
Hessian-Aware Pruning and Optimal Neural Implant

Shixing Yu1,*, Zhewei Yao2,∗, Amir Gholami2,∗,†, Zhen Dong2,∗,
Sehoon Kim2, Michael W. Mahoney2,3, Kurt Keutzer2

1Peking University, 2University of California, Berkeley, 3ICSI
yushixing@pku.edu.cn, {zheweiy, amirgh, zhendong, sehoonkim, mahoneymw, keutzer}@berkeley.edu

Abstract

Pruning is an effective method to reduce the memory
footprint and FLOPs associated with neural network mod-
els. However, existing structured-pruning methods often
result in significant accuracy degradation for moderate
pruning levels. To address this problem, we introduce a
new Hessian Aware Pruning (HAP) method coupled with
a Neural Implant approach that uses second-order sensi-
tivity as a metric for structured pruning. The basic idea
is to prune insensitive components and to use a Neural
Implant for moderately sensitive components, instead of
completely pruning them. For the latter approach, the mod-
erately sensitive components are replaced with a low rank
implant that is smaller and less computationally expensive
than the original component. We use the relative Hessian
trace to measure sensitivity, as opposed to the magnitude
based sensitivity metric commonly used in the literature. We
test HAP for both computer vision tasks and natural lan-
guage tasks, and we achieve new state-of-the-art results.
Specifically, HAP achieves less than 0.1%/0.5% degrada-
tion on PreResNet29/ResNet50 (CIFAR-10/ImageNet) with
more than 70%/50% of parameters pruned. Meanwhile,
HAP also achieves significantly better performance (up to
0.8% with 60% of parameters pruned) as compared to gra-
dient based method for head pruning on transformer-based
models. The framework has been open sourced and available
online: https://github.com/yaozhewei/HAP.

1. Introduction

There has been a significant increase in the computational
resources required for Neural Network (NN) training and
inference. This is in part due to larger input sizes (e.g.,
higher image resolution) as well as larger NN models requir-
ing more computation with a significantly larger memory
footprint. The slowing down of Moore’s law, along with

*Equal contribution.
†Correspondence to: Amir Gholami: amirgh@berkeley.edu

challenges associated with increasing memory bandwidth,
has made it difficult to deploy these models in practice. Of-
ten, the inference time and associated power consumption is
orders of magnitude higher than acceptable ranges. This has
become a challenge for many applications, e.g., health care
and personalized medicine, which have restrictions on up-
loading data to cloud servers, and which have to rely on local
servers with limited resources. Other applications include in-
ference on edge devices such as mobile processors, security
cameras, and intelligent traffic control systems, all of which
require real-time inference. Importantly, these problems are
not limited to edge devices, and state-of-the-art models for
applications such as speech recognition, natural language
processing, and recommendation systems often cannot be
efficiently performed even on high-end servers.

A promising approach to address this is pruning. [3, 7,
14–17, 35, 36, 38, 39, 45, 47, 48, 52, 55, 61, 64, 65, 69, 75,
78, 79], However, an important challenge is determining
which parameters are insensitive to the pruning process. A
brute-force method is not feasible since one has to test each
parameter in the network separately and measure its sensitiv-
ity. The seminal work of [36] proposed Optimal Brain Dam-
age (OBD), a second-order based method to determine insen-
sitive parameters. However, this approach requires pruning
the parameters one at a time, which is time-consuming. To
address this problem, we propose a simple, yet effective,
modification of OBD by using the Hessian trace to prune a
group of parameters along with a low rank Neural Implant.
In more detail, our contributions are as follows:

• We propose HAP, a Hessian Aware Pruning method that
uses a fast second-order metric to find insensitive param-
eters in a NN model. In particular, we use the average
Hessian trace to weight the magnitude of the parameters
in the NN. Parameters with large second-order sensitivity
remain unpruned, and those with relatively small sensitiv-
ity are pruned. In contrast to OBD [36], HAP finds groups
of insensitive parameters, which is faster than pruning a
single parameter at a time. Details of the HAP method are
discussed in Section 3.

• We propose a novel Neural Implant (denoted by

13880

https://github.com/yaozhewei/HAP


HAP+IMPLANT) technique to alleviate accuracy degra-
dation. In this approach, we replace moderately sensitive
model components with a low rank implant. The model
along with the implant is then fine-tuned. We find that
this approach helps boost the accuracy. For details, see
Section 3.2.

• We perform detailed empirical testing and show that HAP
achieves 94.3% accuracy (< 0.1% degradation) on PreRes-
Net29 (CIFAR-10), with only 31% parameters left (Fig. 2).
In comparison to EigenDamage, a recent second-order
pruning method, we achieve up to 1.2% higher accuracy
with fewer parameters and FLOPs (Fig. 2). Moreover, for
ResNet50, HAP achieves 75.1% top-1 accuracy (0.5%
degradation) on ImageNet, with only half of the parame-
ters left (Tab. 2). In comparison to prior state-of-the-art
HRank [40], HAP achieves up to 2% higher accuracy
with fewer parameters and FLOPs (Tab. 2). For head
pruning of RoBERTa on MRPC/QNLI, HAP achieves up
to 0.82%/0.89% higher accuracy than the gradient based
method [53] (Tab. 4).

• We perform detailed ablation experiments to illustrate
the efficacy of the second-order sensitivity metric. In
particular, we compare the second-order sensitivity with a
random method, and a reverse-order in which the opposite
order sensitivity order given by HAP is used. In all cases,
HAP achieves higher accuracy (Tab. 5).

2. Related work
Several different approaches have been proposed to make

NN models more efficient by making them more compact,
faster, and more energy efficient. These efforts could be
generally categorized as follows: (i) efficient NN design [25,
26, 30, 50, 59, 76]; (ii) hardware-aware NN design [5, 8, 13,
27, 43, 49, 60, 66, 70]; (iii) quantization [9, 10, 12, 29, 31,
32, 67]; (iv) distillation [24, 54, 57, 73]; and (v) pruning.

Here we briefly discuss the related work on pruning,
which can be broadly categorized into: unstructured prun-
ing [7, 37, 56, 68]; and structured pruning [22, 28, 41, 48,
74, 77]. Unstructured pruning prunes out neurons without
any structure. However, this leads to sparse matrix opera-
tions which are hard to accelerate and are typically memory-
bounded [4, 11]. This can be addressed with structured
pruning, where an entire matrix operation (e.g., an output
channel) is removed. However, the challenge here is that
high degrees of structured pruning often leads to significant
accuracy degradation.

