylor series expansion,
where the perturbation is dependent on not just the weight
magnitude but also the Hessian [36]. In particular, small
parameters with large Hessian could in fact be very sensitive,
as opposed to large parameters with small Hessian (here, we
are using small/large Hessian loosely; the exact metric to
measure is given by the second-order perturbation in Eq. 3).
For this reason, OBD [36] proposes to use the Hessian diago-
nal as the sensitivity metric. The follow up work of Optimal
Brain Surgeon (OBS) [18, 19] used a similar method, but
considered off-diagonal Hessian components, and showed a
correlation with inverse Hessian. One important challenge
with these methods is that pruning has to be performed one
parameter at a time. The recent work of [7] extends this to
layer-wise pruning in order to reduce the cost of computing
Hessian information for one parameter at a time. However,
this method can result in unstructured pruning. Another
second-order pruning method is EigenDamage [64], where
the Gauss-Newton operator is used instead of Hessian. In
particular, the authors use Kronecker products to approxi-
mate the GN operator. Our findings below show that using
the average Hessian trace method significantly outperforms
EigenDamage. We also find that it is very helpful to replace
moderately sensitive layers with a low rank Neural Implant,
instead of completely pruning them, as discussed next.

3. Methodology
Here, we focus on supervised learning tasks, where the

nominal goal is to minimize the empirical risk by solving
the following optimization problem:

L(w) =
1

N

∑N

i=1
l(xi, yi, w), (1)

where w ∈ Rn is the trainable model parameters, l(xi, yi, w)
is the loss for the input datum xi, where yi is the correspond-
ing label, and N is the training set cardinality. For pruning,
we assume that the model is already trained and converged to
a local minima which satisfies the first and second-order op-
timality conditions (that is, the gradient ∇wL(w) = 0, and
the Hessian is Positive Semi-Definite (PSD), ∇2

wL(w) < 0).
The problem statement is to prune (remove) as many param-
eters as possible to reduce the model size and FLOPs to a
target threshold with minimal accuracy degradation.
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Figure 1: (Left) The HAP method is a structured pruning method that prunes channels based on their second-order sensitivity,
which measured flatness/sharpness of loss landscape. Channels are sorted based on this metric, and only insensitive channels
are pruned. (Right) Similar to other structured-pruning methods, HAP at large pruning ratios results in accuracy degradation.
This because one has to inevitably prune moderately sensitive channels at high pruning ratios, which may contain individual
neurons that are very sensitive. The removal of the entire channel, along with the sensitive neurons results in accuracy
degradation. To address this, we propose HAP+IMPLANT method, where such channels are replaced with a light-weight,
low-rank Neural Implant.

We first start with a general description of the problem and
then derive our method. Let ∆w ∈ Rn denote the pruning
perturbation such that the corresponding weights become
zero (that is w + ∆w = 0). We denote the corresponding
change of loss as ∆L:

∆L = L(w+∆w)−L(w) = gT ∆w+
1

2
∆wTH∆w+O(||∆w||3).

(2)
where the second equation comes from Taylor series expan-
sion. Here g ∈ Rn denotes the gradient of loss function
L w.r.t. weights w, and H ∈ Rn×n is the corresponding
Hessian operator (i.e. second-order derivative). For a pre-
trained neural network that has already converged to a local
minimum, we have g = 0, and the Hessian is a PSD matrix.
As in prior work [19], we assume higher-order terms, e.g.,
O(||∆w||3), in Eq. 2 can be ignored.

The pruning problem is to find the set of weights that
result in minimum perturbation to the loss (∆L). This leads
to the following constrained optimization problem:

min
∆w

1

2
∆w

T
H∆w =

1

2

(
∆wp

∆wl

)T (
Hp,p Hp,l

Hl,p Hl,l

)(
∆wp

∆wl

)
,

s.t. ∆wp + wp = 0.

