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Abstract
Local graph clustering methods aim to find small clusters in very large graphs. These methods take
as input a graph and a seed node, and they return as output a good cluster in a running time that
depends on the size of the output cluster but that is independent of the size of the input graph.
In this paper, we adopt a statistical perspective on local graph clustering, and we analyze the per-
formance of the `1-regularized PageRank method (Fountoulakis et al., 2019) for the recovery of
a single target cluster, given a seed node inside the cluster. Assuming the target cluster has been
generated by a random model, we present two results. In the first, we show that the optimal sup-
port of `1-regularized PageRank recovers the full target cluster, with bounded false positives. In the
second, we show that if the seed node is connected solely to the target cluster then the optimal sup-
port of `1-regularized PageRank recovers exactly the target cluster. We also show empirically that
`1-regularized PageRank has a state-of-the-art performance on many real graphs, demonstrating
the superiority of the method. From a computational perspective, we show that the solution path
of `1-regularized PageRank is monotonic. This allows for the application of the forward stagewise
algorithm, which approximates the entire solution path in running time that does not depend on
the size of the whole graph. Finally, we show that `1-regularized PageRank and approximate per-
sonalized PageRank (APPR) (Andersen et al., 2006), another very popular method for local graph
clustering, are equivalent in the sense that we can lower and upper bound the output of one with
the output of the other. Based on this relation, we establish for APPR similar results to those we
establish for `1-regularized PageRank.
Keywords: clustering, local graph clustering, PageRank, seed expansion, `1-regularization.

1. Introduction

In many data applications, one is interested in finding small-scale structure in a very large data
set. As an example, consider the following version of the so-called local graph clustering problem:
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given a large graph and a seed node in that graph, quickly find a good small cluster that includes
that seed node. From an algorithmic perspective, one typically considers worst-case input graphs,
and one is interested in running time guarantees, e.g., to find a good cluster in a time that depends
linearly or sub-linearly on the size of the entire graph. From a statistical perspective, such a local
graph clustering problem can be understood as a recovery problem. One assumes that there exists a
target cluster in a given large graph, where the graph is assumed to have been generated by a random
model, and the objective is to recover the target cluster from one node inside the cluster.

In this paper, we consider the so-called `1-regularized PageRank algorithm (Fountoulakis et al.,
2019), a popular algorithm for the local graph clustering problem, and we establish statistical re-
coverability guarantees for it. Previous theoretical analysis on local graph clustering, e.g., Andersen
et al. (2006); Zhu et al. (2013), is based on the notion of conductance (a cluster quality metric
that considers the internal versus external connectivity of a cluster) and considers running time
performance for worst-case input graphs. In contrast, our goal will be to study the average-case per-
formance of the `1-regularized PageRank algorithm, under a certain type of a local random graph
model. The model we consider is very general; it concerns the target cluster and its adjacent nodes;
and it encompasses the stochastic block model (Holland et al., 1983; Abbe, 2017) and the planted
clustering model (Alon et al., 1998; Arias-Castro and Verzelen, 2014) as special cases.

Within this random graph model, we provide theoretical guarantees for the unique optimal so-
lution of the `1-regularized PageRank optimization problem. In particular, the cluster is recovered
through the support set of the `1-regularized PageRank vector and we give rigorous bounds on the
false positives and false negatives of the recovered cluster. Furthermore, observe that our statistical
perspective is more aligned with statistical guarantees for the sparse regression problem (and the
lasso problem (Tibshirani, 1996)), where the objective is to recover the true parameter and/or sup-
port from noisy data. Given this connection, we also establish a result for the exact support recovery
of `1-regularized PageRank. Empirically we demonstrate the ability of the method to recover the
target cluster in a range of real-world data graphs. Finally, we establish an equivalence between
`1-regularized PageRank and the very popular local graph clustering algorithm from Andersen et al.
(2006); Zhu et al. (2013). This allows us to prove similar average case guarantees for the algorithm
of Andersen et al. (2006); Zhu et al. (2013) as well.

1.1 Literature review

There is a large body of related work, the most relevant of which is work in theoretical computer
science on local graph algorithms—for example, personalized PageRank and flow-based methods;
and work in statistics on stochastic graph models. We discuss each in turn.

Local graph clustering The origins of local graph clustering are with the work of Spielman and
Teng (2013). Subsequent to their original results, there has been a great deal of follow-up work on
local graph clustering procedures, including with random walks (Andersen et al., 2006; Zhu et al.,
2013), local Lanczos spectral approximations (Shi et al., 2017), evolving sets (Andersen et al.,
2016), seed expansion methods (Kloumann and Kleinberg, 2014), optimization-based approaches
(Fountoulakis et al., 2019, 2017), and local flow methods (Orecchia and Zhu, 2014; Wang et al.,
2017; Veldt et al., 2019; Fountoulakis et al., 2020b,a). There also exist local higher-order clustering
(Yin et al., 2017), linear algebra approaches (Shi et al., 2017), spectral methods based on Heat
Kernel PageRank (Kloster and Gleich, 2014), and parallel local spectral approaches (Shun et al.,
2016). In all of these cases, given a seed node, or a seed set of nodes, the goal of existing local
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graph clustering approaches is to compute a cluster “nearby” the seed that is related to the “best”
cluster nearby the seed. Here, “best” and “nearby” are intentionally left under-specified, as they can
be formalized in one of a few different but related ways. For example, “best” is usually related to
a clustering score such as conductance. In fact, many existing methods for local graph clustering
with theoretical guarantees are motivated through the problem of finding a cluster that is near the
seed node and that also has small conductance value (Spielman and Teng, 2013; Andersen et al.,
2006; Fountoulakis et al., 2019; Orecchia and Zhu, 2014; Veldt et al., 2019; Wang et al., 2017;
Fountoulakis et al., 2020b). More recently, Green et al. (2019) studied local graph clustering in a
traditional statistical learning setup where they aim to identify density clusters around a given seed
node.

Stochastic block model There are numerous papers in statistics on partitioning random graphs.
Arguably, the stochastic block model (SBM) is the most commonly employed random model for
graph partitioning, and it has been extensively studied (Abbe and Sandon, 2015; Abbe et al., 2015;
Zhang and Zhou, 2016; Massoulié, 2014; Mossel et al., 2018; Newman et al., 2002; Mossel et al.,
2015; Rohe et al., 2011; Amini and Levina, 2018; Abbe, 2017). Recent work has also generalized
the SBM to a degree-corrected block model, to capture degree heterogeneity of the network (Chen
et al., 2018; Gulikers et al., 2017; Zhao et al., 2012; Gao et al., 2018). The literature in this area is
too extensive to cover in this paper, but we refer the readers to excellent survey papers on the graph
partitioning problem (Abbe, 2017).

We should emphasize that the traditional graph partitioning problem is quite different than the
local graph clustering problem that we consider in this paper. Among other things, the former par-
titions all the vertices of a graph into different clusters, while for the latter problem our objective is
to find a single cluster given a seed node in the cluster; the former takes as input a graph, while the
latter takes as input a graph and a seed set of nodes; and the former runs in time depending on the
size of the graph, while the latter runs in time depending on the size of the output, but is otherwise
independent of the size of the graph.

1.2 Notation

We write [n] = {1, . . . , n} for any n ≥ 1. Throughout the paper we assume we have a connected,
undirected graph G = (V,E), where V denotes the set of nodes, with |V | = n, and E ⊂ (V × V )
denotes the set of edges. We denote by A the adjacency matrix of G, i.e., Aij = wij if (i, j) ∈ E,
and 0 otherwise. For an unweighted graph, wij is set to 1 for all (i, j) ∈ E. We denote by D the
diagonal degree matrix of G, i.e., Dii := di =

∑
j:(i,j)∈E wij , where di is the weighted degree of

node i. In this case, d = (di) ∈ Rn denotes the degree vector, and the volume of a subset of nodes
is defined as Vol(B) =

∑
i∈B di for B ⊆ V . We denote by L = D − A the graph Laplacian; and

Q := αD + 1−α
2 L. If v ∈ Rn is a vector defined on V , we denote by support(v) the support set of

v, i.e., support(v) := {i ∈ V | vi 6= 0}.
For given sets of indexes B1, B2 ⊆ [n], we write MB1,B2 to denote the submatrix of M indexed

by B1 and B2. If B1 = {i} is a singleton, we use Mi,B2 to indicate the i-th row of M whose
columns are indexed by B2. Analogously, we use MB1,j to indicate the j-th column of M whose
rows are indexed by B1. We denote by B1\B2 a set difference between B1 and B2, and denote by
Bc

1 = [n]\B1 the complement of B1.
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2. Local graph clustering from a variational point of view

In this section, we briefly review and motivate `1-regularized PageRank (Fountoulakis et al., 2019),
an optimization formulation of local graph clustering to find a local cluster around a given seed
node. We then study some properties of the output vector of `1-regularized PageRank that will
provide further intuition on the method.

2.1 Background on `1-regularized PageRank

PageRank (Page et al., 1999; Brin and Page, 1998) is a popular approach for ranking the importance
of the nodes given a graph. It is defined as the stationary distribution of a Markov chain, which is
encoded by a convex combination of the input distribution s ∈ Rn and the (lazy) random walk on
the graph, i.e.,

pPR = αs + (1− α)WpPR, (1)

where W = (I +AD−1)/2 is the lazy random walk operator and where α ∈ (0, 1) is the teleporta-
tion parameter. To measure the ranking or importance of the nodes of the “whole” graph, PageRank
is often computed by setting the input vector s to be a uniform distribution over {1, 2, . . . , n}.

For local graph clustering, where the aim is to identify a target cluster, given a seed node in
the cluster, the input distribution s is set to be equal to one for the seed node and zero everywhere
else. For example, when the node i is given as the seed node, we consider the input distribution s to
be the discrete Dirac measure such that si = 1 and zero elsewhere. This “personalized” PageRank
(Haveliwala, 2002) measures the closeness or similarity of the nodes to the given seed node, and
it outputs a ranking of the nodes that is “personalized” with respect to the seed node (as opposed
to the original PageRank, which considers the entire graph). From an operational point of view,
the underlying diffusion process in (1) defining personalized PageRank performs a lazy random
walk with probability 1 − α and “teleports” a random walker back to the original seed node with
probability α.

From the definition itself, the personalized PageRank vector can be obtained by solving the
linear system (1). Unfortunately, this step can be prohibitively expensive, especially when there is a
single seed node or a small seed set of seed nodes, and when one is interested in very small clusters
in a very large graph. In the seminal work of Andersen et al. (2006), the authors propose an iterative
algorithm, called approximate personalized PageRank (APPR), to solve this running time problem.
They do so by approximating the personalized PageRank vector, while running in time independent
of the size of the entire graph. APPR was developed from an algorithmic (or “theoretical computer
science”) perspective, but it is equivalent to applying a coordinate descent type algorithm to the
linear system (1) with a particular scheme of early stopping (see Section 4 for more details on the
APPR algorithm).

Gleich and Mahoney (2014) show that APPR implicitly solves a constrained `1-regularized `2
objective min-cut problem, drawing connection between APPR and `1-regularized optimization.
Motivated by this, Fountoulakis et al. (2019) proposed the `1-regularized PageRank optimization
problem. Unlike APPR, the solution method for the `1-regularized PageRank optimization problem
is purely optimization-based. It uses an `1 norm regularization to set automatically to be zero all
nodes that are dissimilar to the seed node, thus resulting in a highly sparse output. In this manner,
`1-regularized PageRank can estimate the personalized ranking, while maintaining the most relevant
nodes at the same time. Prior work (Fountoulakis et al., 2019) showed that proximal gradient descent
(ISTA) can solve the `1-regularized PageRank minimization problem with access to only a small
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portion of the entire graph, i.e., without even touching the entire graph, therefore allowing the
method to easily scale to very large-scale graphs (Shun et al., 2016). They also showed that the
optimality conditions characterizing `1-regularized PageRank implies the termination criterion of
APPR, and in particular, the worst-case performance guarantees of both methods are identical.

In this paper, we investigate the statistical performance of `1-regularized PageRank by reformu-
lating the local graph clustering into the problem of sparse support recovery. Here we give a more
precise definition of the `1-regularized PageRank optimization problem from Fountoulakis et al.
(2019) that we consider.

Definition 1 (`1-regularized PageRank) Given a graph G = (V,E), with |V | = n, and a seed
vector s ∈ Rn, the `1-regularized PageRank vector on the graph is defined as

x̂ = arg min
x∈Rn


1

2
x>Qx− αx>s︸ ︷︷ ︸

:=f(x)

+ρα‖Dx‖1

 , (2)

where recall Q = αD + 1−α
2 L, and where ρ > 0 is a user-specified parameter that controls the

amount of the regularization.