In both approaches, the key question is to find which
parameters to prune. A simple and popular approach is
magnitude-based pruning. In this approach, the magnitude
of parameters is used as the pruning metric. The assumption
here is that small parameters are not important and can be
removed. A variant of this approach was used in [46], where
the scaling factor of the batch normalization layer is used as

the sensitivity metric. In particular, channels with smaller
scaling factors (or output values) are considered less impor-
tant and got pruned. Another variation is proposed by [39],
where channel-wise summation over weights is used as the
metric. Other methods have been proposed as alternative
sensitivity metrics. For instance, [40] uses channel rank
as sensitivity metric; [23] uses a LASSO regression based
channel selection criteria; and [21] uses the geometric me-
dian of the convolutional filters. An important problem with
magnitude-based pruning methods is that parameters with
small magnitudes can actually be quite sensitive. It is easy
to see this through a second-order Taylor series expansion,
where the perturbation is dependent on not just the weight
magnitude but also the Hessian [36]. In particular, small
parameters with large Hessian could in fact be very sensitive,
as opposed to large parameters with small Hessian (here, we
are using small/large Hessian loosely; the exact metric to
measure is given by the second-order perturbation in Eq. 3).
For this reason, OBD [36] proposes to use the Hessian diago-
nal as the sensitivity metric. The follow up work of Optimal
Brain Surgeon (OBS) [18, 19] used a similar method, but
considered off-diagonal Hessian components, and showed a
correlation with inverse Hessian. One important challenge
with these methods is that pruning has to be performed one
parameter at a time. The recent work of [7] extends this to
layer-wise pruning in order to reduce the cost of computing
Hessian information for one parameter at a time. However,
this method can result in unstructured pruning. Another
second-order pruning method is EigenDamage [64], where
the Gauss-Newton operator is used instead of Hessian. In
particular, the authors use Kronecker products to approxi-
mate the GN operator. Our findings below show that using
the average Hessian trace method significantly outperforms
EigenDamage. We also find that it is very helpful to replace
moderately sensitive layers with a low rank Neural Implant,
instead of completely pruning them, as discussed next.

3. Methodology
Here, we focus on supervised learning tasks, where the

nominal goal is to minimize the empirical risk by solving
the following optimization problem:

L(w) =
1

N

∑N

i=1
l(xi, yi, w), (1)

where w ∈ Rn is the trainable model parameters, l(xi, yi, w)
is the loss for the input datum xi, where yi is the correspond-
ing label, and N is the training set cardinality. For pruning,
we assume that the model is already trained and converged to
a local minima which satisfies the first and second-order op-
timality conditions (that is, the gradient ∇wL(w) = 0, and
the Hessian is Positive Semi-Definite (PSD), ∇2

wL(w) < 0).
The problem statement is to prune (remove) as many param-
eters as possible to reduce the model size and FLOPs to a
target threshold with minimal accuracy degradation.

3881



𝐻

𝑊

𝐶!"

𝐻

𝑊

𝐶!"#
𝑁𝑒𝑢𝑟𝑎𝑙 𝐼𝑚𝑝𝑙𝑎𝑛𝑡

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒

𝐼𝑛𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒

𝐻𝑖𝑔ℎ𝑙𝑦
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒

�0.4
�0.2

0
0.2

0.4 �0.4 �0.2 0 0.2 0.4

�2

�1

0

1

✏1

✏2

L
os

s(
L
og

)

�0.4
�0.2

0
0.2

0.4 �0.4 �0.2 0 0.2 0.4

�2

�1

0

1

✏1

✏2

L
os

s(
L
og

)

𝐻

𝑊

𝐶!"

𝐻

𝑊

𝐶!"#

𝐵𝑎𝑠𝑖𝑐 𝑃𝑟𝑢𝑛𝑖𝑛𝑔

𝐼𝑛𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒

𝐻𝑖𝑔ℎ𝑙𝑦
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 Conv	Kernels

�0.4
�0.2

0
0.2

0.4 �0.4 �0.2 0 0.2 0.4

�2

�1

0

1

✏1

✏2

L
os

s(
L
og

)

Figure 1: (Left) The HAP method is a structured pruning method that prunes channels based on their second-order sensitivity,
which measured flatness/sharpness of loss landscape. Channels are sorted based on this metric, and only insensitive channels
are pruned. (Right) Similar to other structured-pruning methods, HAP at large pruning ratios results in accuracy degradation.
This because one has to inevitably prune moderately sensitive channels at high pruning ratios, which may contain individual
neurons that are very sensitive. The removal of the entire channel, along with the sensitive neurons results in accuracy
degradation. To address this, we propose HAP+IMPLANT method, where such channels are replaced with a light-weight,
low-rank Neural Implant.

We first start with a general description of the problem and
then derive our method. Let ∆w ∈ Rn denote the pruning
perturbation such that the corresponding weights become
zero (that is w + ∆w = 0). We denote the corresponding
change of loss as ∆L:

∆L = L(w+∆w)−L(w) = gT ∆w+
1

2
∆wTH∆w+O(||∆w||3).

(2)
where the second equation comes from Taylor series expan-
sion. Here g ∈ Rn denotes the gradient of loss function
L w.r.t. weights w, and H ∈ Rn×n is the corresponding
Hessian operator (i.e. second-order derivative). For a pre-
trained neural network that has already converged to a local
minimum, we have g = 0, and the Hessian is a PSD matrix.
As in prior work [19], we assume higher-order terms, e.g.,
O(||∆w||3), in Eq. 2 can be ignored.

The pruning problem is to find the set of weights that
result in minimum perturbation to the loss (∆L). This leads
to the following constrained optimization problem:

min
∆w

1

2
∆w

T
H∆w =

1

2

(
∆wp

∆wl

)T (
Hp,p Hp,l

Hl,p Hl,l

)(
∆wp

∆wl

)
,

s.t. ∆wp + wp = 0.

(3)

Here, we denote the channels that are pruned with p as the
subscript (e.g. wp ∈ Rp), and denote the remaining param-
eters with l as the subscript (e.g. wl ∈ Rn−p). Similarly,
we use ∆wp and ∆wl to denote the corresponding perturba-
tions. Note that ∆wp = −wp since p-channels are pruned.
Moreover, Hl,p denotes the cross Hessian w.r.t. l-channels
and p-channels (and similarly Hp,p and Hl,l are Hessian
w.r.t. pruned and unpruned parameters). Using Lagrangian
method, we can finally get (see Appendix A for more de-

tails):

1

2
∆wTH∆w =

1

2
wT

p (Hp,p −Hp,lH
−1
l,l Hl,p)wp. (4)

Eq. 4 gives us the perturbation to the loss when a set of
parameters wp is removed. It should be noted that OBS [19]
and L-OBS [7], where OBS is applied for each layer under
the assumption of cross-layer independence, is a degenerate
case of Eq. 4 for the special case of wp ∈ R1. Next we
discuss how this general formulation can be simplified.