(3)

Here, we denote the channels that are pruned with p as the
subscript (e.g. wp ∈ Rp), and denote the remaining param-
eters with l as the subscript (e.g. wl ∈ Rn−p). Similarly,
we use ∆wp and ∆wl to denote the corresponding perturba-
tions. Note that ∆wp = −wp since p-channels are pruned.
Moreover, Hl,p denotes the cross Hessian w.r.t. l-channels
and p-channels (and similarly Hp,p and Hl,l are Hessian
w.r.t. pruned and unpruned parameters). Using Lagrangian
method, we can finally get (see Appendix A for more de-

tails):

1

2
∆wTH∆w =

1

2
wT

p (Hp,p −Hp,lH
−1
l,l Hl,p)wp. (4)

Eq. 4 gives us the perturbation to the loss when a set of
parameters wp is removed. It should be noted that OBS [19]
and L-OBS [7], where OBS is applied for each layer under
the assumption of cross-layer independence, is a degenerate
case of Eq. 4 for the special case of wp ∈ R1. Next we
discuss how this general formulation can be simplified.

3.1. Hessian-aware Pruning

There are three major disadvantages with OBS. First,
computing Eq. 4 requires computing (implicitly) informa-
tion from the inverse Hessian, H−1

l,l . This can be costly, both
in terms of computations and memory (even when using
matrix-free randomized methods). The work of L-OBS [7]
attempted to address this challenge by ignoring cross-layer
dependencies, but it still requires computing block-diagonal
inverse Hessian information, which can be costly. Second,
in both OBS and L-OBS, one has to measure this perturba-
tion for all the parameters separately, and then prune those
parameters that result in the smallest perturbation. This can
have a high computational cost, especially for deep models
with many parameters. Third, this pruning method results
in unstructured pruning, which is difficult to accelerate with
current hardware architectures.

In the OBD [36] method the first problem does not exist
as the the Hessian is approximated as a diagonal operator,
without the need to compute inverse Hessian:

1

2
∆wTH∆w ≈ 1

2
wT

pDiag(Hp,p)wp. (5)
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Here Diag(Hp,p) denotes the diagonal elements of Hp,p.
However, the second and third of these disadvantages still
remain with OBD.

To address the second and third of these disadvantages,
we propose to group the parameters and to compute the corre-
sponding perturbation when that group is pruned, rather than
computing the perturbation for every single parameter sepa-
rately. Note that this can also address the third disadvantage,
since pruning a group of parameters (for example parame-
ters in a convolution channel) results in structured pruning.
This can be achieved by considering the Hessian as a block
diagonal operator, and then approximating each block with a
diagonal operator, with Hessian trace as the diagonal entries.
In particular, we use the following approximation:

1

2
∆wTH∆w =

1

2
wT

p [H−1]−1
p,pwp

≈ 1

2
wT

p
Trace(Hp,p)

p
wp =

Trace(Hp,p)

2p
‖wp‖22,

(6)

where Trace(Hp,p) denotes the trace of the block diago-
nal Hessian (the corresponding Hessian block for pruned
parameters Hp,p). The Hessian can be computed very effi-
ciently with randomized numerical linear algebra methods,
in particular Hutchinson’s method [1, 2, 71, 72]. Importantly,
this approach requires computing only the application of the
Hessian to a random input vector. This has the same cost
as back-propagating the gradient [71, 72]. (Empirically, in
our experiments corresponding to ResNet50 on ImageNet,
the longest time for computing this trace was three minutes.)
A similar approach was proposed by [9] in the context of
quantization.

In more detail, HAP performs structured pruning by
grouping the parameters and approximating the correspond-
ing Hessian as a diagonal operator, with the average Hessian
trace of that group as its entries. For a convolutional net-
work, this group can be an output channel. We found that
this simple modification results in a fast and efficient prun-
ing method that when combined with the Neural Implant
approach exceeds state-of-the-art. This is discussed next.

3.2. Hessian-aware Neural Implant

In HAP, we sort the channels from most sensitive to least
sensitive (based on Eq. 6). For a target model size or FLOPs
budget, one has then to prune by starting from insensitive
channels. This approach works well, as long as all these
channels are extremely insensitive. However, in practice,
some of the sorted channels will exhibit some level of sen-
sitivity. Entirely pruning these channels, and leaving the
rest of the sensitive ones unpruned, can result in significant
accuracy degradation. This is one of the major problems
with structured pruning methods, as very few groups of pa-
rameters are completely insensitive. When those are pruned,
the remaining groups/set of parameters always include some

subset of highly sensitive neurons that if pruned, would result
in high accuracy loss.