Note that our definition of `1-regularized PageRank is consistent with the original formulation (Foun-
toulakis et al., 2019, Equation (8)) by change of variables D1/2x = q. To better understand the
objective function of (2), when the regularization parameter ρ is set to 0, one can easily check that
the re-scaled version of the output solution Dx̂ recovers the original PageRank solution, that is,
Dx̂ = pPR satisfies the stationary equation (1). For the stationary personalized PageRank vector
pPR, mass is concentrated around the seed node, meaning that after ordering, it has long tail for
nodes far away from the seed node. Importantly, we can then efficiently cut this tale using `1 norm
regularization, without even having to compute the long tail.

2.2 Properties

Here, we state some properties of the `1-regularized PageRank vector that will be useful for our
analysis, as well as for gaining insight into the method. The proof of these lemmas can be found in
Appendix C.

First, the following lemma guarantees that the `1-regularized PageRank vector is non-negative.
This result should be natural, because `1-regularized PageRank computes the importance scores of
the nodes relative to the seed node, which cannot be negative.

Lemma 2 (Non-negativity of `1-reg. PageRank.) Let x̂ be the optimal output solution given in
Definition 1. Then x̂ is non-negative, i.e., x̂j ≥ 0 for all j ∈ V .

The next lemma guarantees that the gradient of f at the optimal solution x̂must be non-positive.
Since the `1-regularized PageRank problem is strongly convex (the minimum eigenvalue of Q is
> 0), by KKT condition, this characterization is both necessary and sufficient for x̂ to be the unique
solution. We frequently use this lemma in the proof of our subsequent results.
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Lemma 3 (Optimality condition for `1-reg. PR minimization.) Let support(x̂) := {i ∈ V | x̂i 6=
0} be the support set of the optimal solution. Then

∇if(x̂) = (Qx̂)i − αsi =


−ραdi, if i ∈ support(x̂),

∈ [−ραdi, 0], if i /∈ support(x̂) and i is a neighbor of nonzero node,
0, otherwise.

Finally, the next result shows that the solution path of the `1-regularized PageRank problem is
monotone, meaning that when the output of `1-regularized PageRank is parametrized as a function
of ρ > 0, the trajectory x̂(ρ) changes in a monotonic manner as ρ varies.

Lemma 4 (Monotonicity of `1-reg. PageRank.) Let x̂(ρ) denote the solution for (2) indexed by
ρ > 0. Then, x̂(ρ) is monotone as a function of ρ, i.e., x̂(ρ0) ≤ x̂(ρ1) whenever ρ0 > ρ1, where ≤
is applied component-wise.

Lemma 4 shows that once a node enter the model at some number ρ > 0, then it will never leave the
model thereafter. This result is intuitive since the importance score of the nodes will increase as the
amount of regularization or shrinkage decreases. In Section 5, we will use this monotonic property
in a crucial way to develop an iterative algorithm that approximates the entire solution path.

3. Statistical guarantees under random model

In this section, we study the recovery guarantees for `1-regularized PageRank under a random graph
model. We begin by introducing a random model that we consider for generating a target cluster. In
particular we will assume the graph is generated according to the following model.

Definition 5 (Local random model.) Given a graph G = (V,E) that has n vertices, let K ⊆ V
be a target cluster inside the graph, and let Kc denote the complement of K. If two vertices i and j
belong to K, then we draw an edge between i and j with probability p, independently of all other
edges; if i ∈ K and j ∈ Kc, then we draw an edge with probability q, independently of all other
edges; and otherwise, we allow any (deterministic or random) model to generate edges among
vertices in Kc.

According to Definition 5, the adjacency matrix A ∈ Rn×n is symmetric, and for any i, j ∈ V , we
have that Aij is an independent draw from a Bernoulli distribution with probability p if i, j ∈ K,
and from a Bernoulli distribution with probability q if i ∈ K and j ∈ Kc. For the rest of the graph,
i.e., when both i and j belong to Kc, Aij can be generated from an arbitrary fixed model. Under
this definition, we can also naturally define the population version of the graph, which is the graph
induced by the expected adjacency matrix E [A], where the expectation is taken with respect to the
distribution defined by our random model. That is, the population graph is an undirected graph
G = (V,E) whose adjacency matrix is E [A], where

E [Aij ] =


p if i ∈ K and j ∈ K,
q if i ∈ K and j ∈ Kc,

Any value if i ∈ Kc and j ∈ Kc.

(3)

The expected degree matrix is similarly denoted by E [D] and the expected graph Laplacian is
defined as E [L] = E [D] − E [A]. The model in Definition 5 allows us to formulate the problem
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of local graph clustering as the recovery of a target cluster. Since we are interested in recovering a
single target cluster, it is natural to make assumptions only for nodes in the target cluster and nodes
adjacent to the target cluster, and to leave the interactions between other nodes unspecified.

This random model is fairly general, and it covers several popular random graph models appear-
ing in the literature, including the stochastic block model (SBM) (Holland et al., 1983; Abbe, 2017)
and the planted clustering model (Alon et al., 1998; Arias-Castro and Verzelen, 2014; Chen and Xu,
2016). For instance, if the subgraph with the vertices withinKc is generated from the SBM, then the
entire graph G = (V,E) follows the SBM. On the other hand, if the subgraph of Kc is generated
from the classical Erdős-Rényi model with probability q, the entire graph G = (V,E) follows the
Planted Densest Subgraph (in this case nodes inKc do not belong to any clusters). Hence, the results
we obtain here for our model holds more broadly across these different random graph models.

Before we move on to our results, we need additional piece of notation. We write S ⊆ K
to denote a singleton of the given seed node. Let k = |K| denote the cardinality of the target
cluster. According to our local model, any node in the target cluster has the same expected de-
gree, E [di] = p(k − 1) + q(n − k) for all i ∈ K, which we denote by d̄. For the nodes `
outside K, we write E [d`] to denote its expected degree, where the expectation is taken with re-
spect to a distribution that generates the graph in Kc. Conductance measures the weight of the
edges that are being removed over the volume of the cluster—formally it is defined as the ratio
Cut(S, Sc)/min (Vol(S),Vol(Sc)), where Cut(S, Sc) :=

∑
i∈S,j∈Sc Aij . From Definition 5, the

conductance of the target cluster of the population graph G is given by

Cond = 1− γ, where γ :=
p · (k − 1)

d̄
∈ (0, 1). (4)

Here γ can be viewed as the ratio of the random walker staying insideK under the population graph.
(Note d̄ is the expected degree of the target cluster and p · (k−1) is the expected degree of the target
cluster when restricted to the subgraph within K.)

As in the worst-case analysis of local graph clustering (Andersen et al., 2006; Zhu et al., 2013),
conductance Cond, or equivalently the number γ, will play a crucial role in determining the behavior
of `1-regularized PageRank under the local graph model. In particular, we see that in the extreme
scenario where γ = 1, we have q = 0 indicating perfect separability of the target cluster from the
rest, while for γ = 0, we have p = 0 meaning there is no signal to ever recover. With this definition,
we can also write p(k − 1) = γd̄ and q(n− k) = (1− γ)d̄.

3.1 Recovery of target cluster with bounded false positives

Here, we investigate the performance of `1-regularized PageRank on the graph generated by the
local random model as in Definition 5, and we state two of our main theorems.

Our first main result guarantees full recovery of the target cluster for an appropriate choice of
the regularization parameter. Specifically, for δ > 0, define

ρ(δ) :=

(
1− α
1 + α

)2(1− δ
1 + δ

)2 γp

(1 + δ)d̄2
= O

(γp
d̄2

)
, (5)

where α is the teleportation constant and where p, γ, d̄ are the parameters of the random model
defined in (4). Then, if we solve the convex problem (2) with ρ ≤ ρ(δ), the optimal solution fully
recovers the target cluster K, as long as the seed node is initialized inside K.
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Theorem 6 (Full recovery.) Suppose that p2k ≥ O
(
δ−2 log k

)
. If the regularization parameter

satisfies ρ ≤ ρ(δ) where ρ(δ) is defined in (5), then the solution to Problem (2) fully recovers the
cluster K, i.e.,

K ⊆ support(x̂),

with probability at least 1− 6 exp(−O
(
δ2p2k

)
).1

Our next main result provides an upper bound on the false positives present in the support set of
the `1-regularized PageRank vector. By “false positives”, we mean the nonzero nodes that belong
to Kc. We measure the size of false positives using a notion of volume, where we recall the volume
of a subset of vertices B ⊆ V is given by Vol(B) =

∑
i∈B di.

Theorem 7 (Bounds on false positives.) Suppose the same conditions as Theorem 6. If the regu-
larization parameter satisfies ρ ≥ ρ(δ), then the solution to Problem (2) satisfies the bound

Vol(FP) ≤ Vol(K)
[(1 + α

1− α

)2(1 + δ

1− δ

)3 1

γ2
− 1︸ ︷︷ ︸

=O
(

1
γ2

)
−1

]
, (6)

with probability at least 1 − 6 exp(−O
(
δ2p2k

)
),2 where FP = {i ∈ support(x̂) : i ∈ Kc} is the

collection of false positive nodes.

The proof of Theorem 6 and Theorem 7 is given in Appendix B.1 and Appendix B.2, respectively.
To give a brief sketch of the proof, we first consider the following reduced version of the `1-

regularized PageRank problem, (see Appendix A.3 for details on this)

min
x∈Rn

{
1

2
x>Qx− αx>s + ρα‖Dx‖1 : xKc = 0

}
. (7)

The reduced problem (7) is introduced because it allows us to analyze the properties of the solution
while restricting the matrices Q and D to the nodes in K only. Note that when there are no false
positives, the optimal solution (2) coincides with the solution to Problem (7). More generally, we
can prove that the support set of x̂ is always bigger than the support set of the solution to (7).
Furthermore, we can show that when ρ ≤ ρ(δ), the solution to (7) is strictly positive over K.
Putting these together then establishes Theorem 6. On the other hand, using the optimality condition
Lemma 3, we can obtain an upper bound on the volume of the optimal solution x̂. Since, by
Theorem 6, x̂ entirely recovers the target cluster K, the errors in the support set of x̂ are solely due
to the presence of false positives. Combining the two results, we can get an upper bound on the
false positives, therefore proving Theorem 7.

The results of Theorem 6 and Theorem 7 show several regimes where `1-regularized PageRank
can fully recover the target cluster with nonvanishing probability. In particular, when p = O (1),
the size of the target cluster, k, is required to be larger than O (log k), which includes the constant
size k = O (1). This is often the regime of interest for local graph clustering, where the goal is to

1. More precisely, we assume (1 − δ)p2k ≥ c−1
0 δ−2 log k for a fixed constant c0 > 0. Then with probability at least

1− 6e−c0δ
2(1−δ)p2k, the statement in the theorem holds.

2. The same probability bound holds as in Theorem 6.
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find small- and meso-scale clusters in massive graphs (Leskovec et al., 2009, 2010). In addition,
Theorem 6 indicates that if γ is small, we need to set ρ to be small to recover the entire cluster.
Intuitively, more mass will leak out to Kc for small γ, so we need to run more steps of random walk
(equivalently a smaller value of ρ in our optimization framework) to find the right cluster. However,
this means that the `1-regularized PageRank vector will also pick up many nonzero nodes in Kc,
resulting in many false positives in the support set. Indeed, Theorem 7 shows that the volume of
false positives grows quadratically as 1/γ, so we need γ to be well-bounded to get a meaningful
recovery from local clustering. In the case of p = O (1) , k = O (1), this amounts to requiring that
q = O

(
1
n

)
in order for the recovered cluster to keep high mass inside K.

We remark several other comments regarding the results. First, we suspect the current bound we
obtain in (6) may not be tight with respect to α and other constants, and especially the factor (1+α

1−α)2

may be an artifact of our proof. Studying the lower bound on the performance of the method, as
well as obtaining an improved bound on false positives, is therefore an interesting future direction
to pursue. Furthermore, on the basis of our empirical results, `1-regularized PageRank performs well
across a broad range of α values, and we have not seen much difference in terms of performance
among different α’s. The role of α in `1-regularized PageRank is closely tied to the regularization
parameter ρ, and we leave the question of selecting optimal α for future work.

3.2 Exact recovery of target cluster with no false positives

Next, we study the scenarios under which `1-regularized PageRank can exhibit a stronger recovery
guarantee. Specifically, under some additional conditions, we show that the support set of the
optimal solution (2) identifies the target cluster exactly, without making any false positives. For
this stronger exact recovery result, we require the following assumption about the parameters of
the model.

Assumption 1 We assume p = O (1) , k = O (1), i.e., the within-cluster connectivity and the size
of the target cluster do not scale with the size of the graph n. Also, we assume q = c

n for a fixed
numerical constant c > 0.

As we noted previously, the setting k = O (1) is often the case of interest for local graph clustering,
where we would like to identify small- and medium-scale structure in large graphs (Leskovec et al.,
2009, 2010). In this case, Assumption 1 requires p = O (1), so that the underlying “signal” of the
problem does not vanish as the size of the graph grows, n → ∞. As discussed earlier, this means
q must also scale as O

(
n−1

)
for the local clustering algorithm to find the target without making

many false positives.
Now we turn to the statement of exact recovery guarantees for `1-regularized PageRank when

applied to the noisy graph generated from Definition 5. In particular, the fact that q = O
(
n−1

)
from Assumption 1 allows that with nonvanishing probability there is a node in the target cluster
that is solely connected to K. This node will serve as a “good” seed node input in the `1-regularized
PageRank. With this choice of seed node, we now give conditions under which the optimal solution
x̂ has no false positives with nonvanishing probability.