3.1. Hessian-aware Pruning

There are three major disadvantages with OBS. First,
computing Eq. 4 requires computing (implicitly) informa-
tion from the inverse Hessian, H−1

l,l . This can be costly, both
in terms of computations and memory (even when using
matrix-free randomized methods). The work of L-OBS [7]
attempted to address this challenge by ignoring cross-layer
dependencies, but it still requires computing block-diagonal
inverse Hessian information, which can be costly. Second,
in both OBS and L-OBS, one has to measure this perturba-
tion for all the parameters separately, and then prune those
parameters that result in the smallest perturbation. This can
have a high computational cost, especially for deep models
with many parameters. Third, this pruning method results
in unstructured pruning, which is difficult to accelerate with
current hardware architectures.

In the OBD [36] method the first problem does not exist
as the the Hessian is approximated as a diagonal operator,
without the need to compute inverse Hessian:

1

2
∆wTH∆w ≈ 1

2
wT

pDiag(Hp,p)wp. (5)

3882



Here Diag(Hp,p) denotes the diagonal elements of Hp,p.
However, the second and third of these disadvantages still
remain with OBD.

To address the second and third of these disadvantages,
we propose to group the parameters and to compute the corre-
sponding perturbation when that group is pruned, rather than
computing the perturbation for every single parameter sepa-
rately. Note that this can also address the third disadvantage,
since pruning a group of parameters (for example parame-
ters in a convolution channel) results in structured pruning.
This can be achieved by considering the Hessian as a block
diagonal operator, and then approximating each block with a
diagonal operator, with Hessian trace as the diagonal entries.
In particular, we use the following approximation:

1

2
∆wTH∆w =

1

2
wT

p [H−1]−1
p,pwp

≈ 1

2
wT

p
Trace(Hp,p)

p
wp =

Trace(Hp,p)

2p
‖wp‖22,

(6)

where Trace(Hp,p) denotes the trace of the block diago-
nal Hessian (the corresponding Hessian block for pruned
parameters Hp,p). The Hessian can be computed very effi-
ciently with randomized numerical linear algebra methods,
in particular Hutchinson’s method [1, 2, 71, 72]. Importantly,
this approach requires computing only the application of the
Hessian to a random input vector. This has the same cost
as back-propagating the gradient [71, 72]. (Empirically, in
our experiments corresponding to ResNet50 on ImageNet,
the longest time for computing this trace was three minutes.)
A similar approach was proposed by [9] in the context of
quantization.

In more detail, HAP performs structured pruning by
grouping the parameters and approximating the correspond-
ing Hessian as a diagonal operator, with the average Hessian
trace of that group as its entries. For a convolutional net-
work, this group can be an output channel. We found that
this simple modification results in a fast and efficient prun-
ing method that when combined with the Neural Implant
approach exceeds state-of-the-art. This is discussed next.

3.2. Hessian-aware Neural Implant

In HAP, we sort the channels from most sensitive to least
sensitive (based on Eq. 6). For a target model size or FLOPs
budget, one has then to prune by starting from insensitive
channels. This approach works well, as long as all these
channels are extremely insensitive. However, in practice,
some of the sorted channels will exhibit some level of sen-
sitivity. Entirely pruning these channels, and leaving the
rest of the sensitive ones unpruned, can result in significant
accuracy degradation. This is one of the major problems
with structured pruning methods, as very few groups of pa-
rameters are completely insensitive. When those are pruned,
the remaining groups/set of parameters always include some

subset of highly sensitive neurons that if pruned, would result
in high accuracy loss.

Here, we propose an alternative strategy to replace mod-
erately sensitive parameter groups with a low rank Neural
Implant. The basic idea is to prune insensitive layers com-
pletely, but detect the moderately sensitive layers, and in-
stead of completely removing all of its parameters (which
can contain some sensitive ones as discuss above), replace
them with a low rank decomposition. As an example, a
spatial convolution could be replaced with a new point-wise
convolution that has smaller parameters and flops. One could
also consider other types of low rank decomposition (e.g.
CP/Tucker decomposition, depth-wise/separable convolu-
tion,etc). However, for simplicity we only use a pointwise
convolution implant in this paper.

After the implant, the model is fine-tuned to recover accu-
racy. We denote this approach as HAP+IMPLANT, which is
schematically illustrated in Fig. 1. In summary, we use the
Hessian metric in Eq. 6, and then we apply a Neural Implant
to the most sensitive channels to be pruned.

We have to emphasize that many prior works have in-
vestigated low-rank matrix approximation [51]. However,
existing methods for NN pruning replace all or part of the
model, irrespective of their sensitivity, whereas in our ap-
proach we perform a targeted low-rank approximation, and
only replace the sensitive parts of the model, quantified
through the Hessian in Eq. 6. We empirically found that this
approach is quite effective, especially for moderate pruning
ratios, as discussed next.

4. Results

4.1. Experimental Settings

Computer Vision. For evaluating the
performance of HAP, we conduct experi-
ments for image classification on CIFAR-10
(ResNet56/WideResNet32/PreResNet29/VGG16) and
ImageNet (ResNet50). Our main target comparison for HAP
(without Implant) is EigenDamage, a recent second-order
pruning method. For fair comparison, we use the same
pretrained model used by EigenDamage when available
(WideResNet32 on Cifar-10), and otherwise train the model
from scratch (ResNet56, VGG16, and PreResNet29 on
Cifar-10). For all cases, we ensure comparable baseline
accuracy, and when not possible, we report the baseline used
by other methods. For comparison we consider a wide range
of pruning ratios, and consider validation accuracy, FLOPs,
and parameter size as the metrics. The goal is to achieve
higher accuracy with lower FLOPs/parameter size.

Natural Language Understanding. We use RoBERTa-
base [44], which consists of 12 attention heads for each of
12 Transformer encoder layers, as the baseline model. It
has been explored in [53] that not all heads in Transformer

3883



Figure 2: Comparison of accuracy with different pruning ratios among HAP+IMPLANT, HAP, NN Slimming, EigenDamage,
and DCP, on the CIFAR-10 dataset, for ResNet56, WideResNet32, and PreResNet29. (Top) Remaining parameters in the
network after pruning is used for x-axis. (Bottom) Remaining FLOPs in the network after pruning is used for x-axis. HAP
consistently outperforms EigenDamage and NN Slimming, and HAP+IMPLANT boosts performance for moderate pruning
ratios and surpasses DCP.

architectures are equally important and thus a great portion
of them can be removed without degrading the accuracy.

Table 1: Comparison between HAP and other pruning meth-
ods on CIFAR-10. Here, VGG16 denotes the baseline used in
HRank [40], and VGG16-HAP denotes the baseline used by
HAP method. As one can see, HAP consistently outperforms
other pruning methods, even though its pruned models have
fewer parameters (Param.) and FLOPs.