Here, we propose an alternative strategy to replace mod-
erately sensitive parameter groups with a low rank Neural
Implant. The basic idea is to prune insensitive layers com-
pletely, but detect the moderately sensitive layers, and in-
stead of completely removing all of its parameters (which
can contain some sensitive ones as discuss above), replace
them with a low rank decomposition. As an example, a
spatial convolution could be replaced with a new point-wise
convolution that has smaller parameters and flops. One could
also consider other types of low rank decomposition (e.g.
CP/Tucker decomposition, depth-wise/separable convolu-
tion,etc). However, for simplicity we only use a pointwise
convolution implant in this paper.

After the implant, the model is fine-tuned to recover accu-
racy. We denote this approach as HAP+IMPLANT, which is
schematically illustrated in Fig. 1. In summary, we use the
Hessian metric in Eq. 6, and then we apply a Neural Implant
to the most sensitive channels to be pruned.

We have to emphasize that many prior works have in-
vestigated low-rank matrix approximation [51]. However,
existing methods for NN pruning replace all or part of the
model, irrespective of their sensitivity, whereas in our ap-
proach we perform a targeted low-rank approximation, and
only replace the sensitive parts of the model, quantified
through the Hessian in Eq. 6. We empirically found that this
approach is quite effective, especially for moderate pruning
ratios, as discussed next.

4. Results

4.1. Experimental Settings

Computer Vision. For evaluating the
performance of HAP, we conduct experi-
ments for image classification on CIFAR-10
(ResNet56/WideResNet32/PreResNet29/VGG16) and
ImageNet (ResNet50). Our main target comparison for HAP
(without Implant) is EigenDamage, a recent second-order
pruning method. For fair comparison, we use the same
pretrained model used by EigenDamage when available
(WideResNet32 on Cifar-10), and otherwise train the model
from scratch (ResNet56, VGG16, and PreResNet29 on
Cifar-10). For all cases, we ensure comparable baseline
accuracy, and when not possible, we report the baseline used
by other methods. For comparison we consider a wide range
of pruning ratios, and consider validation accuracy, FLOPs,
and parameter size as the metrics. The goal is to achieve
higher accuracy with lower FLOPs/parameter size.

Natural Language Understanding. We use RoBERTa-
base [44], which consists of 12 attention heads for each of
12 Transformer encoder layers, as the baseline model. It
has been explored in [53] that not all heads in Transformer
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Figure 2: Comparison of accuracy with different pruning ratios among HAP+IMPLANT, HAP, NN Slimming, EigenDamage,
and DCP, on the CIFAR-10 dataset, for ResNet56, WideResNet32, and PreResNet29. (Top) Remaining parameters in the
network after pruning is used for x-axis. (Bottom) Remaining FLOPs in the network after pruning is used for x-axis. HAP
consistently outperforms EigenDamage and NN Slimming, and HAP+IMPLANT boosts performance for moderate pruning
ratios and surpasses DCP.

architectures are equally important and thus a great portion
of them can be removed without degrading the accuracy.

Table 1: Comparison between HAP and other pruning meth-
ods on CIFAR-10. Here, VGG16 denotes the baseline used in
HRank [40], and VGG16-HAP denotes the baseline used by
HAP method. As one can see, HAP consistently outperforms
other pruning methods, even though its pruned models have
fewer parameters (Param.) and FLOPs.