Theorem 8 (No false positives.) Suppose the same conditions as Theorem 6. Assume that Assump-
tion 1 holds and that the size of the target cluster k is ≥ 2(c+ 3). Fix δ ≤ 0.1. If the regularization
parameter satisfies ρ ≥ ρ(δ), then there is a good starting node in K such that the solution to
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Problem (2) with that node as a seed node and with teleportation parameter α ∈ [0.1, 0.9] satisfies

support(x̂) ⊆ K,

with probability at least 1− 6 exp(−O
(
δ2p2k

)
)− (1− exp(−1.5c))k −O

(
n−1

)
,3 as long as

C(0.5c+ 1)

γp
= O

(
1

γp

)
< dj , (8)

for all node j ∈ Kc adjacent to K, where C > 0 is a universal constant.

The proof is given in Appendix B.3.
The proof of Theorem 8 proceeds by showing that under the conditions of the theorem, the

solution to the reduced problem (7) obeys the optimality condition for the full-dimensional `1-
regularized PageRank problem (Lemma 3). To do so, we use concentration inequalities to bound
the difference between the solution to (7) and the `1-regularized PageRank vector on the population
graph G = (V,E) (see Appendix A.2). Once we establish the equivalence of the solutions for both
problems, the result follows since by construction the support set of the solution to (7) is contained
in the target cluster.

In the statement of Theorem 8, we required the conditions α ∈ [0.1, 0.9] and δ ≤ 0.1 mainly
to avoid overly complicated constants; while this simplifies the presentation of the theorem, it is
not difficult to show that a similar result holds more generally. Importantly, when combined with
Theorem 6 (full recovery of the cluster), our result Theorem 8 immediately establishes that `1-
regularized PageRank recovers the target cluster exactly, even when the target cluster is constant-
sized. We state this result informally in the following, which requires no proof.

Corollary 9 (Exact recovery; informal statement.) Under the same assumptions as Theorem 6
and Theorem 8, there is a good starting node inK such that `1-regularized PageRank parameterized
with that node as a seed node satisfies

support(x̂) = K,

with nonvanishing probability.

It should be noted that a sort of condition like (8) about the realized degree seems necessary in
order that the `1-regularized PageRank has no false positives. The optimization program (2) assigns
less weights to low degree nodes in the `1 penalty, so any nodes adjacent to K will become active
unless the `1-regularized PageRank penalizes them with nontrivial weights. Unlike Theorem 6 and
Theorem 7, condition (8) rules out some specific models to which Theorem 8 can be applied. For
example, planted clustering model with p = O (1) and q = O (1/n) does not satisfy this condition
because the degrees in Kc do not concentrate. For the stochastic block model, this condition is
still satisfied if nodes adjacent to the target cluster belong to the clusters with degree larger than
O (1/γp) = O (1). In practice, condition (8) may not be always applicable for every node adjacent
to K, in which case the nodes that violate this condition may enter the model as false positives. We
require the condition here though, since our model is essentially local and we do not have control
outside K beyond its neighbors.

3. More precisely, we assume (1 − δ)p2k ≥ c−1
0 δ−2 log k for a fixed constant c0 > 0. Then with probability at least

1− 6e−c0δ
2(1−δ)pk − (1− exp(−1.5c))k −O

(
n−1

)
, the statement in the theorem holds.
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3.3 Comparison with existing results

The local graph clustering problem has been relatively well-studied in the area of theoretical com-
puter science, and the existing works largely focus on the worst-case guarantees. We now compare
our results through the random graph model with the current known state-of-the-art worst-case re-
sults, given by Zhu et al. (2013).

First, the main result Theorem 1 of Zhu et al. (2013), when applied to our population graph G,
implies that Vol(FP),Vol(FN) ≤ Vol(K)·O ((1− γ) log k), as long as Gap = O (1/((1− γ) log k)) ≥
O (1). When γ = O (1) ∈ (0, 1), our Theorem 6 states that if pk2 ≥ O (log k), the output
of the `1-regularized PageRank model does not contain any false negative. This cannot be de-
duced from Zhu et al. (2013). In addition, our general bound on false positive, i.e., Vol(FP) ≤
Vol(K) · (O

(
1/γ2

)
− 1) in Theorem 7, is better than the worst-case bound of Zhu et al. (2013)

in the regime of large γ, which is typically the case for many interesting scenarios. For instance,
when the expected target conductance Cond = 1 − γ is small and fixed, the bound of the worst-
case result degrades as the size of the target cluster k increases, whereas our result is improved by
increasing the probability bound. In the regime of p = O (1) , q = O (1/n), and k = O (1) (hence
γ = O (1)), our Theorem 8 shows that the output even contains no false positive. In this particular
case, the strong separability (p = O (1) , q = O (1/n)) corresponds to a constant signal-to-noise
ratio, since even for q = O (1/n) there are still a constant amount of edges outgoing from the target
cluster, while the internal edges inside the target cluster is also constant. Although in practice the
exact recovery of the target cluster may be a strong requirement, nevertheless, for real world clus-
ters with high signal-to-noise ratio, `1-regularized PageRank can still reconstruct the ground truth
clusters more or less exactly (see, for instance, Section 6.2).

Finally we briefly give a comparison of our theoretical results with the information theoretic
results of Chen and Xu (2016) in the special case of planted clustering model. To ease and simplify
the comparison, we only consider the case where p = O(1) and q = O(log n/n). In this case,
Chen and Xu (2016, Theorem 2.5) implies that a solution to a SDP achieves exact recovery as long
as k ≥ O(log n), whereas our Theorem 6 and 7 suggest that in the same regime `1-regularized
PageRank fully recovers the target cluster while picking up a constant proportion of false positives.
Importantly, `1-regularized PageRank is essentially a local method, while Chen and Xu (2016)’s
SDP is a global method that explores the entire graph.

4. Equivalence between `1-regularized PageRank and APPR

In this section, we illuminate a deep connection between approximate personalized PageRank
(APPR) and `1-regularized PageRank, and based on this result, we provide novel statistical re-
coverability guarantees for APPR when the graph is generated from the random graph model.

Approximate personalized PageRank (APPR), first studied in Andersen et al. (2006) and fol-
lowed up by a number of subsequent works, is at the heart of local graph clustering whose central
idea is to approximate the original PageRank vector without ever touching the entire graph. Gleich
and Mahoney (2014) show that APPR implicitly corresponds to adding a `1 norm regularization
term to the `2 norm formulation of a min-cut linear program, explaining why APPR gives rise to
very sparse solutions. Fountoulakis et al. (2019) further observed that the APPR algorithm is equiv-
alent to the iterative coordinate descent solver applied to the PageRank linear system (1) with a
specifically designed termination criterion. In our notation, we can write the algorithm in a simple
and compact way:
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• Given a parameter ρ > 0, initialize x(0) = 0;

• For each k ≥ 0, while ‖D−1∇f(x(k))‖∞ ≥ ρα, iterate the steps4

{
Choose an i ∈ [n] such that∇if(x(k)) ≤ −ραdi;
Update x(k+1)

i = x
(k)
i − d

−1
i ∇if(x(k)).

(9)

• Output x(k?) =: xAPPR.

The output of the APPR algorithm is the personalized score vector xAPPR that efficiently approx-
imates the original PageRank. Note that the updating formula (9) requires one evaluation of the
gradient which can be done by accessing only neighboring nodes of the selected entry i. As a
result the APPR algorithm can solve the PageRank equation (1) extremely efficient; and in partic-
ular the running time of the algorithm depends on the size of the output rather than the size of the
whole graph.

APPR was developed purely from an algorithmic perspective and the output of the algorithm
depends on which coordinate i is chosen at every iteration (see the updating step (9)). This property,
while allowing the algorithm to enjoy the locality property and resulting in the output vector that
is highly sparse, can lead to different results of local clustering in principle (albeit the results may
look more or less similar). On the other hand, `1-regularized PageRank eliminates this issue by
decoupling the locality/sparsity of the local clustering output vector from the algorithmic issue
of running in time independent of the size of the graph. In particular, any convex optimization
algorithm that exploits the locality of the problem, such as proximal gradient descent (ISTA), can be
employed to minimize the `1-regularized objective function (2) while touching only the neighbors
of the current non-zero nodes. Therefore the formulation via `1-regularized PageRank achieves
two objectives of the graph processing that are desirable for local graph clustering, i.e., both the
locality/sparsity of the solution and the “strongly local” running time of the algorithm.

It is shown in Fountoulakis et al. (2019) that `1-regularized PageRank can be viewed as a varia-
tional formulation of APPR, in the sense that the optimality condition for the `1-regularized objec-
tive function (Lemma 3) implies the termination criterion of APPR, i.e., ‖D−1∇f(x(k))‖∞ < ρα.
In this work, we strengthen the connection between the output of APPR and the output of `1-
regularized PageRank. In particular, we show that with appropriate choices of the regularization
parameters, both approaches become equivalent in terms of cluster recovery.

Theorem 10 (Equivalence between `1-reg. PR and APPR.) Let x̂(ρ) be the `1-regularized PageR-
ank vector (2), let xAPPR(ρ) be the output of APPR (9) at the regularization parameter ρ. Then for
any ρ0 > 0,

support(x̂(ρ0)) ⊆ support(xAPPR(ρ0)) ⊆ support(x̂((1− α) · ρ0/2)).

That is, for any parameter ρ = ρ0 > 0, the support set of the output of APPR is, respectively, a
superset and a subset of that of `1-regularized PageRank at ρ = ρ0 and ρ = (1− α) · ρ0/2.

4. It can be shown that if APPR is initialized at x(0) = 0 then∇f(x(k)) ≤ 0 for all k ≥ 0. In this case, the termination
criterion of APPR reads as∇if(x(k)) > −ραdi for all i ∈ [n].
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The proof is given in Appendix B.4.
Theorem 10 establishes rather a stronger equivalence between the `1-regularized PageRank and

the APPR approaches than was established in the prior work of Fountoulakis et al. (2019). Impor-
tantly, using this result, various statistical guarantees for the output cluster of APPR directly follow
from the results we establish for the output of `1-regularized PageRank. While analyzing APPR’s
output in the random graph setting involves technical challenges due to its algorithmic nature, the
fact that the output cluster of `1-regularized PageRank is given by the optimization solution allows
us to analyze statistical properties more easily. In the previous section (Section 3), we stuided the
recovery guarantees for `1-regularized PageRank under a random graph model. In the next section
we will show how this guarantee can be transferred to the output cluster of APPR using Theorem 10.

4.1 Approximate personalized PageRank on random graph

One advantage of variational formulation of local graph clustering, via `1-regularized convex pro-
gram (2), is that it allows tractable analysis of the method in random graphs. Given the connection
between `1-regularized PageRank and APPR established in Theorem 10, this further allows us to
obtain the statistical guarantees of the APPR algorithm under the random graph model. We formally
state this result in the following theorem, which is a simple consequence of Theorem 10, in combi-
nation with those obtained in Section 3.1 and 3.2. (We write FP(xAPPR) = {i ∈ support(xAPPR) :
i ∈ Kc} to denote the collection of false positive nodes in the APPR’s output.)

Theorem 11 (Recovery guarantees for APPR.) Consider the APPR algorithm given in (9) with
parameter ρ = ρ(δ). Under the same conditions as Theorem 6, the output vector xAPPR(ρ(δ))
satisfies

K ⊆ support(xAPPR) and Vol(FP(xAPPR)) ≤ Vol(K)

[
O
(

1

γ2

)
− 1

]
,

with nonvanishing probability. Furthermore, under the same conditions as Theorem 8, there is a
good starting node in K such that the APPR’s output vector parameterized with that node as a seed
node satisfies

support(xAPPR) = K,

with nonvanishing probability, as long as

O
(

1

γp

)
< dj ,

for all node j ∈ Kc adjacent to K.

The proof is given in Appendix B.5.

5. Stagewise PageRank and solution paths

The `1-regularized PageRank problem (2) is convex and there are numerous ways to solve it using
convex optimization techniques. In Fountoulakis et al. (2019), the authors apply proximal gradient
descent (ISTA) and show that the algorithm enjoys the locality property, meaning that the algorithm
touches at most the optimal support set and its neighbors, while inheriting the fast convergence
property of the proximal gradient descent. Optimization algorithms typically solve the problem
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at a single value of ρ, or a sequence of multiple values. On the other hand, “path algorithms”
are designed to solve the problem for all values of a regularization parameter ρ ∈ (0,∞], or a
subset of it when terminated early. This is more desirable when we need solutions over a list of
parameter values.