Method Acc.(%) Param.(%) FLOPs(%)

VGG16 93.96 100.0 100.0
VGG16-HAP 93.88 100.0 100.0

L1[39] 93.40 36.0 65.7
SSS[28] 93.02 26.2 58.4
VarP[77] 93.18 26.7 60.9
HRank[40] 93.43 17.1 46.5
GAL-0.05[42] 92.03 22.4 60.4
HRank[40] 92.34 17.9 34.7
GAL-0.1[42] 90.73 17.8 54.8
HAP 93.66 10.1 29.7

HRank[40] 91.23 8.0 23.5
HAP 93.37 5.1 20.3

HAP 91.22 1.6 7.5

4.2. HAP Results on CIFAR-10

We first start with evaluating HAP without Neural Im-
plant, and then discuss the specific improvement of using
Neural Implant. The results on CIFAR-10 for different prun-
ing ratios and various models are presented in Fig. 2. In
particular, we report both the validation accuracy versus
remaining parameters after pruning, as well as validation
accuracy versus the FLOPs. For comparison, we also plot
the performance of NN slimming [46], EigenDamage [64]
and DCP [79] for different pruning ratios. For all the points
that we compare, HAP achieves higher accuracy than Eigen-
Damage, even for cases with fewer parameters/FLOPs. We
generally observe that the difference between HAP and
EigenDamage is more noticeable for higher pruning ratios
(i.e., fewer remaining parameter). This is expected, since
small amounts of pruning does not lead to significant ac-
curacy degradation, while higher pruning ratios are more
challenging. In particular, when the parameter remaining
percentage is around 35% (i.e., 65% of the parameters are
pruned), HAP achieves 93.2% accuracy, which is 1.24%
higher than EigenDamage, with fewer FLOPs (34.0% ver-
sus 38.7% for EigenDamage). We observe a similar trend
on WideResNet32, where HAP consistently outperforms
EigenDamage.

We also plot the performance of DCP, which is not a
second-order method, but is known to achieve good pruning

3884



accuracy. HAP achieves higher accuracy as compared to NN
slimming, and comparable accuracy to DCP. As for the latter,
the benefit of HAP is that we do not need to perform any
greedy channel selection and the entire Hessian calculation
and channel selection is performed in one pass.1

For PreResNet29, we also compare with NN Slim-
ming [46], to compare with prior reported results on this
model. We observe that HAP achieves up to 6% higher
accuracy as compared to NN Slimming method, and slightly
higher accuracy as compared to EigenDamage. It is inter-
esting to note that HAP can keep the accuracy the same as
baseline, up to pruning 70% of the parameters (correspond-
ing to 30% remaining parameters in Fig. 2).

We also present results on VGG16 and compare
with other works in the literature, including GAL [42],
HRank [40], and VarP [77], as reported in Table 1. Here,
we consistently achieve higher accuracy. In particular, HAP
with 29.7% FLOPs and 10.1% parameters achieves the high-
est accuracy (despite using a pretrained model with lower
baseline accuracy). Similarly, HAP with 20.3% FLOPs and
5.1% parameters achieves 93.37% accuracy, with less than
2× FLOPs and 3× fewer parameters as compared to HRank
in the same block. For extreme pruning, HAP achieves
91.22% accuracy with only 1.6% of the parameters remain-
ing. To the best of our knowledge, this level of aggressive
pruning, while maintaining such high accuracy, has not been
reported in the literature.

It is interesting to visualize how HAP performs chan-
nel selection using the second-order sensitivity discussed in
Sec. 3.1, and the result can be found in Appendix E

4.3. Neural Implant Results on CIFAR-10

Despite HAP’s competitive results as compared to prior
pruning methods, it still has lower accuracy as compared to
baseline. This is known problem and shortcoming of struc-
tured pruning methods. We propose to use a low rank Neural
Implant to address this problem, and find it particularly help-
ful for moderate levels of structured pruning. In particular,
for the CNNs tested in this paper we replace sensitive 3× 3
spatial convolutions with a pointwise convolution. This re-
placement still reduces the number of parameters for the
3× 3 convolution by a factor of 9×.

We repeated the previous experiments with this approach,
and report the results in Fig. 2 (blue line). We observe that
HAP+IMPLANT consistently achieves better performance
than HAP for both the same parameter size (first row) and
the same FLOPs (second row), which also surpasses the
performance of DCP [79] that has a competitive result with
HAP.

1We also tried to test DCP on other models but the code base is old and
we were not able to use it for WideResNet32 or PreResNet29. As such we
considered other pruning methods, besides EigenDamage, for comparison
with those models.

Table 2: Comparison of FLOPs and accuracy on CIFAR-10
using ResNet56 for different pruning methods. We report
the baseline accuracy used in each work, as well as the
corresponding final accuracy after pruning. For ease of
comparison, we also report the accuracy drop (Acc. ↓) w.r.t.
each baseline. As one can see, HAP and HAP+IMPLANT
consistently outperform other work reported in the literature.

Method Base-acc. Final-acc. Acc. ↓ FLOPs (%)

CP[23] 92.80 91.80 1.00 50.0
AMC[22] 92.80 91.90 0.90 50.0
FPGM[21] 93.59 93.26 0.33 47.4
LFPC[20] 93.59 93.24 0.35 47.1
HAP+IMPLANT 93.88 93.55 0.33 40.7

GAL-0.8[42] 93.26 90.36 2.90 39.8
HRank[40] 93.26 90.72 2.54 25.9
HAP 93.88 91.57 2.31 21.0
HAP+IMPLANT 93.88 92.92 0.96 23.9

For some cases, the performance of the pruned network
slightly exceeds the baseline accuracy. In particular, for
ResNet56, we observe up to 1.5% higher accuracy as com-
pared to HAP, and up to 2% higher accuracy as compared to
EigenDamage. We observe a similar trend for both WideRes-
Net32/PreResNet29, where HAP+IMPLANT consistently
performs better than both HAP and EigenDamage.

It should be noted that the gains from HAP+IMPLANT
diminish for higher pruning ratios (around 20% remaining
parameters for ResNet56, and around 30% remaining for
WideResNet32/PreResNet29). This is expected, since there
is a trade-off associated with adding the Neural Implant.
While the implant helps reduce the information loss from
completely removing sensitive channels, it does so by adding
additional parameters. As such, we actually have to enforce
a larger pruning ratio to meet a target model size. As the
channels are sorted based on their sensitivity (from Eq. 6),
this means that we have to prune the next set of more sensi-
tive channels to satisfy the target. However, if such channels
have much higher sensitivity, then that can actually degrade
the performance. This is what happens for extreme pruning
cases, since most of the remaining parameters will be highly
sensitive; and, as such, the gains achieved by the Neural
Implant will not be enough.