Method Acc.(%) Param.(%) FLOPs(%)

VGG16 93.96 100.0 100.0
VGG16-HAP 93.88 100.0 100.0

L1[39] 93.40 36.0 65.7
SSS[28] 93.02 26.2 58.4
VarP[77] 93.18 26.7 60.9
HRank[40] 93.43 17.1 46.5
GAL-0.05[42] 92.03 22.4 60.4
HRank[40] 92.34 17.9 34.7
GAL-0.1[42] 90.73 17.8 54.8
HAP 93.66 10.1 29.7

HRank[40] 91.23 8.0 23.5
HAP 93.37 5.1 20.3

HAP 91.22 1.6 7.5

4.2. HAP Results on CIFAR-10

We first start with evaluating HAP without Neural Im-
plant, and then discuss the specific improvement of using
Neural Implant. The results on CIFAR-10 for different prun-
ing ratios and various models are presented in Fig. 2. In
particular, we report both the validation accuracy versus
remaining parameters after pruning, as well as validation
accuracy versus the FLOPs. For comparison, we also plot
the performance of NN slimming [46], EigenDamage [64]
and DCP [79] for different pruning ratios. For all the points
that we compare, HAP achieves higher accuracy than Eigen-
Damage, even for cases with fewer parameters/FLOPs. We
generally observe that the difference between HAP and
EigenDamage is more noticeable for higher pruning ratios
(i.e., fewer remaining parameter). This is expected, since
small amounts of pruning does not lead to significant ac-
curacy degradation, while higher pruning ratios are more
challenging. In particular, when the parameter remaining
percentage is around 35% (i.e., 65% of the parameters are
pruned), HAP achieves 93.2% accuracy, which is 1.24%
higher than EigenDamage, with fewer FLOPs (34.0% ver-
sus 38.7% for EigenDamage). We observe a similar trend
on WideResNet32, where HAP consistently outperforms
EigenDamage.

We also plot the performance of DCP, which is not a
second-order method, but is known to achieve good pruning
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accuracy. HAP achieves higher accuracy as compared to NN
slimming, and comparable accuracy to DCP. As for the latter,
the benefit of HAP is that we do not need to perform any
greedy channel selection and the entire Hessian calculation
and channel selection is performed in one pass.1

For PreResNet29, we also compare with NN Slim-
ming [46], to compare with prior reported results on this
model. We observe that HAP achieves up to 6% higher
accuracy as compared to NN Slimming method, and slightly
higher accuracy as compared to EigenDamage. It is inter-
esting to note that HAP can keep the accuracy the same as
baseline, up to pruning 70% of the parameters (correspond-
ing to 30% remaining parameters in Fig. 2).

We also present results on VGG16 and compare
with other works in the literature, including GAL [42],
HRank [40], and VarP [77], as reported in Table 1. Here,
we consistently achieve higher accuracy. In particular, HAP
with 29.7% FLOPs and 10.1% parameters achieves the high-
est accuracy (despite using a pretrained model with lower
baseline accuracy). Similarly, HAP with 20.3% FLOPs and
5.1% parameters achieves 93.37% accuracy, with less than
2× FLOPs and 3× fewer parameters as compared to HRank
in the same block. For extreme pruning, HAP achieves
91.22% accuracy with only 1.6% of the parameters remain-
ing. To the best of our knowledge, this level of aggressive
pruning, while maintaining such high accuracy, has not been
reported in the literature.

It is interesting to visualize how HAP performs chan-
nel selection using the second-order sensitivity discussed in
Sec. 3.1, and the result can be found in Appendix E

4.3. Neural Implant Results on CIFAR-10

Despite HAP’s competitive results as compared to prior
pruning methods, it still has lower accuracy as compared to
baseline. This is known problem and shortcoming of struc-
tured pruning methods. We propose to use a low rank Neural
Implant to address this problem, and find it particularly help-
ful for moderate levels of structured pruning. In particular,
for the CNNs tested in this paper we replace sensitive 3× 3
spatial convolutions with a pointwise convolution. This re-
placement still reduces the number of parameters for the
3× 3 convolution by a factor of 9×.

We repeated the previous experiments with this approach,
and report the results in Fig. 2 (blue line). We observe that
HAP+IMPLANT consistently achieves better performance
than HAP for both the same parameter size (first row) and
the same FLOPs (second row), which also surpasses the
performance of DCP [79] that has a competitive result with
HAP.

1We also tried to test DCP on other models but the code base is old and
we were not able to use it for WideResNet32 or PreResNet29. As such we
considered other pruning methods, besides EigenDamage, for comparison
with those models.