The idea of designing path algorithms has already gained much attention in the sparse regres-
sion literature, first pioneered by Efron et al. (2004) and further developed by Zou et al. (2007);
Hastie et al. (2004); Arnold and Tibshirani (2016). This has rendered the exploration of full re-
gression coefficient paths relatively inexpensive. Unlike regression setting, however, this type of
path algorithm has been less studied in the setting of local graph clustering (Gleich and Kloster,
2016). Motivated by the path algorithms developed in the sparse regression setting, we consider the
following coordinate-wise algorithm for local graph clustering:

• Initialize x(0) = 0;

• For each k ≥ 0, iterate the steps{
Choose an i ∈ [n] such that d−1

i ∇if(x(k)) ≤ 0 is the smallest among [n];

Update x(k+1)
i = x

(k)
i + d−1

i η.
(10)

• Output a sequence {x(0), x(1), . . .}.

The two main features of this algorithm are: 1) we greedily select the coordinate i at each iteration
that maximizes the magnitude of gradient, and 2) we update the current iterate by adding a small
step size η to the ith coordinate. This conservative update of the variable counterbalances the greedy
selection step, thus making the algorithm more stable.

The above algorithm is called the “stagewise” algorithm, and in fact it has been widely studied
by many authors (Efron et al., 2004; Hastie et al., 2007; Rosset et al., 2004; Rosset and Zhu, 2007;
Zhao and Yu, 2007; Tibshirani, 2015). The stagewise algorithm is known to have implicit regular-
ization effect closely related to `1 norm regularization (Tibshirani, 2015), and in particular, if each
component of the `1-regularized solution has a monotone path, then the stagewise path exactly coin-
cides with that of `1 regularization, for η → 0 (Efron et al., 2004; Rosset et al., 2004). Recalling our
earlier result on the monotone path property of `1-regularized PageRank (Lemma 4), the following
result is then immediate.

Corollary 12 The output sequence of stagewise algorithm described in (10) converges to the `1-
regularized PageRank solution path as the step size goes to 0, i.e., η → 0.

Therefore, the stagewise algorithm allows us to provably explore the entire `1-regularization path
via a single run of simple iterative steps. Another advantage of the stagewise algorithm is that it
enjoys the locality property, in that the algorithm only touches the chosen nodes and its neighbors
as it progresses. This is obvious from the update step of (10) and the expression of the gradient
∇if(x). Thus, when terminated early, the algorithm produces an approximate and partial solution
path without making access to the entire graph.

For the `1-regularized PageRank method, the parameter ρ controls the extent to which the ran-
dom walk has moved farther from the seed, so different values of ρ reveal various scales of local
clustering structure around the seed node. Therefore, in the setting of local graph clustering, the
stagewise algorithm allows us to provably and efficiently track the evolution of a `1-regularized

14



STATISTICAL GUARANTEES FOR LOCAL GRAPH CLUSTERING

PageRank diffusion and better understand the local cluster properties of the graph. This is well-
suited for the purpose of exploratory graph analysis, and the idea of using path algorithms for ex-
ploring the graph has been also studied in Gleich and Kloster (2016). In addition to the exploratory
analysis, the stagewise algorithm can be a competitive algorithm to find the target cluster if the
size of the target cluster is small and/or medium and one needs a fine scale resolution of the solu-
tion path. However, when the size of the target cluster is quite large, using optimization algorithms
with a coarse grid of regularization parameter may lead to better computational savings without
exploring the entire solution path from scratch. Overall, the stagewise algorithm must be used in a
complementary way to the optimization algorithms that directly solve (2). We also refer the readers
to Tibshirani (2015) for comprehensive study of the stagewise algorithm for general sparse model-
ing problem.

In Figure 1, we compare the actual solution path to the stagewise algorithm paths for different
step sizes. We generate data from the stochastic block model with p = 0.5, q = 0.002 and r = 50.
Each cluster has 20 nodes. Figure 1 shows the `1-regularization path and stagewise component paths
for one particular draw from the stochastic block model. Here we only show the solution paths for
nodes in the target cluster without seed node, among n = 1000 nodes (each color line corresponds to
different nodes in the target cluster). Note that when the step size is small, η = 0.0001, the stagewise
path appears to closely match to the `1-regularization path; for moderate step size, η = 0.0005, the
stagewise path exhibits some jagged pattern but nevertheless accurately approximates the optimal
path; and for relatively large step size, η = 0.001, while the jagged pattern becomes more evident
visually, it is clear that the overall trend still coincides well with that of the `1 solution path.

6. Numerical evaluation

In this section, we provide a detailed numerical evaluation, to illustrate the performance of `1-
regularized PageRank on synthetic and real data. We have conducted a comprehensive experi-
ments to demonstrate the state-of-the-art performance of the method across a wide range of real
graphs, which has not been investigated at this level of extent in the prior works. To measure
the quality of the recovered cluster, we define Precision and Recall as Vol(TP)/Vol(support(x̂))
and Vol(TP)/Vol(K), respectively. The F1score is the harmonic mean of precision and recall,(
2/
(
Precision−1 + Recall−1

))
. We will also make use of conductance, where recall Cond =

Cut(S, Sc)/min (Vol(S),Vol(Sc)). The lower the conductance value is, the better the quality of
the cluster is. For our experiments, we solve problem (2) using a proximal coordinate descent algo-
rithm, which enjoys both the “strongly local” running time property (running time depends on the
size of cluster rather than the entire graph) as well as linear convergence (Fountoulakis et al., 2019).
If we further need to explore the entire solution path of (2), the stagewise algorithm with small step
size is used.

6.1 Simulated data

In Figure 2 we demonstrate the performance of the stagewise algorithm (10) with η = 10−4 as γ
increases. For the experiments in Figure 2, we fix the teleportation parameter α = 0.1. We generate
graphs from the stochastic block model which consists of 10 clusters, each of which has 20 nodes
and only one of which is the target cluster K. We use the same parameters p and q across different
clusters to generate edges within and between clusters. Here we set p = 0.5 and q is varying in
order to generate various γ as is shown in Figure 2. The results are averaged over 30 trials. For this
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(a) `1-reg. path
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(b) Stage. path η = 10−4
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(c) Stage. path η = 5 · 10−3
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(d) Stage. path η = 10−3

Figure 1: Comparison of `1 regularization path and stagewise paths for different step sizes η. The
profiles are shown only for nodes in K\S among n = 1000 nodes. Each color in the plot
corresponds to different nodes. The x-axis is the `1 norm of the current estimates. For
stagewise, the results are obtained with 7706, 1527, and 764 iterations respectively.
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experiment we could use `1-regularized PageRank or APPR, but all these methods are similar with
stagewise having the benefit of not needing to choose a regularization parameter. In particular, in
Section 5 we show that for small enough step size η, the stagewise algorithm explores the piece-
wise constant solution path of the `1-regularized PageRank problem (see Corollory 12). Therefore,
Figure 2 reflects the performance of `1-regularized PageRank as well. Moreover, in Theorem 10
we show an equivalence result between APPR and `1-regularized PageRank, and later on in Figure
4 we illustrate this equivalence in practice on real data as well. Therefore, Figure 2 reflects the
approximate performance of APPR as well.

There are two subfigures in Figure 2. In Subfigure 2(a), we illustrate the performance when
the stagewise algorithm touches at most 3/4 of the overall nodes in the graph. After this threshold,
the algorithm is terminated. In Subfigure 2(b), we illustrate the performance when the stagewise
algorithm touches at most 1/2 of the nodes. We introduce this threshold for two reasons. First,
in local graph clustering, it does not make sense to explore more than half of the graph. One
could do this of course, but if one is willing to touch more than half of the graph, they could
as well have utilized non-local algorithms. Second, we do this to illustrate the importance of not
letting the algorithm to explore a huge part of the graph if the stagewise algorithm (or `1-regularized
PageRank) is combined with metrics such as conductance. If one does this, then they take the
risk of finding a larger or a smaller cluster that has smaller conductance than the target cluster
but is very different than the target cluster, thus resulting in small F1score. In each subfigure,
we illustrate the performance of the stagewise algorithm in three cases. The first (red line with
rhombs, “Stagewise, best F1score”) is a best-case scenario where we select the solution with the
best F1score out of all the solutions that are produced by the stagewise algorithm (10). The second
scenario (blue line with squares, “Stagewise, minimum conductance”) shows a more realistic case
where we select the solution with minimum conductance out of all the solutions that are produced
by the stagewise algorithm. The third scenario (orange line with circles, “Stagewise + sweep-cut”)
also shows a realistic case where at each iteration of the stagewise algorithm we perform sweep-cut
to find a cluster of small conductance and out of all iterations we return the cluster with the smallest
conductance. The sweep cut rounding procedure is a common technique to post-process the output
of local graph clustering methods—for details, we refer the reader to one of these papers (Andersen
et al., 2006; Zhu et al., 2013).

In both subfigures, the F1score for the “Stagewise, best F1score” scenario scales linearly as
a function of γ. On the other hand, in Subfigure 2(a) the scenario where we select the solution
with minimum conductance scales sub-linearly as a function of γ until a phase-transition around
γ ≈ 0.75 after which, the scenario of minimum conductance matches the best-case scenario. In
Subfigure 2(a) we get similar results for the “Stagewise + sweep-cut” scenario, although the gap with
the best-case scenario becomes smaller. In Subfigure 2(b) we see that the gap between “Stagewise,
best F1score” scenario and the other two scenaria is much smaller. As we discussed above, the gap
closes because in Subfigure 2(b) we do not allow the stagewise algorithm to explore more than half
of the nodes in the graph, and the method avoids returning clusters of small conductance but low
F1score.

In Figure 3 we demonstrate a much more detailed view of the performance of the stagewise
algorithm for four representative γ’s. More precisely, we show that for large and medium values
of γ there exists a solution in the solution path of the `1-regularized PageRank, which is found
by the stagewise algorithm, and it recovers the target cluster. While for small γ < 0.5, there is no
solution in the solution path of the `1-regularized PageRank that recovers the target cluster with high
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(a) F1score against γ. Stagewise terminated when
3/4 of the overall nodes are nonzero.
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(b) F1score against γ. Stagewise terminated when
1/2 of the overall nodes are nonzero.

Figure 2: In this figure we demonstrate performance (F1score) of the stagewise algorithm (10) as
γ increases. We demonstrate three scenaria. In the first scenario (red line with rhombs,
“Stagewise, best F1score”) we select the solution with the best F1score out of all the
solutions that are produced by the stagewise algorithm. In the second scenario (blue line
with squares, “Stagewise, minimum conductance”) we select the solution with minimum
conductance out of all the solutions that are produced by the stagewise algorithm. In the
third scenario (orange line with circles, “Stagewise + sweep-cut”) at each iteration of the
stagewise algorithm we perform sweep-cut to find a cluster of small conductance and out
of all iterations we return the cluster with the smallest conductance.
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accuracy. For Figure 3 we use the same experiment setting as in Figure 2. For large γ, Figure 3(a),
we observe that when the stagewise algorithm recovers about 20 nodes, then these nodes correspond
to very high precision and recall, and as the number of nodes in the solution increases then precision
decreases. We also observe that conductance of the recovered cluster is a good metric for finding
the target cluster. Meaning that we will find the target cluster with high precision and recall if out
of all solutions on the path we choose the one with minimum conductance. As γ gets smaller the
minimum conductance does not relate to the target cluster. However, it is clear from Figures 3(b)
and 3(c) that stagewise algorithm with minimum conductance still finds the target cluster K with
good accuracy if the algorithm is terminated early. Finally, in Figure 3(d) we demonstrate a case
where γ is small and conductance of solution fails to relate to the target cluster and there is no
output of the stagewise algorithm that recovers the target cluster accurately.

6.2 Real data experiments

Next, we test the performance of local graph clustering methods using biology networks and social
networks. All the graphs that we consider are unweighted and undirected. For a summary of the
datasets see Table 1. All datasets that are used come with suggested ground-truth clusters for social
networks and with a gold standard for biology networks. However, we filter the given ground-
truth clusters by measuring their conductance values. In particular, we keep only the ground-truth
clusters that have conductance value less than or equal to 0.6. This means we keep the clusters that
the number of edges that cross the cluster is 60% of the volume of the cluster. This way we obtain
a wide range of clusters from “good” (small conductance) to noisy (large conductance, i.e., close
to 0.6).