In addition to parameter percentage, we also compare
HAP+IMPLANT results based on remaining FLOPs with
other methods reported in the literature. This is shown
in Tab. 2. As one can see, with a high remaining FLOPs per-
centage, HAP+IMPLANT can reach 93.55% accuracy with
only 0.33% degradation as compared with the corresponding
pretrained baseline model. It should be noted that state-of-
the-art methods such as FPGM [21] and LFPC [20] requires

3885



Table 3: Comparison between HAP and HAP+IMPLANT,
and other state-of-the-art pruning methods on ImageNet.
Here, ResNet50 is the baseline used in HRank [40]’s table,
while ResNet50-HAP is the baseline used by HAP.

Method Top-1 Param.(%) FLOPs(%)

ResNet50-MetaP 76.16 100.0 100.0
ResNet50 76.15 100.0 100.0
ResNet50-HAP 75.62 100.0 100.0

SSS-32[28] 74.18 72.94 68.95
CP[23] 72.30 - 66.75
GAL-0.5[42] 71.95 83.14 56.97
MetaP[45] 72.27 61.35 56.36
HRank[40] 74.98 63.33 56.23
HAP 75.12 55.41 66.18
HAP+IMPLANT 75.36 53.74 55.49

GDP-0.6[41] 71.19 - 45.97
GDP-0.5[41] 69.58 - 38.39
SSS-26[28] 71.82 61.18 56.97
GAL-1[42] 69.88 57.53 38.63
GAL-0.5-joint[42] 71.82 75.73 44.99
HRank[40] 71.98 54.00 37.90
HAP 74.00 34.74 40.44

ThiNet-50[48] 68.42 33.96 26.89
GAL-1-joint[42] 69.31 40.04 27.14
HRank[40] 69.10 32.43 23.96
MetaP[45] 70.07 41.44 25.69
HAP 71.18 20.47 32.85

6.4% more FLOPs to reach comparable performance. More-
over, when the target percentage of remaining FLOPs is
small, HAP+IMPLANT only incurs 0.96% accuracy degrada-
tion as compared with 2.31% for HAP and 2.54% for HRank
(with comparable FLOPs and baseline accuracy).

4.4. HAP Results on ImageNet

We also test HAP on ImageNet using ResNet50, and re-
port the results in Tab. 3. We compare with several previous
structured pruning methods including SSS [28], CP [23],
ThiNet [48], and HRank [40]. It should be noted that the
accuracy of our pretrained baseline is slightly lower than
HRank, yet our HAP method still achieves higher accu-
racy. For instance, in all cases, HAP achieves higher accu-
racy with smaller number of parameters as compared to all
prior work reported on ResNet50. The highest difference
corresponds to 34.74% remaining parameters (i.e., pruning
65.26% of parameters), where HAP has 2% higher Top-1 ac-
curacy with 19.26% fewer parameters as compared to HRank
(although for fairness our FLOPs are slightly larger). We

observe a consistent trend even for high pruning ratios. For
example, with 20.47% remaining parameters, HAP still has
more than 2% higher accuracy as compared to HRank. We
should also note that despite using second-order information,
HAP is quite efficient, and the end-to-end Hessian calcula-
tions were completed three minutes on a single RTX-6000
GPU.

Table 4: Comparison of HAP and the gradient-based [53]
heads pruning methods for RoBERTa-base, evaluated on
MRPC and QNLI. For evaluation metric, we report accuracy
for QNLI and the average of accuracy and F1 score for
MRPC.

(a) MRPC

Parameter (%) 100 80 60 50 40

Gradient-based [53] 92.06 92.19 89.52 89.36 89.07
HAP 92.06 91.97 90.74 90.43 89.89

Diff 0.00 -0.22 +1.22 +1.07 +0.82

(b) QNLI

Parameter (%) 100 80 60 50 40

Gradient-based [53] 93.12 92.4 91.78 91.71 91.38
HAP 93.12 93.30 92.93 92.59 92.27

Diff 0.00 +0.90 +1.15 +0.88 + 0.89

4.5. HAP Results on RoBERTa

Additionally, we show in this section that our HAP
method can be applied to Transformer [62] architectures
to prune unnecessary attention heads from multi-head atten-
tion layers. The results are reported as Tab. 4, where we
test over different heads prune ratio. As shown in the table,
HAP outperforms the gradient-based method with 40∼60%
prune ratio for MRPC and with all prune ratio for QNLI by a
noticeable margin of ∼1 point. The results indicate that Hes-
sian could be more informative than gradient in determining
sensitivities of attention heads.

4.6. Ablation Study

We conducted different ablation experiments to study the
effectiveness of the second-order based metric in HAP. For
all the experiments, we use ResNet56 on CIFAR-10.

One of the main components of HAP is the Hessian trace
metric used to sort different channels to be pruned. In partic-
ular, this ordering sorts the channels from the least sensitive
to most sensitive, computed based on Eq. 6. In the first
ablation study, we use the reverse order of what HAP recom-
mends, and denote this method as R-HAP. The results are
shown in Tab. 5. It can be clearly observed that for all cases
R-HAP achieves lower accuracy as compared to HAP (more
than 3% for the case with 35.50% remaining parameters).

3886



Table 5: Ablation study on the sensitivity metric. R-HAP de-
notes pruning by reversely using sensitivity in HAP. Random
is conducted by randomly allocating channel-wise sensitivity.

Method Acc. Param.(%) FLOPs(%) Channel

R-HAP 89.77 47.48 46.98 65
Random 93.12 45.60 46.68 60
Magnitude 93.29 61.82 39.29 55
HAP 93.38 41.53 38.74 50

R-HAP 89.97 42.85 39.99 60
Random 92.21 36.01 33.99 50
Magnitude 92.99 56.15 34.97 50
HAP 93.23 35.50 33.99 45

R-HAP 88.83 27.15 30.61 50
Random 90.95 29.64 31.32 40
Magnitude 92.45 47.28 28.97 42.2
HAP 92.81 31.08 28.85 40

R-HAP 88.18 23.34 28.04 45
Random 90.18 25.33 25.69 30
Magnitude 91.65 38.25 22.93 35
HAP 92.06 22.05 22.86 31

Table 6: Hessian Aware Low Rank (Neural Implant) vs Low
Rank. Ablation study on Hessian aware Neural Implant.
The R-HAP+IMPLANT uses low rank replacement without
using Hessian information. Specially, the Neural Implant is
applied on channels that are most sensitive.

ResNet56/Cifar10 Acc. Param.(%) FLOPs(%)

Low Rank 90.79 39.56 40.33
HAP+IMPLANT 93.52 34.49 37.15

Low Rank 90.34 34.39 37.24
HAP+IMPLANT 93.40 29.87 33.20

Low Rank 89.83 23.05 25.16
HAP+IMPLANT 92.92 21.92 24.90

In the second ablation experiment, we use a random order
for pruning the layers, irrespective of their second-order sen-
sitivity, and denote this as Random in Tab. 5. Similar to
the previous case, the random ordering achieves consistently
lower accuracy as compared to HAP. In addition, its results
exhibit a larger variance.