Table 2: Comparison of FLOPs and accuracy on CIFAR-10
using ResNet56 for different pruning methods. We report
the baseline accuracy used in each work, as well as the
corresponding final accuracy after pruning. For ease of
comparison, we also report the accuracy drop (Acc. ↓) w.r.t.
each baseline. As one can see, HAP and HAP+IMPLANT
consistently outperform other work reported in the literature.

Method Base-acc. Final-acc. Acc. ↓ FLOPs (%)

CP[23] 92.80 91.80 1.00 50.0
AMC[22] 92.80 91.90 0.90 50.0
FPGM[21] 93.59 93.26 0.33 47.4
LFPC[20] 93.59 93.24 0.35 47.1
HAP+IMPLANT 93.88 93.55 0.33 40.7

GAL-0.8[42] 93.26 90.36 2.90 39.8
HRank[40] 93.26 90.72 2.54 25.9
HAP 93.88 91.57 2.31 21.0
HAP+IMPLANT 93.88 92.92 0.96 23.9

For some cases, the performance of the pruned network
slightly exceeds the baseline accuracy. In particular, for
ResNet56, we observe up to 1.5% higher accuracy as com-
pared to HAP, and up to 2% higher accuracy as compared to
EigenDamage. We observe a similar trend for both WideRes-
Net32/PreResNet29, where HAP+IMPLANT consistently
performs better than both HAP and EigenDamage.

It should be noted that the gains from HAP+IMPLANT
diminish for higher pruning ratios (around 20% remaining
parameters for ResNet56, and around 30% remaining for
WideResNet32/PreResNet29). This is expected, since there
is a trade-off associated with adding the Neural Implant.
While the implant helps reduce the information loss from
completely removing sensitive channels, it does so by adding
additional parameters. As such, we actually have to enforce
a larger pruning ratio to meet a target model size. As the
channels are sorted based on their sensitivity (from Eq. 6),
this means that we have to prune the next set of more sensi-
tive channels to satisfy the target. However, if such channels
have much higher sensitivity, then that can actually degrade
the performance. This is what happens for extreme pruning
cases, since most of the remaining parameters will be highly
sensitive; and, as such, the gains achieved by the Neural
Implant will not be enough.

In addition to parameter percentage, we also compare
HAP+IMPLANT results based on remaining FLOPs with
other methods reported in the literature. This is shown
in Tab. 2. As one can see, with a high remaining FLOPs per-
centage, HAP+IMPLANT can reach 93.55% accuracy with
only 0.33% degradation as compared with the corresponding
pretrained baseline model. It should be noted that state-of-
the-art methods such as FPGM [21] and LFPC [20] requires
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Table 3: Comparison between HAP and HAP+IMPLANT,
and other state-of-the-art pruning methods on ImageNet.
Here, ResNet50 is the baseline used in HRank [40]’s table,
while ResNet50-HAP is the baseline used by HAP.

Method Top-1 Param.(%) FLOPs(%)

ResNet50-MetaP 76.16 100.0 100.0
ResNet50 76.15 100.0 100.0
ResNet50-HAP 75.62 100.0 100.0

SSS-32[28] 74.18 72.94 68.95
CP[23] 72.30 - 66.75
GAL-0.5[42] 71.95 83.14 56.97
MetaP[45] 72.27 61.35 56.36
HRank[40] 74.98 63.33 56.23
HAP 75.12 55.41 66.18
HAP+IMPLANT 75.36 53.74 55.49

GDP-0.6[41] 71.19 - 45.97
GDP-0.5[41] 69.58 - 38.39
SSS-26[28] 71.82 61.18 56.97
GAL-1[42] 69.88 57.53 38.63
GAL-0.5-joint[42] 71.82 75.73 44.99
HRank[40] 71.98 54.00 37.90
HAP 74.00 34.74 40.44

ThiNet-50[48] 68.42 33.96 26.89
GAL-1-joint[42] 69.31 40.04 27.14
HRank[40] 69.10 32.43 23.96
MetaP[45] 70.07 41.44 25.69
HAP 71.18 20.47 32.85

6.4% more FLOPs to reach comparable performance. More-
over, when the target percentage of remaining FLOPs is
small, HAP+IMPLANT only incurs 0.96% accuracy degrada-
tion as compared with 2.31% for HAP and 2.54% for HRank
(with comparable FLOPs and baseline accuracy).