Table 1: Summary of datasets

dataset number of nodes number of edges description

Sfld 232 15570 pairwise similarities of blasted sequences of proteins
PPI-mips 1096 13221 protein-protein interaction network

FB-Johns55 5157 186572 Facebook social network for Johns Hopkins University
Colgate88 3482 155043 Facebook social network for Colgate University

Orkut 3072441 117185083 Large-scale on-line social network

6.2.1 DATASETS

Sfld. This dataset contains pairwise similarities of blasted sequences of 232 proteins belonging to
the amidohydrolase superfamily (Brown et al., 2006). There are 232 nodes and 31140 edges in this
graph. A gold standard is provided describing families within the given superfamily. According
to the gold standard the amidrohydrolase superfamily contains 29 families/clusters. However, after
filtering the families we find that only two have conductance value less than 0.6. (This should not
be surprising, given that the graph is so dense.) In Table 2 we present properties of the two clusters
that correspond to urease.0 and AMP amidrohydrolase superfamilies.
PPI-mips. This dataset is a protein-protein interaction graph of mammalian species (Pagel et al.,
2004). There are 1096 nodes and 26442 edges in this graph. In Table 2 we provide all suggested
ground-truth clusters that have conductance less than 0.6.
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(b) γ = 0.86
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(c) γ = 0.65
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(d) γ = 0.44

Figure 3: In Figures 3(a), 3(b) and 3(c) we illustrate that for large and medium values of γ, the
stagewise algorithm recovers the target cluster. While for small γ in Figure 3(d), the
stagewise algorithm k does not recover the target cluster with high accuracy. The x-axis
gives the number of nonzero nodes in the solution of the stagewise. The vertical line
indicates the cardinality of the target cluster (k = 20).
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Table 2: “Ground truth” clusters for the Sfld and PPI-mips datasets. Full details about the datasets
can be found in the original paper (Pagel et al., 2004). In this table we report the volume,
the number of nodes and the conductance of each ground truth cluster.

dataset feature feature (short name) volume nodes conductance

Sfld
urease.0 urease 16209 100 0.42
AMP AMP 1721 28 0.56

PPI-mips

Actin-associated-proteins Actin 870 24 0.36
Anaphase-promoting-complex Anaphase 165 11 0.33
Cdc28p-complexes Cdc28p 135 10 0.33
Coat-complexes Coat 676 19 0.49
cytoplasmic-ribosomal-large-subunit ct-large 9720 81 0.33
cytoplasmic-ribosomal-small-subunit ct-small 4788 57 0.33
F0-F1-ATP-synthase F0-F1-ATP 315 15 0.33
H+-transporting-ATPase-vacuolar H+ 315 15 0.33
mitochondrial-ribosomal-large-subunit mc-large 1488 32 0.33
mitochondrial-ribosomal-small-subunit mc-small 273 14 0.33
Mitochondrial-translation-complexes mc-complex 281 12 0.53
mRNA-splicing mRNA 1861 33 0.43
Nuclear-pore-complex Nuclear 614 18 0.50
RNA-polymerase-II-holoenzyme RNA 1487 29 0.45
Spindle-pole-body Spindle 981 22 0.52
TRAPP-complex TRAPP 135 10 0.33
tRNA-splicing tRNA 165 11 0.33
19-22S-regulator 19-22S 459 18 0.33
20S-proteasome 20S 315 15 0.33

FB-Johns55. This graph is a Facebook anonymized dataset on a particular day in September 2005
for a student social network at John Hopkins university. The graph is unweighted and it represents
“friendship” ties. The data form a subset of the Facebook100 data-set from Traud et al. (2011,
2012). This graph has 5157 nodes and 186572 edges. This dataset comes along with 6 features,
i.e., second major, high school, gender, dorm, major index and year. We construct “ground truth”
clusters by using the features for each node. In particular, we consider nodes with the same value of
a feature to be a cluster, e.g., students of year 2009. As analyzed in the original paper that introduced
these datasets (Traud et al., 2012), for FB-Johns55 the year and major index features give non-trivial
“assortativity coefficients”, which is a “local measure of homophily”. This agrees with the ground
truth clusters we find after applying our filtering technique. The clusters per graph are shown in
Table 3.

Colgate88. This graph is constructed similarly to the FB-Johns55 graph but for Colgate University.
We apply the same filtering techniques as for FB-Johns55 and we present the filtered clusters in
Table 3. There are 3482 nodes and 155043 edges in this graph.

Orkut. Orkut is a free on-line social network where users form friendship each other. Orkut also
allows users form a group which other members can then join. This dataset has 3072441 nodes and
117185083 edges. It can be downloaded from Leskovec and Krevl (2014). This dataset comes with
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Table 3: “Ground truth” clusters for the FB-Johns55 and Colgate88 datasets.

dataset feature volume nodes conductance

FB-Johns55

year 2006 81893 845 0.54
year 2007 89021 842 0.49
year 2008 82934 926 0.39
year 2009 33059 910 0.21

major index 217 10697 201 0.26
second major 0 178034 2844 0.51

dorm 0 137166 2121 0.52
gender 1 181656 2144 0.46
gender 2 173524 2598 0.48

Colgate88

year 2004 14888 230 0.54
year 2005 50643 501 0.50
year 2006 62065 557 0.48
year 2007 68382 589 0.41
year 2008 62430 641 0.29
year 2009 35379 641 0.11

secondMajor 0 175239 2107 0.54
dorm 0 100414 1157 0.53

gender 1 162759 1695 0.48
gender 2 123724 1485 0.55

5000 ground truth communities, which we filter by maintaining the clusters with conductance less
than or equal to 0.6. Out of the 5000 communities only 282 pass our filtering test.

The above real graphs may not be generated from the random model that we consider in Sec-
tion 3, nonetheless, we have evaluated the method to illustrate the scenarios that are not just ide-
alized. Moreover, the Facebook social networks and the biology networks are expected to exhibit
homophily structure for some ground truth clusters that are highly inter-connected relative to the
rest of the graph. These block-structured networks belong to a special class of networks and we
believe that random graph models, such as stochastic block model, can closely approximate it.

6.2.2 METHODS

We compare the performance of `1-regularized PageRank with state-of-the-art local graph clustering
algorithms. There are two categories of local graph clustering methods: local spectral (Andersen
et al., 2006) and it’s follow-up work (Zhu et al., 2013); and local flow-based methods (Lang and
Rao, 2004; Andersen and Lang, 2008; Orecchia and Zhu, 2014; Veldt et al., 2016).

Approximate personalized PageRank (APPR): In Andersen et al. (2006) and Zhu et al. (2013) an
approximate personalized PageRank (APPR) algorithm is proposed, where the personalized PageR-
ank linear system is solved approximately using a local diffusion process. Both papers study nearly
identical algorithms, with the latter paper giving better theoretical guarantees based on a stronger
assumption. In particular, the authors in Zhu et al. (2013) assume that the internal connectivity of the
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target cluster (minimum conductance of the induced subgraph for the target cluster) is quadratically
stronger than the conductance of the target cluster.

SimpleLocal (SL): Out of the three flow-based methods, FlowImprove, LocalFlowImprove and
SimpleLocal in Andersen and Lang (2008); Orecchia and Zhu (2014); Veldt et al. (2016), respec-
tively, SimpleLocal Veldt et al. (2016) simplifies and generalizes the methods proposed in Andersen
and Lang (2008); Orecchia and Zhu (2014), while having similar theoretical and practical guaran-
tees in terms of quality of the output. Depending on the parameter tuning of SimpleLocal, one can
obtain FlowImprove and one of the two variants of LocalFlowImprove. In particular, there are two
variants of LocalFlowImprove in Orecchia and Zhu (2014). An “exact” and an “inexact” variant.
The “exact” variant is equivalent to SimpleLocal. The only thing that differs is how one solves the
sub-problems at each iteration, see Section 8 in Fountoulakis et al. (2020a) for details. In the second
variant, each sub-problem is solved using Dinic’s algorithm with early termination. This version has
slightly worse guarantees in terms of conductance than SimpleLocal, although in practice we expect
both methods to perform similarly. We expect that in practice the differences between the methods
will be merely computational. Also, even the computational differences are expected to be minor
since all methods have strongly-local running time. Since there exists no implementation of the
inexact variant of the LocalFlowImprove algorithm we choose not to implement it.

Therefore, we will only use SimpleLocal in our experiments, and we will use different parameter
tuning such that we obtain performance for a wide-range of methods. Moreover, SimpleLocal
requires initialization with a set of seed nodes that ideally has some overlap with the target cluster.
Therefore, in this paper, we will use SimpleLocal with three different initialization techniques.
Below we comment on why we choose the following inputs to SimpleLocal.

1. `1-reg. PR-SL: SimpleLocal using the output of `1-reg. PR as input.

2. BFS-SL: We will initialize SimpleLocal using the output of a breadth-first-search-type (BFS)
algorithm starting from a given seed node. The algorithm that is used for initialization of
SimpleLocal is shown in Algorithm 1. Details about how we use this algorithm are given in
the next subsection. Briefly, Algorithm 1 is used as a seed node expansion technique, which
has also been used in Veldt et al. (2016).

Note that all these flow-based methods are “improve” methods, i.e., they are not stand-alone,
and they require initial input from some other stand-alone method, such as APPR or `1-reg. PR. This
is both a theoretical and a practical argument. It is a theoretical argument because in the theoretical
analysis of SimpleLocal (see Theorem 3 in Orecchia and Zhu (2014)), the input to SimpleLocal is
required to have sufficient overlap with the target cluster. Otherwise, currently there is no guarantee
that flow-improve methods output a reasonable approximation to the target cluster in terms of its
conductance value (Theorem 1 in Orecchia and Zhu (2014)) or in terms of false and true positives
(Theorem 3 in Orecchia and Zhu (2014)). Theorem 3 in Orecchia and Zhu (2014) suggests that
sufficient overlap can be achieved either by using a local spectral method such as APPR or `1-
reg. PR. In this paper, we use only the latter. This is because, as shown in Fountoulakis et al.
(2019), theoretically and empirically APPR is very similar to `1-reg. PR. We also show extensive
experiments in this section about the similarity of APPR and `1-reg. PR. In practice one could
use heuristics such as a BFS-type algorithm to slightly expand a seed node within a target cluster
and then provide the output of the BFS-type as input to SimpleLocal, i.e., see also Veldt et al.
(2016). In Algorithm 1 we provide a pseudo-code for the BFS-type algorithm that we use in this
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paper. Basically, the only difference with a standard BFS algorithm is that we explore neighbors in
batches, which allows us to terminate the BFS algorithm after a given number of steps.

6.2.3 PARAMETER TUNING

APPR and `1-reg. PR have two parameters, the teleportation parameter α and a tolerance/`1-
regularization parameter ρ. The teleportation parameter should be set according to the reciprocal of
the mixing time of a random walk within the target cluster, which is equal to the smallest nonzero
eigenvalue of the normalized Laplacian for the subgraph that corresponds to the target cluster. See
Zhu et al. (2013) for details. Let us denote the eigenvalue with λ. In our case the target cluster is a
given ground truth cluster. We use this information to set parameter α. In particular, for each node
in the target cluster we run APPR and `1-reg. PR 4 times where α is set based on a range of values
in [λ/2, 2λ] with a step of (2λ − λ/2)/4. The regularization parameter of `1-reg. PR has nearly
identical purpose as the tolerance parameter of APPR. Both parameters are set to be proportional
to inverse of the volume of the target cluster, as suggested by theoretical arguments in this paper as
well as in Andersen et al. (2006); Zhu et al. (2013); Fountoulakis et al. (2019). For each parameter
setting we use sweep cut to round the output of APPR and `1-reg. PR to find a cluster of low con-
ductance. The sweep cut rounding procedure is a common technique to post-process the output of
local graph clustering methods—for details, we refer the reader to Andersen et al. (2006); Zhu et al.
(2013); Fountoulakis et al. (2019). We use a proximal coordinate descent algorithm (Fountoulakis
et al., 2019) to solve the `1-reg. PR problem. Over all parameter settings, we return the cluster with
the lowest conductance value as an output of APPR and `1-reg. PR.

SimpleLocal has only one parameter denoted by δ. The δ parameter controls how localized the
output is going to be around the input seed nodes (Veldt et al., 2016), it also controls the quality of
the output in terms of its conductance value (Theorem 1 in Orecchia and Zhu (2014)) or in terms of
false and true positives (Theorem 3 in Orecchia and Zhu (2014)). The parameter has to satisfy δ ≥ 0,
and according to Orecchia and Zhu (2014) it should be set such that Vol(R)/Vol(V − R) + δ =
1/(3/σ + 3), where R is the set of seed nodes that is given as input to SimpleLocal, and σ is a
parameter that satisfies σ ∈ [Vol(R)/Vol(V −R), 1]. It is suggested in Orecchia and Zhu (2014) to
set σ = O(Vol(R∩K)/Vol(K)), whereK denotes the target cluster. Therefore, in our experiments
we set

σ = min

[
max

(
Vol(R)

Vol(V −R)
,

Vol(R ∩K)

Vol(K)

)
, 1

]
.

When we use `1-reg. PR as input to SimpleLocal, this parameter setting also provides the theoretical
guarantees which are claimed in Orecchia and Zhu (2014) (assuming that all assumptions about the
target cluster are satisfied).