Another important ablation study is to compare the per-
formance of the Hessian-based pruning with the commonly
used magnitude based methods that use variants of ‖w‖22/p
(denoted as Magnitude in Tab. 5). To make a fair compar-
ison, we set the FLOPs of the model after pruning to be
the same for HAP and the magnitude based pruning (and
slightly higher for the latter to be fair). The results are re-

ported in Tab. 5. As the results show, HAP achieves the
same accuracy as magnitude based pruning but with much
fewer parameters (i.e., higher pruning ratio). In particular,
for pruning with 22.53% of FLOPs (last row of Tab. 5),
HAP achieves 92.06% which is almost the same as magni-
tude based pruning (91.65%). However, HAP achieves this
accuracy with only 21.01% of the parameters remaining, as
compared to 38.25%, which is quite a significant difference.
This is expected, as HAP’s performance was higher than the
different magnitude based results reported in the literature,
for both the CIFAR-10 and ImageNet tests of the previous
subsections (Sec. 4.2 and 4.4, respectively).

To study the role played by Hessian analysis in Neural
Implant, we’ve run another set of experiment to prove that
Hessian-aware Neural Implant is a combination of sensi-
tivity analysis and Low Rank approximation. The way of
using Hessian to guide where Low Rank approximation hap-
pens is way more effective than directly applying it to the
original model. The key idea is to only apply low rank for
sensitive layers, as measured by Hessian trace. We com-
pare Neural Implant with Low Rank in Tab. 6, which clearly
shows that we can get up to 2% higher accuracy with lower
Params/FLOPs.

5. Conclusion
Existing structured-pruning methods often result in sig-

nificant accuracy degradation for moderate pruning levels.
To address this, we propose HAP, a new second-order
structured-pruning method that uses the Hessian trace as
the sensitivity metric for pruning a NN model. We also
proposed a new Neural Implant approach that uses HAP’s
sensitivity metric to perform targeted replacement of sen-
sitive neuron’s with a light-weight low rank implant. The
main intuition is to prune insensitive components and to use
the Neural Implant for moderately sensitive components., in-
stead of completely pruning them. We performed extensive
empirical tests using multiple NN models. We compared
with several prior works, including both the second-order
based structured pruning method of EigenDamage, as well
as several magnitude-based pruning methods. HAP con-
sistently achieved higher accuracy with fewer parameters.
Specifically, HAP achieves 94.3% accuracy (< 0.1% degra-
dation) on PreResNet29 (CIFAR-10), with more than 70%
of parameters pruned. In comparison to EigenDamage, we
achieve up to 1.2% higher accuracy with fewer parameters
and FLOPs. Moreover, for ResNet50 HAP achieves 75.1%
top-1 accuracy (0.5% degradation) on ImageNet, after prun-
ing almost half of the parameters. In comparison to the prior
state-of-the-art of HRank, we achieve up to 2% higher accu-
racy with fewer parameters and FLOPs. For head-pruning of
RoBERTa, HAP can achieve more than 0.8% better perfor-
mance as compared to previous gradient based method with
60% pruned heads.

3887



References
[1] Haim Avron and Sivan Toledo. Randomized algorithms

for estimating the trace of an implicit symmetric posi-
tive semi-definite matrix. Journal of the ACM (JACM),
58(2):8, 2011.

[2] Zhaojun Bai, Gark Fahey, and Gene Golub. Some
large-scale matrix computation problems. Journal of
Computational and Applied Mathematics, 74(1-2):71–
89, 1996.

[3] Lorenzo Buffoni, Enrico Civitelli, Lorenzo Giambagli,
Lorenzo Chicchi, and Duccio Fanelli. Spectral pruning
of fully connected layers: ranking the nodes based
on the eigenvalues. arXiv preprint arXiv:2108.00940,
2021.

[4] Aydin Buluc and John R Gilbert. Challenges and ad-
vances in parallel sparse matrix-matrix multiplication.
In 2008 37th International Conference on Parallel Pro-
cessing, pages 503–510. IEEE, 2008.

[5] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang,
and Song Han. Once-for-all: Train one network and
specialize it for efficient deployment. arXiv preprint
arXiv:1908.09791, 2019.

[6] William B Dolan and Chris Brockett. Automatically
constructing a corpus of sentential paraphrases. In
Proceedings of the Third International Workshop on
Paraphrasing (IWP2005), 2005.

[7] Xin Dong, Shangyu Chen, and Sinno Pan. Learning
to prune deep neural networks via layer-wise optimal
brain surgeon. In Advances in Neural Information
Processing Systems, pages 4857–4867, 2017.

[8] Zhen Dong, Yizhao Gao, Qijing Huang, John
Wawrzynek, Hayden KH So, and Kurt Keutzer. Hao:
Hardware-aware neural architecture optimization for
efficient inference. In 2021 IEEE 29th Annual Inter-
national Symposium on Field-Programmable Custom
Computing Machines (FCCM), pages 50–59. IEEE,
2021.

[9] Zhen Dong, Zhewei Yao, Daiyaan Arfeen, Amir Gho-
lami, Michael W. Mahoney, and Kurt Keutzer. HAWQ-
V2: Hessian aware trace-weighted quantization of neu-
ral networks. Advances in neural information process-
ing systems, 2020.

[10] Zhen Dong, Zhewei Yao, Amir Gholami, Michael W.
Mahoney, and Kurt Keutzer. HAWQ: Hessian AWare
Quantization of neural networks with mixed-precision.
In The IEEE International Conference on Computer
Vision (ICCV), October 2019.

[11] Trevor Gale, Erich Elsen, and Sara Hooker. The state
of sparsity in deep neural networks. arXiv preprint
arXiv:1902.09574, 2019.

[12] Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao,
Michael W Mahoney, and Kurt Keutzer. A survey
of quantization methods for efficient neural network
inference. arXiv preprint arXiv:2103.13630, 2021.

[13] Amir Gholami, Kiseok Kwon, Bichen Wu, Zizheng
Tai, Xiangyu Yue, Peter Jin, Sicheng Zhao, and Kurt
Keutzer. SqueezeNext: Hardware-aware neural net-
work design. Workshop paper in CVPR, 2018.

[14] Luis Guerra, Bohan Zhuang, Ian Reid, and Tom Drum-
mond. Automatic pruning for quantized neural net-
works. arXiv preprint arXiv:2002.00523, 2020.

[15] Shaopeng Guo, Yujie Wang, Quanquan Li, and Junjie
Yan. Dmcp: Differentiable markov channel pruning for
neural networks. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 1539–1547, 2020.