4.4. HAP Results on ImageNet

We also test HAP on ImageNet using ResNet50, and re-
port the results in Tab. 3. We compare with several previous
structured pruning methods including SSS [28], CP [23],
ThiNet [48], and HRank [40]. It should be noted that the
accuracy of our pretrained baseline is slightly lower than
HRank, yet our HAP method still achieves higher accu-
racy. For instance, in all cases, HAP achieves higher accu-
racy with smaller number of parameters as compared to all
prior work reported on ResNet50. The highest difference
corresponds to 34.74% remaining parameters (i.e., pruning
65.26% of parameters), where HAP has 2% higher Top-1 ac-
curacy with 19.26% fewer parameters as compared to HRank
(although for fairness our FLOPs are slightly larger). We

observe a consistent trend even for high pruning ratios. For
example, with 20.47% remaining parameters, HAP still has
more than 2% higher accuracy as compared to HRank. We
should also note that despite using second-order information,
HAP is quite efficient, and the end-to-end Hessian calcula-
tions were completed three minutes on a single RTX-6000
GPU.

Table 4: Comparison of HAP and the gradient-based [53]
heads pruning methods for RoBERTa-base, evaluated on
MRPC and QNLI. For evaluation metric, we report accuracy
for QNLI and the average of accuracy and F1 score for
MRPC.

(a) MRPC

Parameter (%) 100 80 60 50 40

Gradient-based [53] 92.06 92.19 89.52 89.36 89.07
HAP 92.06 91.97 90.74 90.43 89.89

Diff 0.00 -0.22 +1.22 +1.07 +0.82

(b) QNLI

Parameter (%) 100 80 60 50 40

Gradient-based [53] 93.12 92.4 91.78 91.71 91.38
HAP 93.12 93.30 92.93 92.59 92.27

Diff 0.00 +0.90 +1.15 +0.88 + 0.89

4.5. HAP Results on RoBERTa

Additionally, we show in this section that our HAP
method can be applied to Transformer [62] architectures
to prune unnecessary attention heads from multi-head atten-
tion layers. The results are reported as Tab. 4, where we
test over different heads prune ratio. As shown in the table,
HAP outperforms the gradient-based method with 40∼60%
prune ratio for MRPC and with all prune ratio for QNLI by a
noticeable margin of ∼1 point. The results indicate that Hes-
sian could be more informative than gradient in determining
sensitivities of attention heads.

4.6. Ablation Study

We conducted different ablation experiments to study the
effectiveness of the second-order based metric in HAP. For
all the experiments, we use ResNet56 on CIFAR-10.

One of the main components of HAP is the Hessian trace
metric used to sort different channels to be pruned. In partic-
ular, this ordering sorts the channels from the least sensitive
to most sensitive, computed based on Eq. 6. In the first
ablation study, we use the reverse order of what HAP recom-
mends, and denote this method as R-HAP. The results are
shown in Tab. 5. It can be clearly observed that for all cases
R-HAP achieves lower accuracy as compared to HAP (more
than 3% for the case with 35.50% remaining parameters).
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Table 5: Ablation study on the sensitivity metric. R-HAP de-
notes pruning by reversely using sensitivity in HAP. Random
is conducted by randomly allocating channel-wise sensitivity.

Method Acc. Param.(%) FLOPs(%) Channel

R-HAP 89.77 47.48 46.98 65
Random 93.12 45.60 46.68 60
Magnitude 93.29 61.82 39.29 55
HAP 93.38 41.53 38.74 50

R-HAP 89.97 42.85 39.99 60
Random 92.21 36.01 33.99 50
Magnitude 92.99 56.15 34.97 50
HAP 93.23 35.50 33.99 45

R-HAP 88.83 27.15 30.61 50
Random 90.95 29.64 31.32 40
Magnitude 92.45 47.28 28.97 42.2
HAP 92.81 31.08 28.85 40

R-HAP 88.18 23.34 28.04 45
Random 90.18 25.33 25.69 30
Magnitude 91.65 38.25 22.93 35
HAP 92.06 22.05 22.86 31

Table 6: Hessian Aware Low Rank (Neural Implant) vs Low
Rank. Ablation study on Hessian aware Neural Implant.
The R-HAP+IMPLANT uses low rank replacement without
using Hessian information. Specially, the Neural Implant is
applied on channels that are most sensitive.