We set parameter steps = n in Algorithm 1 and we terminate Algorithm 1 when the current set of
seed nodes, denoted by seeds, satisfies Vol(seeds∩K)/Vol(K) ≥ 0.75, i.e., the output of Algorithm
1 has to have at least 75% overlap with the target cluster, or when Vol(seeds)/Vol(G) ≥ 0.25, i.e.,
the volume of the output is larger than 25% the volume of the graph. This setting is also motivated
by Theorem 3 in Orecchia and Zhu (2014), which mentions that the input to SimpleLocal has 75%
overlap with the target cluster. However, since this relies on the assumption that the input set of
nodes is the output of APPR or `1-reg. PR, which are themselves clustering algorithms, while
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Algorithm 1 is not, then we also add the second termination criterion that the output cannot have
volume more than 25% the volume of the graph.

Input : seeds - set of seed nodes that we want to expand
Output : seeds - updated/expanded set of seeds
Parameters: steps - number of steps of the algorithm
Create queue Q;
Set all nodes in seeds as visited;
Set step = 1;
while step ≤ steps do

k = 1 and l = size of Q;
while k ≤ l do

remove node u from head of Q;
mark and enqueue all (unvisited) neighbours of u;
Add newly visited nodes in set seeds;
increase k;

end
increase step;

end
Algorithm 1: A modified BFS algorithm for seed set expansion

6.2.4 RESULTS

APPR and `1-reg. PR are similar. We start our empirical observations by comparing APPR
and `1-reg. PR. We already proved in Theorem 10 that these methods are similar. However, we
would like to point out some additional details, which will help us justify simplification of the
experiments for the remainder of this section. In Figure 4, we make a much more extended empirical
comparison between the two local spectral methods, where we compare their precision, recall and
F1score. We use the Orkut dataset, and we compare the two methods using all 282 ground truth
clusters of this dataset. In this figure, we present average results over all nodes for each given
ground truth cluster. We observe that APPR and `1-reg. PR produce output with nearly identical
precision, recall and F1score. We attribute any minor differences between the two methods to the
minor differences between the optimality conditions of `1-reg. PR and APPR. Moreover, APPR
and proximal coordinate descent for `1-reg. PR have similar running time in practice for producing
the results in Figure 4. This is justified by worst-case analysis in Fountoulakis et al. (2019) as
well as our average-case analysis in Theorem 11. In particular, each method required 75 hours to
produce Figure 4, which required 304960 calls to APPR and `1-reg. PR. Due to the similarity of
the two approaches, we will only use `1-reg. PR in the subsequent experiments. Note that in this
experiment we do not show performance of flow-based methods because based on our empirical
observations on small datasets like FB-Johns55 and Colgate88 it would have taken close to a month
to obtain similar plots like in Figure 4. (Improving this situation for local flow improve methods is
an important direction for future work.) For example, see the running times of flow-based methods
for FB-Johns55 and Colgate88 in Table 7.

APPR and `1-reg. PR work well for low conductance target clusters. Here, we comment on the
performance of APPR and `1-reg. PR in Figure 4 on the Orkut dataset. We observe that performance
of both methods decreases as the conductance of the target cluster increases, i.e., as the cluster
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Figure 4: We demonstrate the similarity of APPR and `1-reg. PR by illustrating F1score, recall
and precision vs conductance of ground truth clusters plots for the Orkut dataset (282
ground truth clusters). This plot demonstrates two properties of the algorithms. First, it
demonstrates performance of `1-reg. PR and APPR as conductance of the target cluster
increases (horizontal-axis). Observe that as conductance becomes larger then overall
performances decreases. Second, it demonstrates that the methods `1-reg. PR and APPR
get nearly identical results, which is also justified by theoretical arguments. See the main
text for details.
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quality gets worse. This is an expected outcome that is predicted by the average-case analysis of
this paper. However, it is important to mention that, for target clusters with conductance close to
0.4, the F1score of `1-reg. PR is around 0.8. This is surprisingly good performance since a cluster
with conductance 0.4 means that roughly half of the edges of the target cluster cross the cluster
boundary (which implies that such target clusters are actually quite noisy and not of particularly
high quality).
Results for biology datasets and Sfld and PPI-mips. The results for the biology datasets are shown
in Table 4. We present average results over all nodes for each given ground truth cluster. We denote
with bold numbers the performance number of a method when it has the largest F1score among
all methods.

We note the consistent state-of-the-art performance of `1-reg. PR for all clusters in Table 4. For
some ground truth clusters, `1-regularized PageRank perfectly recovers the target clusters, which is
mainly attributed to the fact that the ground truth clusters have strong separability property (see also
Corollary 9 of the main text). In most experiments, SimpleLocal did not improve the performance
of the input of `1-reg. PR, but also it did not make it worse. In some cases, like the Spindle ground
truth cluster in the PPI-mips dataset, SimpleLocal decreased the performance of `1-reg. PR in terms
of the F1score. This is because SimpleLocal found clusters that have smaller conductance, but
that do not correspond to clusters with the highest F1score. This is a known issue that has been
mentioned in Fountoulakis et al. (2017). BFS-SL has the worst performance among all methods
in most experiments. In fact, BFS-SL performs well only for the usrease ground truth cluster in
the Sfld dataset. The performance of BFS-SL is especially poor for all ground truth clusters in the
PPI-mips dataset. It is important to mention that we did experiment with different parameter tuning
for both BFS-type Algorithm 1 and SimpleLocal for the BFS-SL method, but the performance was
poor for all settings of parameters that we tried. We attribute the poor performance of BFS-SL
in the BFS-type algorithm, which provides the input to SimpleLocal. In particular, the BFS-type
Algorithm 1 is not related to clustering in a general sense, and this translates to poor quality input
to SimpleLocal. As is mentioned in the theoretical analysis in Orecchia and Zhu (2014); Veldt et al.
(2016), SimpleLocal requires as input the output of a local spectral method such as `1-reg. PR in
order to perform well, which is also verified by the results in Table 4.

The corresponding running times for each method are shown in Table 5. Each numeric value in
this table demonstrates the total running time to run a method for a given ground truth cluster. The
running time is the sum of the running times for each node in the ground truth cluster. Note that
`1-reg. PR is the fastest method.
Results social networks FB-Johns55 and Colgate88. The results for the social network graphs
are shown in Table 6. There are a lot of interesting observation for this set of experiments. First,
`1-reg. PR outperforms BFS-LS, with the exception of the ground truth clusters of major index
217 in FB-Johns55, where BFS-LS has a 0.03 larger F1score, and the ground truth cluster of year
2009 in Colgate88, where BFS-SL has the same F1score as `1-reg. PR. We observed two reasons
that BFS-SL has worse performance in most experiments. The first reason is that BFS-SL outputs a
cluster that has smaller conductance than the output cluster of `1-reg. PR, but better conductance is
often not related to the ground truth cluster, especially in cases where the ground truth cluster itself
has large conductance. We attribute this behavior to SL because as an algorithm it attempts to find a
cluster with small conductance. The second reason is that the input to SL from BFS-type Algorithm
1 is not a good approximation to the ground truth cluster, which is a required property of SL such
that it performs well.
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Table 4: Results for biology datasets Sfld and PPI-mips. In this table, we present average results of
F1score over all nodes for each given ground truth cluster. We denote with bold numbers
the performance number of a method when it has the largest score among all methods.

dataset feature `1-reg. PR BFS-SL `1-reg. PR-SL
Sfl

d urease 0.75 0.42 0.38
AMP 0.86 0.86 0.86

PP
I-

m
ip

s

Actin 0.98 0.04 0.98
Anaphase 1.00 0.09 1.00
Cdc28p 1.00 0.10 1.00
Coat 0.85 0.04 0.85
ct-large 1.00 0.02 1.00
ct-small 1.00 0.05 1.00
F0-F1-ATP 1.00 0.06 1.00
H+ 1.00 0.06 1.00
mc-large 1.00 0.03 1.00
mc-small 1.00 0.07 1.00
mc-complex 0.78 0.07 0.79
mRNA 0.93 0.03 0.93
Nuclear 0.85 0.05 0.85
RNA 0.87 0.03 0.80
Spindle 0.85 0.03 0.82
TRAPP 1.00 0.10 1.00
tRNA 1.00 0.09 1.00
19-22S 1.00 0.05 1.00
20S 1.00 0.06 1.00

The second set of observations is about `1-reg. PR-SL. For most ground truth clusters, we
observe that `1-reg. PR-SL performs worse than or on par with `1-reg. PR, with the exception of
ground truth clusters year 2009 and major index 217 in FB-Johns55 and ground truth clusters of
years 2008 and 2009 in Colgate88. When `1-reg. PR-SL makes the input of `1-reg. PR worse, it
is clearly because the former finds a cluster with better conductance value which does not relate to
the ground truth cluster. We observe this behavior very often when the target cluster does not have
small conductance value, and this is also confirmed through our simulation study (see Figure 3(d)
in Section 6.1). When `1-reg. PR-SL performs better it is because the ground truth cluster has small
conductance but not small enough such that `1-reg. PR performs well by itself. In particular, `1-reg.
PR leaks more mass outside of the target cluster than it should, and this results in small precision.
This is a well-known problem that has been also observed in Fountoulakis et al. (2017), which can
be fixed by SL.

The corresponding running times for each method are shown in Table 7. The running time is
the sum of the running times for each node in the ground truth cluster. Note that `1-reg. PR is the
fastest method.
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Table 5: Running times for biology datasets Sfld and PPI-mips. The numeric entries of the table
show the total time in seconds over all nodes of a given ground truth cluster. The running
times of `1-reg. PR where less than 0.1 for most experiments, and they have been rounded
up to 0.1.

dataset feature `1-reg. PR BFS-SL `1-reg. PR-SL
Sfl

d urease 17.2 29.8 151.2
AMP 0.2 2.5 1.6

PP
I-

m
ip

s

Actin 0.1 1.8 0.6
Anaphase 0.1 0.8 0.1
Cdc28p 0.1 0.7 0.1
Coat 0.1 1.5 0.3
ct-large 3.6 8.5 16.5
ct-small 1.3 10.0 6.6
F0-F1-ATP 0.1 1.0 0.1
H+ 0.1 1.1 0.1
mc-large 0.3 3.3 2.0
mc-small 0.1 0.9 0.1
mc-complex 0.1 0.8 0.2
mRNA 0.3 3.5 2.4
Nuclear 0.1 1.3 0.3
RNA 0.2 1.5 2.7
Spindle 0.1 2.3 0.7
TRAPP 0.1 0.7 0.1
tRNA 0.1 0.7 0.1
19-22S 0.1 1.3 0.2
20S 0.1 1.0 0.1

Memory scalability for small- and large-scale graphs. One of the main motivations of the `1-
regularized PageRank model is the low memory requirements for each seed node. In Table 8 we
illustrate performance in terms of memory requirements for solving the `1-regularized PageRank
using proximal coordinate descent. In particular, we illustrate how memory requirement increases
as ρ decreases. As is expected, for large values of ρ the output solution is very sparse and the
algorithms have very low memory requirements. As ρ gets smaller then the solutions become denser
and memory requirements increase. We observe similar performance for FB-Johns55 (small dataset)
and Orkut (large dataset).

7. Conclusion

In this paper, we have examined the `1-regularized PageRank optimization problem for local graph
clustering. In a local graph clustering problem, the objective is to find a single target cluster in a
large graph, given a seed node in the cluster, and to do so in a running time that does not depend
on the size of the entire graph, but instead that depends on the size of the output cluster. Algorith-
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Table 6: Results for Facebook datasets FB-Johns55 and Colgate88. In this table we present average
results of F1score over all nodes for each given ground truth cluster. We denote with
bold numbers the performance number of a method when it has the largest score among
all methods.

dataset feature `1-reg. PR BFS-SL `1-reg. PR-SL
FB

-J
oh

ns
55

year 2006 0.32 0.13 0.23
year 2007 0.43 0.17 0.31
year 2008 0.50 0.34 0.36
year 2009 0.84 0.78 0.89
major index 217 0.85 0.88 0.88
second major 0 0.41 0.20 0.20
dorm 0 0.46 0.13 0.08
gender 1 0.42 0.21 0.21
gender 2 0.46 0.19 0.18

C
ol

ga
te

88

year 2004 0.42 0.29 0.44
year 2005 0.44 0.15 0.43
year 2006 0.46 0.27 0.39
year 2007 0.54 0.25 0.46
year 2008 0.75 0.56 0.88
year 2009 0.96 0.96 0.98
second major 0 0.49 0.24 0.25
dorm 0 0.46 0.04 0.26
gender 1 0.45 0.21 0.25
gender 2 0.34 0.20 0.26

mic results (i.e., running-time bounds to achieve a given cluster quality) for local graph clustering
abound, but our results are the first statistical results (i.e., where one is interested in recovering a
cluster under an hypothesized model). Under our local random model, we show that the optimal
support of `1-regularized PageRank identifies the target cluster with bounded false positives, and
in certain settings exact recovery is also possible. We further establish a strong connection between
`1-regularized PageRank and approximate personalized PageRank (APPR), based on which we ob-
tain similar statistical guarantees on APPR under the random model. Additionally, we have brought
the idea of solution path algorithms from the sparse regression literature to the local graph cluster-
ing literature, and we showed that the forward stagewise algorithm gives a provable approximation
to the entire `1 regularization path of this algorithm. Finally we demonstrate the state-of-the-art
performance of `1-regularized PageRank on both simulated and real data graphs.
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Table 7: Running times for Facebook datasets FB-Johns55 and Colgate88. The numeric entries of
the table show the total time in seconds over all nodes of a given ground truth cluster.