[16] Ghouthi Boukli Hacene, Vincent Gripon, Matthieu
Arzel, Nicolas Farrugia, and Yoshua Bengio. Quan-
tized guided pruning for efficient hardware implementa-
tions of convolutional neural networks. arXiv preprint
arXiv:1812.11337, 2018.

[17] Song Han, Jeff Pool, John Tran, and William Dally.
Learning both weights and connections for efficient
neural network. In Advances in neural information
processing systems, pages 1135–1143, 2015.

[18] Babak Hassibi and David G Stork. Second order deriva-
tives for network pruning: Optimal brain surgeon. In
Advances in neural information processing systems,
pages 164–171, 1993.

[19] Babak Hassibi, David G Stork, and Gregory J Wolff.
Optimal brain surgeon and general network pruning.
In IEEE international conference on neural networks,
pages 293–299. IEEE, 1993.

[20] Yang He, Yuhang Ding, Ping Liu, Linchao Zhu, Han-
wang Zhang, and Yi Yang. Learning filter pruning
criteria for deep convolutional neural networks accel-
eration. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
2009–2018, 2020.

[21] Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and
Yi Yang. Filter pruning via geometric median for deep
convolutional neural networks acceleration. In Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 4340–4349, 2019.

3888



[22] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li,
and Song Han. Amc: Automl for model compression
and acceleration on mobile devices. In Proceedings of
the European Conference on Computer Vision (ECCV),
pages 784–800, 2018.

[23] Yihui He, Xiangyu Zhang, and Jian Sun. Channel
pruning for accelerating very deep neural networks. In
Proceedings of the IEEE International Conference on
Computer Vision, pages 1389–1397, 2017.

[24] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Dis-
tilling the knowledge in a neural network. Workshop
paper in NIPS, 2014.

[25] Andrew Howard, Mark Sandler, Grace Chu, Liang-
Chieh Chen, Bo Chen, Mingxing Tan, Weijun Wang,
Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al.
Searching for mobilenetv3. In Proceedings of the IEEE
International Conference on Computer Vision, pages
1314–1324, 2019.

[26] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco
Andreetto, and Hartwig Adam. Mobilenets: Efficient
convolutional neural networks for mobile vision appli-
cations. arXiv preprint arXiv:1704.04861, 2017.

[27] Qijing Huang, Dequan Wang, Zhen Dong, Yizhao Gao,
Yaohui Cai, Tian Li, Bichen Wu, Kurt Keutzer, and
John Wawrzynek. Codenet: Efficient deployment of
input-adaptive object detection on embedded fpgas.
In The 2021 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, pages 206–216,
2021.

[28] Zehao Huang and Naiyan Wang. Data-driven sparse
structure selection for deep neural networks. In Pro-
ceedings of the European conference on computer vi-
sion (ECCV), pages 304–320, 2018.

[29] Itay Hubara, Matthieu Courbariaux, Daniel Soudry,
Ran El-Yaniv, and Yoshua Bengio. Quantized neural
networks: Training neural networks with low preci-
sion weights and activations. The Journal of Machine
Learning Research, 18(1):6869–6898, 2017.

[30] Forrest N Iandola, Song Han, Matthew W Moskewicz,
Khalid Ashraf, William J Dally, and Kurt Keutzer.
SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and¡ 0.5 mb model size. arXiv preprint
arXiv:1602.07360, 2016.

[31] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong
Zhu, Matthew Tang, Andrew Howard, Hartwig Adam,
and Dmitry Kalenichenko. Quantization and training

of neural networks for efficient integer-arithmetic-only
inference. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages
2704–2713, 2018.

[32] Raghuraman Krishnamoorthi. Quantizing deep convo-
lutional networks for efficient inference: A whitepaper.
arXiv preprint arXiv:1806.08342, 2018.

[33] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton.
Cifar-10 (canadian institute for advanced research).
URL http://www. cs. toronto. edu/kriz/cifar. html, 5,
2010.

[34] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. ImageNet classification with deep convolutional
neural networks. In Advances in neural information
processing systems, pages 1097–1105, 2012.

[35] Se Jung Kwon, Dongsoo Lee, Byeongwook Kim,
Parichay Kapoor, Baeseong Park, and Gu-Yeon Wei.
Structured compression by weight encryption for un-
structured pruning and quantization. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 1909–1918, 2020.

[36] Yann LeCun, John S Denker, and Sara A Solla. Opti-
mal brain damage. In Advances in neural information
processing systems, pages 598–605, 1990.

[37] Namhoon Lee, Thalaiyasingam Ajanthan, and
Philip HS Torr. Snip: Single-shot network prun-
ing based on connection sensitivity. arXiv preprint
arXiv:1810.02340, 2018.

[38] Bailin Li, Bowen Wu, Jiang Su, and Guangrun Wang.
Eagleeye: Fast sub-net evaluation for efficient neural
network pruning. In European Conference on Com-
puter Vision, pages 639–654. Springer, 2020.

[39] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet,
and Hans Peter Graf. Pruning filters for efficient con-
vnets. arXiv preprint arXiv:1608.08710, 2016.

[40] Mingbao Lin, Rongrong Ji, Yan Wang, Yichen Zhang,
Baochang Zhang, Yonghong Tian, and Ling Shao.
Hrank: Filter pruning using high-rank feature map. In
Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 1529–
1538, 2020.

[41] Shaohui Lin, Rongrong Ji, Yuchao Li, Yongjian Wu,
Feiyue Huang, and Baochang Zhang. Accelerating
convolutional networks via global & dynamic filter
pruning. In IJCAI, pages 2425–2432, 2018.

3889



[42] Shaohui Lin, Rongrong Ji, Chenqian Yan, Baochang
Zhang, Liujuan Cao, Qixiang Ye, Feiyue Huang, and
David Doermann. Towards optimal structured cnn
pruning via generative adversarial learning. In Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2790–2799, 2019.

[43] Yujun Lin, Mengtian Yang, and Song Han. Naas:
Neural accelerator architecture search. arXiv preprint
arXiv:2105.13258, 2021.

[44] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. RoBERTa: A
robustly optimized bert pretraining approach. arXiv
preprint arXiv:1907.11692, 2019.

[45] Zechun Liu, Haoyuan Mu, Xiangyu Zhang, Zichao
Guo, Xin Yang, Kwang-Ting Cheng, and Jian Sun.
Metapruning: Meta learning for automatic neural net-
work channel pruning. In Proceedings of the IEEE
International Conference on Computer Vision, pages
3296–3305, 2019.

[46] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang,
Shoumeng Yan, and Changshui Zhang. Learning ef-
ficient convolutional networks through network slim-
ming. In Proceedings of the IEEE International Con-
ference on Computer Vision, pages 2736–2744, 2017.

[47] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang,
and Trevor Darrell. Rethinking the value of network
pruning. arXiv preprint arXiv:1810.05270, 2018.