ResNet56/Cifar10 Acc. Param.(%) FLOPs(%)

Low Rank 90.79 39.56 40.33
HAP+IMPLANT 93.52 34.49 37.15

Low Rank 90.34 34.39 37.24
HAP+IMPLANT 93.40 29.87 33.20

Low Rank 89.83 23.05 25.16
HAP+IMPLANT 92.92 21.92 24.90

In the second ablation experiment, we use a random order
for pruning the layers, irrespective of their second-order sen-
sitivity, and denote this as Random in Tab. 5. Similar to
the previous case, the random ordering achieves consistently
lower accuracy as compared to HAP. In addition, its results
exhibit a larger variance.

Another important ablation study is to compare the per-
formance of the Hessian-based pruning with the commonly
used magnitude based methods that use variants of ‖w‖22/p
(denoted as Magnitude in Tab. 5). To make a fair compar-
ison, we set the FLOPs of the model after pruning to be
the same for HAP and the magnitude based pruning (and
slightly higher for the latter to be fair). The results are re-

ported in Tab. 5. As the results show, HAP achieves the
same accuracy as magnitude based pruning but with much
fewer parameters (i.e., higher pruning ratio). In particular,
for pruning with 22.53% of FLOPs (last row of Tab. 5),
HAP achieves 92.06% which is almost the same as magni-
tude based pruning (91.65%). However, HAP achieves this
accuracy with only 21.01% of the parameters remaining, as
compared to 38.25%, which is quite a significant difference.
This is expected, as HAP’s performance was higher than the
different magnitude based results reported in the literature,
for both the CIFAR-10 and ImageNet tests of the previous
subsections (Sec. 4.2 and 4.4, respectively).

To study the role played by Hessian analysis in Neural
Implant, we’ve run another set of experiment to prove that
Hessian-aware Neural Implant is a combination of sensi-
tivity analysis and Low Rank approximation. The way of
using Hessian to guide where Low Rank approximation hap-
pens is way more effective than directly applying it to the
original model. The key idea is to only apply low rank for
sensitive layers, as measured by Hessian trace. We com-
pare Neural Implant with Low Rank in Tab. 6, which clearly
shows that we can get up to 2% higher accuracy with lower
Params/FLOPs.

5. Conclusion
Existing structured-pruning methods often result in sig-

nificant accuracy degradation for moderate pruning levels.
To address this, we propose HAP, a new second-order
structured-pruning method that uses the Hessian trace as
the sensitivity metric for pruning a NN model. We also
proposed a new Neural Implant approach that uses HAP’s
sensitivity metric to perform targeted replacement of sen-
sitive neuron’s with a light-weight low rank implant. The
main intuition is to prune insensitive components and to use
the Neural Implant for moderately sensitive components., in-
stead of completely pruning them. We performed extensive
empirical tests using multiple NN models. We compared
with several prior works, including both the second-order
based structured pruning method of EigenDamage, as well
as several magnitude-based pruning methods. HAP con-
sistently achieved higher accuracy with fewer parameters.
Specifically, HAP achieves 94.3% accuracy (< 0.1% degra-
dation) on PreResNet29 (CIFAR-10), with more than 70%
of parameters pruned. In comparison to EigenDamage, we
achieve up to 1.2% higher accuracy with fewer parameters
and FLOPs. Moreover, for ResNet50 HAP achieves 75.1%
top-1 accuracy (0.5% degradation) on ImageNet, after prun-
ing almost half of the parameters. In comparison to the prior
state-of-the-art of HRank, we achieve up to 2% higher accu-
racy with fewer parameters and FLOPs. For head-pruning of
RoBERTa, HAP can achieve more than 0.8% better perfor-
mance as compared to previous gradient based method with
60% pruned heads.
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