dataset feature `1-reg. PR BFS-SL `1-reg. PR-SL

FB
-J

oh
ns

55
year 2006 307 28126 56022
year 2007 453 28083 61462
year 2008 1125 25855 62668
year 2009 852 15736 15090
major index 217 80 728 768
second major 0 8866 91500 308041
dorm 0 10865 70084 260485
gender 1 1533 69265 205031
gender 2 13080 83836 301843

C
ol

ga
te

88

year 2004 11 1482 659
year 2005 70 5800 7679
year 2006 99 5471 11398
year 2007 154 6198 11641
year 2008 287 4756 6900
year 2009 530 2882 2507
second major 0 2876 24525 71937
dorm 0 449 15184 36992
gender 1 1533 20347 53016
gender 2 430 16854 39537

(MURI N00014-00-1-0637). This material is also based in part on research sponsored by DARPA
and the Air Force Research Laboratory under agreement number FA8750-17-2-0122. The U.S.
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Table 8: Memory scalability for proximal coordinate descent for solving the `1-regularized PageR-
ank as ρ decreases. We illustrate averaged results over 100 trials, i.e., seed nodes. The
numbers in the first row of each dataset are Megabytes. Note that to compute the memory
requirements for storing the adjacency matrix we did not store the edge weights since the
graphs are unweighted.

dataset statistics ρ =1.0e-1 1.0e-2 1.0e-3 1.0e-4 1.0e-5 1.0e-6 1.0e-7

O
rk

ut

Average memory 0.11 0.20 0.27 1.00 3.51 22.8 100
Average memory

mem. for adjacency 1.2e-4 2.1e-4 2.9e-4 1.0e-3 3.6e-3 2.4e-2 1.0e-1

Average nodes touched 72 72 131 1474 10788 83139 443857
Average nodes in solution 1 1 4 33 266 2401 22159
Number of iterations 1 2 10 104 1050 11370 132153

FB
-J

oh
ns

55

Average memory 0.09 0.17 0.20 0.75 1.44 2.41 2.65
Average memory

mem. for adjacency 6.3e-2 1.1e-1 1.3e-1 4.9e-1 9.5e-1 1.5e+0 1.7e+0

Average nodes touched 66 68 114 959 3113 5079 5157
Average nodes in solution 1 1 3 36 367 4201 5157
Number of iterations 1 3 10 107 1746 41820 539493
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Appendix A. Some auxiliary lemmas

To establish the theorems, we need a few concentration inequalities and intermediate results that
shall be used in the proof. In Section A.1, we give degree concentration inequalities for random
graphs, and in Section A.2, we state recovery guarantees of `1-regularized PageRank on the pop-
ulation graph. Section A.3 gives a few important results on the `1-regularized PageRank when
restricted to the target cluster.

A.1 Concentration lemmas

Here, we present several concentration lemmas for degrees of random graphs. The first lemma is
consequence of Chernoff’s inequality for the sum of independent Bernoulli random variables, and
applying union bound (c.f. see Vershynin (2018, Theorem 2.3.1)).

Lemma 13 (Adapted from Vershynin (2018, Proposition 2.4.1).) Let Xi be the sum of indepen-
dent Bernoulli random variables, with E [Xi] = µ for i = 1, 2, . . . , k. Then, there exists a universal
constant c0 > 0 such that if µ ≥ c−1

0 δ−2 log k, then with probability at least 1− 2e−c0δ
2µ,

For all i ∈ K: |Xi − µ| ≤ δµ.

According to our random model (Definition 5), the degree vector dK for the target cluster K
comprises of random variables which are the sum of independent Bernoulli random variables with
common mean d̄. Therefore, by applying Lemma 13, it is straightforward to see the following result.

Lemma 14 (Adapted from Vershynin (2018, Proposition 2.4.1).) There exists a universal con-
stant c0 > 0 such that if d̄ ≥ c−1

0 δ−2 log k, then with probability at least 1− 2e−c0δ
2d̄,

For all i ∈ K:
∣∣di − d̄∣∣ ≤ δd̄,

where d̄ is the average degree of the vertices in the cluster K.

The next lemma bounds the number of edges between node j ∈ Kc and the target cluster K
when q = O

(
1
n

)
.

Lemma 15 Suppose that q = c/n and that k ≥ 2(c + 3) for a positive constant c. Then for n
sufficiently large, with probability at least 1−O

(
n−1

)
,

max
j∈Kc
‖Aj,K‖1 ≤ c+ 2.

A.2 Exact recovery of target cluster in population graph

Next, we define the “ground truth” PageRank vector, which we obtain by applying `1-regularized
PageRank to the population graph G of our random model. Recall the adjacency matrix E [A] de-
fined in (3), the associated diagonal degree matrix E [D], and the Laplacian matrix E [L]. Writing
E [Q] = αE [D] + 1−α

2 E [L], we denote the population version of `1-regularized PageRank as

x? = arg min
x

{
1

2
x>E [Q]x− αx>s + ρα‖E [D]x‖1

}
. (11)
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Compared to (2), we see that the matrices associated with the graph are now replaced by their
expected counterparts.

The following lemma shows that there exist a range of ρ values for which the solution to the pop-
ulation version of the `1-regularized PageRank minimization problem (11) gives an exact recovery
for the target cluster.

Lemma 16 (Exact recovery for population PageRank vector.) Consider the local random model
given in Definition 5 and suppose that Assumption 1 holds. Then, for n sufficiently large, the
“ground truth” PageRank vector x?, defined in (11), identifies K correctly, i.e.,

support(x?) = K,

as long as ρ ∈ [ρ], ρ\), where

ρ] =
q(1− α)

2αd̄ · E
[
d`]
]

+ q(1− α)
[
kd̄+ (n− k)E

[
d`]
]] , and ρ\ =

p(1− α)

d̄
[
(1 + α)d̄+ (1− α)p

] ,
where E

[
d`]
]

= min`∈Kc E [d`]. Furthermore, x? has a closed form expression, x? = u·1S+v·1K ,
where u and v are given by u = 2α

(1+α)d̄+(1−α)p
;

v =
1−α
2
p·u−ραd̄

αd̄+ 1−α
2
q(n−k)

.

From the closed form expression, we can see that x? has high probability mass on the single seed
node with a long tail further away from the seed node. The mass outside the target cluster is being
thresholded exactly to zero via `1-norm regularization, thus identifying the target cluster without
any false positives. Of course, in practice, the population graph is unknown, and we are instead
given an instance of the graph from the random model. In this case, the ground truth vector x?

allows us to estimate the magnitude of the `1-regularized PageRank vector x̂ by analyzing the error
between x? and x̂. For more details, we refer the reader to the proof of Lemma 19.

A.3 `1-regularized PageRank restricted to target cluster

Consider the `1-regularized PageRank problem restricted to the target cluster K.

x̂R = arg min
x∈Rn

{
1

2
x>Qx− αx>s + ρα‖Dx‖1 : xKc = 0

}
= arg min

y∈Rk

{
1

2
y>QK,Ky − αy>sK + ρα‖DK,Ky‖1

}
. (12)

Since our aim is to recover the target cluster K based on the local model (Definition 5), it is natural
to analyze the properties of the solution to this reduced problem. Here, abusing notation, we use x̂R

to denote the vector either in the original space Rn or in the reduced space Rk.
We present several lemmas about x̂R that will be critical for the proof of theorems. First, we

give a guarantee on the recovery of the target cluster for the optimal solution (12).
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Lemma 17 Let x̂R be the solution to the reduced problem (12). Suppose that (1 − δ)p2k ≥
c−1

0 δ−2 log k. Then, if the regularization parameter satisfies ρ ≤ ρ(δ), we have

support(x̂R) = K,

with probability at least 1− 6e−c0δ
2(1−δ)p2k. Here c0 is the same constant appearing in Lemma 13.

For the above result, since by construction x̂R is zero outside K, all we need to show is that x̂R
K > 0

when ρ ≈ O
(
γp
d̄2

)
. Next we compare the support set of x̂R to that of x̂.

Lemma 18 For any regularization parameter ρ ∈ [0,∞), we have

support(x̂R) ⊆ support(x̂).

Finally we have the following estimate on the maximum coordinate of x̂R on K\S (recall u and
v are respectively the components of x? on S and K\S; see Lemma 16).

Lemma 19 Let δ ≤ 0.1 and suppose that (1 − δ)p2k ≥ c−1
0 δ−2 log k. Assume that Assumption 1

holds and that the size of the target cluster k ≥ 5. If the regularization parameter satisfies ρ ≥ ρ(δ),
then for n sufficiently large, the following bound holds

‖x̂R
K\S‖∞ ≤ v︸︷︷︸

=x?
K\S

+
c1(1− α)u

d̄
+ 2c1δ(v + ρα)︸ ︷︷ ︸

≥‖x̂R
K\S−x

?
K\S‖∞

,

with probability at least 1− 6e−c0δ
2(1−δ)p2k. Here c0 is the same constant appearing in Lemma 13

and c1 is a positive numerical constant.

Appendix B. Proofs of theorems

In this section we prove all of our theorems. Based on the lemmas presented above we give proofs
of our five theorems, respectively, in Section B.1, B.2, B.3, B.4, and B.5.

B.1 Proof of Theorem 6

The proof of Theorem 6 is a straightforward combination of Lemma 17 and 18. Specifically, by
Lemma 17, we know that for ρ ≤ ρ(δ), we have that support(x̂R) = K. Then applying Lemma 18
we have

support(x̂R) = K ⊆ support(x̂),

thus proving the result.

B.2 Proof of Theorem 7

To prove Theorem 7, we first need the following lemma for bounding the volume of support(x̂).
This lemma is a stronger version of Fountoulakis and Gondzio (2015, Theorem 2).
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Lemma 20 For any regularization parameter ρ > 0, it holds that

Vol(support(x̂(ρ))) ≤ 1− d>x̂(ρ)

ρ
,

where Vol(support(x̂)) =
∑

i∈support(x̂) di.

Now by our choice of ρ ≥ ρ(δ) (5) we have

Vol(support(x̂)) ≤ 1

ρ
≤ 1

ρ(δ)
=

(
1 + α

1− α

)2(1 + δ

1− δ

)2 (1 + δ)d̄2

γp

=

(
1 + α

1− α

)2(1 + δ

1− δ

)2 (1 + δ)kd̄

γ2
, (13)

where the second step follows from (4). Furthermore, by Theorem 6, support(x̂) contains the
target cluster K, so the errors in support(x̂) are solely attributed to the presence of false positives.
Denoting by FP the set of false positives in support(x̂) we can write

Vol(support(x̂)) = Vol(K) + Vol(FP). (14)

Since Vol(K) =
∑

i∈K di ≥ (1− δ)kd̄ by Lemma 14, it follows that

Vol(FP) = Vol(support(x̂))− Vol(K) by (14)

≤
(

1 + α

1− α

)2(1 + δ

1− δ

)2 (1 + δ)kd̄

γ2
− Vol(K) by (13)

≤ Vol(K)

[(
1 + α

1− α

)2(1 + δ

1− δ

)3 1

γ2
− 1

]
,

with probability at least 1− 2 exp(−c0δ
2d̄). This proves the theorem.

B.3 Proof of Theorem 8

Under Assumption 1, with nonvanishing probability we can find a good seed node in the target
cluster that is connected solely to K.

Lemma 21 Suppose that Assumption 1 holds, i.e., q = c
n for a fixed constant c > 0. Under the

local random model given in Definition 5, if n is sufficiently large, then

P {There exists a node i ∈ K such that i is not connected to Kc} ≥ 1− (1− exp(−1.5c))k.

We select this node as a seed node in the `1-regularized PageRank problem.
Next we show that under the conditions of Theorem 8, the optimal solution to the reduced

problem, x̂R = x̂R(ρ(δ)) in (12), obeys

|(Qx̂R − αs)j | = | −
1− α

2
·Aj,K x̂R| < ρ(δ)αdj for j ∈ Kc. (15)

Note that the above inequality is simply the optimality condition for the full-dimensional problem on
Kc (see Lemma 3). Since, by the optimality conditions for the reduced problem, x̂R also satisfies the
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full-dimensional optimality condition on K. By uniqueness of the solution this means that x̂R = x̂.
Also, since support(x̂R) ⊆ K by construction, this proves that there is no false positive in x̂.

Now write Aj,K x̂R into the sum of two terms,

Aj,K x̂
R = Aj,S x̂

R
S +Aj,K\S x̂

R
K\S .

The first term can be ignored, since by Lemma 21 we choose the seed node to be the one that is
solely connected to K. For the second term we use Hölder’s inequality to bound

Aj,K\S x̂
R
K\S ≤ ‖Aj,K\S‖1‖x̂

R
K\S‖∞.