[48] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A
filter level pruning method for deep neural network
compression. In Proceedings of the IEEE interna-
tional conference on computer vision, pages 5058–
5066, 2017.

[49] Li Lyna Zhang, Yuqing Yang, Yuhang Jiang, Wenwu
Zhu, and Yunxin Liu. Fast hardware-aware neural ar-
chitecture search. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion Workshops, pages 692–693, 2020.

[50] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and
Jian Sun. Shufflenet v2: Practical guidelines for effi-
cient cnn architecture design. In Proceedings of the
European Conference on Computer Vision (ECCV),
pages 116–131, 2018.

[51] M. W. Mahoney. Randomized algorithms for matri-
ces and data. Foundations and Trends in Machine
Learning. NOW Publishers, Boston, 2011.

[52] Huizi Mao, Song Han, Jeff Pool, Wenshuo Li, Xingyu
Liu, Yu Wang, and William J Dally. Exploring the
regularity of sparse structure in convolutional neural
networks. Workshop paper in CVPR, 2017.

[53] Paul Michel, Omer Levy, and Graham Neubig. Are
sixteen heads really better than one? arXiv preprint
arXiv:1905.10650, 2019.

[54] Asit Mishra and Debbie Marr. Apprentice: Us-
ing knowledge distillation techniques to improve
low-precision network accuracy. arXiv preprint
arXiv:1711.05852, 2017.

[55] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo
Aila, and Jan Kautz. Pruning convolutional neural net-
works for resource efficient inference. arXiv preprint
arXiv:1611.06440, 2016.

[56] Sejun Park, Jaeho Lee, Sangwoo Mo, and Jinwoo Shin.
Lookahead: a far-sighted alternative of magnitude-
based pruning. arXiv preprint arXiv:2002.04809, 2020.

[57] Antonio Polino, Razvan Pascanu, and Dan Alistarh.
Model compression via distillation and quantization.
arXiv preprint arXiv:1802.05668, 2018.

[58] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev,
and Percy Liang. SQuAD: 100,000+ questions for
machine comprehension of text. arXiv preprint
arXiv:1606.05250, 2016.

[59] Mark Sandler, Andrew Howard, Menglong Zhu,
Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bileNetV2: Inverted residuals and linear bottlenecks. In
Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition, pages 4510–4520, 2018.

[60] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasude-
van, Mark Sandler, Andrew Howard, and Quoc V Le.
Mnasnet: Platform-aware neural architecture search
for mobile. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages
2820–2828, 2019.

[61] Frederick Tung and Greg Mori. Clip-q: Deep net-
work compression learning by in-parallel pruning-
quantization. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages
7873–7882, 2018.

[62] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need.
In Advances in neural information processing systems,
pages 5998–6008, 2017.

3890



[63] Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. GLUE:
A multi-task benchmark and analysis platform for
natural language understanding. arXiv preprint
arXiv:1804.07461, 2018.

[64] Chaoqi Wang, Roger Grosse, Sanja Fidler, and
Guodong Zhang. Eigendamage: Structured pruning
in the kronecker-factored eigenbasis. arXiv preprint
arXiv:1905.05934, 2019.

[65] Ying Wang, Yadong Lu, and Tijmen Blankevoort. Dif-
ferentiable joint pruning and quantization for hardware
efficiency. In European Conference on Computer Vi-
sion, pages 259–277. Springer, 2020.

[66] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan
Wang, Fei Sun, Yiming Wu, Yuandong Tian, Peter Va-
jda, Yangqing Jia, and Kurt Keutzer. FBNet: Hardware-
aware efficient convnet design via differentiable neural
architecture search. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition,
pages 10734–10742, 2019.

[67] Jiaxiang Wu, Cong Leng, Yuhang Wang, Qinghao Hu,
and Jian Cheng. Quantized convolutional neural net-
works for mobile devices. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion, pages 4820–4828, 2016.

[68] Xia Xiao, Zigeng Wang, and Sanguthevar Rajasekaran.
Autoprune: Automatic network pruning by regular-
izing auxiliary parameters. In Advances in Neural
Information Processing Systems, pages 13681–13691,
2019.

[69] Tien-Ju Yang, Yu-Hsin Chen, and Vivienne Sze. De-
signing energy-efficient convolutional neural networks
using energy-aware pruning. In Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition, pages 5687–5695, 2017.

[70] Tien-Ju Yang, Andrew Howard, Bo Chen, Xiao Zhang,
Alec Go, Mark Sandler, Vivienne Sze, and Hartwig
Adam. Netadapt: Platform-aware neural network adap-
tation for mobile applications. In Proceedings of the
European Conference on Computer Vision (ECCV),
pages 285–300, 2018.

[71] Zhewei Yao, Amir Gholami, Kurt Keutzer, and
Michael W. Mahoney. PyHessian: Neural networks
through the lens of the Hessian. arXiv preprint
arXiv:1912.07145, 2019.

[72] Zhewei Yao, Amir Gholami, Sheng Shen, Kurt Keutzer,
and Michael W Mahoney. Adahessian: An adaptive

second order optimizer for machine learning. arXiv
preprint arXiv:2006.00719, 2020.

[73] Hongxu Yin, Pavlo Molchanov, Jose M Alvarez,
Zhizhong Li, Arun Mallya, Derek Hoiem, Niraj K
Jha, and Jan Kautz. Dreaming to distill: Data-free
knowledge transfer via deepinversion. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 8715–8724, 2020.

[74] Ruichi Yu, Ang Li, Chun-Fu Chen, Jui-Hsin Lai, Vlad I
Morariu, Xintong Han, Mingfei Gao, Ching-Yung Lin,
and Larry S Davis. Nisp: Pruning networks using neu-
ron importance score propagation. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pages 9194–9203, 2018.

[75] Wenyuan Zeng and Raquel Urtasun. Mlprune: Multi-
layer pruning for automated neural network compres-
sion. 2018.

[76] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian
Sun. Shufflenet: An extremely efficient convolutional
neural network for mobile devices. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pages 6848–6856, 2018.

[77] Chenglong Zhao, Bingbing Ni, Jian Zhang, Qiwei
Zhao, Wenjun Zhang, and Qi Tian. Variational con-
volutional neural network pruning. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2780–2789, 2019.

[78] Michael Zhu and Suyog Gupta. To prune, or not to
prune: exploring the efficacy of pruning for model
compression. arXiv preprint arXiv:1710.01878, 2017.

[79] Zhuangwei Zhuang, Mingkui Tan, Bohan Zhuang, Jing
Liu, Yong Guo, Qingyao Wu, Junzhou Huang, and
Jinhui Zhu. Discrimination-aware channel pruning for
deep neural networks. In Advances in Neural Informa-
tion Processing Systems, pages 875–886, 2018.

3891