Applying Lemma 15, 19, and using the fact that u ≤ 2α
(1+α)d̄

, v ≤ (1−α)p

(1+α)d̄2
(which can be deduced

from Lemma 16), and that δ ≤ 0.1 while α ∈ [0.1, 0.9] (by assumptions of the theorem), then

∣∣(Qx̂R − αs)j
∣∣ ≤ 1− α

2
‖Aj,K\S‖1‖x̂R

K\S‖∞ ≤ (0.5c+ 1)

[
c1(1− α)u

d̄
+ (1 + 2c1δ)v + 2c1δ · ρ(δ)α

]
≤ (0.5c+ 1)C1

(
2

d̄2
+ ρ(δ)α

)
,

where C1 > 0 is a positive constant. Then, to prove (15), it suffices to show

(0.5c+ 1)C1

[
2

ρ(δ)αd̄2
+ 1

]
< dj .

Plugging in the definition of ρ(δ) (5) to the above, and using α ∈ [0.1, 0.9] and δ ≤ 0.1, we obtain

(0.5c+ 1)C1

[
2

ρ(δ)αd̄2
+ 1

]
= (0.5c+ 1)C1

[(
1 + α

1− α

)2(1 + δ

1− δ

)2 1 + δ

αγp
+ 1

]

≤ (0.5c+ 1)C2

γp
,

for some constant C2 > 0. By the assumption (8) this means that ρ(δ)−1α−1|(Qx̂R − αs)j | < dj ,
and thus we have proved the claim (15).

B.4 Proof of Theorem 10

Fix ρ0 > 0. First, we prove the first part of the theorem, i.e., support(x̂(ρ0)) ⊆ support(xAPPR(ρ0)).
When ρ0 > 1/dS , this relation holds trivially because both x̂(ρ0) and xAPPR(ρ0) do not contain any
nodes in the support set. To prove that the relation holds for ρ0 ≤ 1/dS , we will proceed by
induction. Specifically, we will prove that{

x̂i(ρ0) < xAPPR
i (ρ0), i ∈ support(xAPPR

i (ρ0)),
x̂i(ρ0) = xAPPR

i (ρ0) = 0, i /∈ support(xAPPR
i (ρ0)),

(16)

for all ρ0 ∈ (0, 1/dS ]. Assuming that this holds, it is straightforward to follow that

support(x̂(ρ0)) ⊆ support(xAPPR(ρ0)),
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thus proving the claim.
Now we turn to proving (16). When ρ0 = 1/dS , we can see from the algorithm (9) that

xAPPR(ρ0) contains the seed node as the only element in the support set, while by Lemma 3, we
have x̂ = 0, which proves (16). Next, assuming that it holds at some ρ0 ∈ (0, 1/dS ], let ρ̃0 > 0 be
chosen such that ρ̃0 < ρ0 and such that there appears a node i ∈ V that violates the condition (16)
for the first time. If i ∈ support(xAPPR(ρ̃0)), since the path x̂(ρ) is continuous by the proof of
Lemma 4, this means that i is the first node such that x̂i(ρ̃0) = xAPPR

i (ρ̃0) > 0 (there may exist
multiple nodes that simultaneously violate (16) at ρ = ρ̃0 but the same statement still applies). In
this case, by induction, we know that x̂j(ρ̃0) ≤ xAPPR

j (ρ̃0) for j 6= i. Then

(D−1∇f(x̂(ρ̃0)))i =
1 + α

2
x̂i(ρ̃0)− 1− α

2
(D−1Ax̂(ρ̃0))i − αsi

≥ 1 + α

2
xAPPR
i (ρ̃0)− 1− α

2
(D−1AxAPPR(ρ̃0))i − αsi

= (D−1∇f(xAPPR(ρ̃0)))i,

where the inequality holds since (D−1Ax)i =
∑

j∼iwjixj/di for any x ∈ R|V |. By the optimality
condition of (2) (Lemma 3), the left-hand side must be (D−1∇f(x̂(ρ̃0)))i = −ρ̃0α which gives

(D−1∇f(xAPPR(ρ̃0)))i ≤ −ρ̃0α.

However, this is a contradiction to the termination criterion of the APPR algorithm (9), and in
particular, we must have i /∈ support(xAPPR(ρ̃0)) and x̂i(ρ̃0) > 0 by the condition (16). Then,
by Lemma 3, this implies that (D−1∇f(x̂(ρ̃0)))i = −ρ̃0α, and following the same steps as above
we can see that −ρ̃0α > (D−1∇f(xAPPR(ρ̃0)))i. However, this again contradicts the termination
criterion of APPR, thus proving the first part of the theorem.

Next, we prove the second part of the theorem, i.e., support(xAPPR(ρ0)) ⊆ support(x̂(ρ1))
for ρ1 = (1 − α) · ρ0/2. We first claim that for every node i ∈ support(xAPPR(ρ0)), we must
have −ραdi < ∇if(xAPPR(ρ0)) ≤ −1−α

2 ραdi. The first inequality is obvious from the termination
criterion of APPR. To see why the second inequality holds, if a node i ∈ V is selected at iteration k
of the APPR algorithm, then by the update step (9), we have x(k+1)

i = x
(k)
i − d

−1
i ∇if(x(k)). Then,

the gradient of f(x(k)) on node i is updated as

∇if(x(k+1)) =

[(
1 + α

2
D − 1− α

2
A

)
x(k+1)

]
i

− αsi (17)

=
1 + α

2
dix

(k)
i −

1 + α

2
∇if(x(k))− 1− α

2

∑
j∼i

wjix
(k)
j − αsi

= ∇if(x(k))− 1 + α

2
∇if(x(k)) =

1− α
2
∇if(x(k)).

By the termination criterion of APPR, we know that ∇if(x(k)) ≤ −ρ0αdi for all i ∈ V . This
shows that the right-hand side of the above equation is≤ −ρ0αdi, and in particular, taking k →∞,
we obtain∇if(xAPPR(ρ0)) ≤ −1−α

2 ρ0αdi, which proves the claim.
Now consider the following strategy of continuously adding small mass to the vector xAPPR(ρ0):

1. Start with xAPPR(ρ0). Find the node i whose gradient is smallest, i.e.,

j1 ∈ arg min
i∈V

∇if(xAPPR(ρ0)).
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2. Add mass to the node j1 until some other node j2 ∈ V has the gradient as small as j1. This
event always happens because by the work above (17) we can see that the gradient on node j1
is increasing while the gradients on the other nodes are either decreasing (if it is a neighboring
node of j1) or stay the same.

3. Add mass to the nodes (j1, j2) such that gradients on j1 and j2 are increasing at the same
rate,5 and until some other node j3 ∈ V has the gradient as small as j1 and j2.

4. Continue this step until the gradient on the node j1 becomes −1−α
2 ρ0αdi.

Writing x̃APPR to denote the output vector of the above procedure, it is easy to see that x̃APPR

indeed satisfies the optimality condition of the `1-regularized PageRank minimization problem,
given in Lemma 3, with ρ = ρ1. This in turn shows that support(xAPPR) ⊆ support(x̂(ρ1)), since
by the uniqueness of the optimal solution we have x̃APPR = x̂(ρ1). This completes the proof of
Theorem 10.

B.5 Proof of Theorem 11

First, by Theorem 10, we know that

support(x̂(ρ(δ))) ⊆ support(xAPPR(ρ(δ))) ⊆ support(x̂((1− α) · ρ(δ)/2)).

Since x̂(ρ(δ)) contains the target cluster by Theorem 6, therefore together with the relation above
we obtain K ⊆ support(xAPPR). To see that the false positives in xAPPR are also bounded, we can
follow the same step as the proof of Theorem 7 (see Section B.2) to show that

Vol(FP(x̂((1− α) · ρ(δ)/2))) ≤ Vol(K)

[(
1 + α

1− α

)2(1 + δ

1− δ

)3 2

(1− α)γ2
− 1

]
.

From the relation between support(xAPPR(ρ(δ))) and support(x̂((1 − α) · ρ(δ)/2)) it directly
follows that

Vol(FP(xAPPR)) ≤ Vol(K)

[(
1 + α

1− α

)2(1 + δ

1− δ

)3 2

(1− α)γ2
− 1

]
.

Finally to prove the exact recovery case, it suffices to show that support(x̂((1 − α) · ρ(δ)/2))
contains no false positives. In order for this all we need to do is to replace ρ(δ) by ρ((1− α)/2 · δ)
in the proof of Theorem 8. Then the same proof steps go through and we finally get the condition

2C(0.5c+ 1)

(1− α)γp
= O

(
1

γp

)
< dj ,

in place of (8). This completes the proof of the theorem.

Appendix C. Proofs of lemmas

We prove all of our lemmas in this section.

5. This is always possible since for any positive ε ∈ R|V |, we know that
∑
i∈V (∇if(x+ε)−∇if(x)) > 0. So, in order

to increase the gradients at the same rate, we need to find a direction ε such that the summands∇jf(x+ε)−∇jf(x)
are same for nodes j that are selected.
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C.1 Proof of Lemma 2

By the KKT condition x̂ must satisfy

∇jf(x̂) = −ρα∂‖Dx̂‖1 for all j ∈ V ,

or equivalently,

(Qx̂)j − αsj =


−ραdj , xj > 0,

ραdj , xj < 0,

[−ραdj , ραdj ], xj = 0,

(18)

where d = diag(D) is the degree vector of the graph. Simple calculation shows that

(Qx̂)j =
(1 + α)

2

dj x̂j − 1− α
1 + α

·
∑

i:(i,j)∈E

x̂i


=

(1 + α)

2

 ∑
i:(i,j)∈E

x̂j −
1− α
1 + α

·
∑

i:(i,j)∈E

x̂i

 . (19)

Now assume j? ∈ V is a node such that x̂j? < 0 and that j? = arg minj∈V x̂j . Then from the
condition (18), it must be that (Qx̂)j? > 0. However by (19) this is only possible if there is at least
one node i ∈ V with i ∼ j? such that

x̂i <
1 + α

1− α
· x̂j? .

However this means that x̂i is smaller than x̂j? , contradicting to the fact that j? ∈ V is the smallest
node in the graph. This proves the desired result.

C.2 Proof of Lemma 3

This lemma follows from Lemma 2 and the definition of Q.

C.3 Proof of Lemma 4

First, by Rosset and Zhu (2007, Proposition 1), we know that the optimal solution path x̂(ρ) for the
`1-regularized minimization (2) is piecewise linear as a function of ρ > 0. In particular, this implies
that the path is continuous.

Next, we prove that if the support set of x̂(ρ) remains constant in the interval [ρ1, ρ0] (ρ0 > ρ1),
then x̂(ρ) is strictly decreasing on [ρ1, ρ0], i.e., x̂(ρ1) > x̂(ρ0), where the inequality applies
component-wise. This, together with the non-negativity of the solution (Lemma 2) and the con-
tinuity of the path x̂(ρ), then establishes the lemma.

Write A(ρ) = {j : x̂j(ρ) > 0} for ρ > 0 and choose ρ0, ρ1 > 0 with ρ0 > ρ1 such that the
support set A(ρ) = A does not change for ρ ∈ [ρ1, ρ0]. For j ∈ A, by Lemma 3, we have that

(Q · x̂(ρ))j − αsj = −ραdj ,

and so
QA,A(x̂A(ρ1)− x̂A(ρ0)) = (ρ0 − ρ1)αdA.
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Multiplying Q−1
A,A on both sides (note that QA,A is positive definite),

x̂A(ρ1)− x̂A(ρ0) = α(ρ0 − ρ1)Q−1
A,AdA. (20)

Now write

QA,A =
1 + α

2
·
(
D − 1− α

1 + α
·A
)
A,A

=
1 + α

2
·D1/2
A,A

(
I − 1− α

1 + α
(D−1/2AD−1/2)A,A

)
D

1/2
A,A.

For all z ∈ R|A|, we have that

z>z ± z>(D−1/2AD−1/2)A,Az =
∑
i∈A

z2
i ±

∑
(i,j)∈E,i,j∈A

2wijzizj√
didj

>
∑

(i,j)∈E,i,j∈A

wij

(
zi√
di
± zj√

dj

)2

≥ 0,

where the second step holds since di >
∑

j:(i,j)∈E,j∈Awij . This shows that all the eigenvalues
of (D−1/2AD−1/2)A,A have absolute value less than 1. Using the previous fact, Q−1

A,A can be
written as

Q−1
A,A = 2(1 + α)−1 ·D−1/2

A,A

[
I − 1− α

1 + α
· (D−1/2AD−1/2)A,A

]−1

D
−1/2
A,A

= 2(1 + α)−1 ·D−1/2
A,A

[
I +

1− α
1 + α

· (D−1/2AD−1/2)A,A +

(
1− α
1 + α

)2

· (D−1/2AD−1/2)2
A,A

+ · · ·

]
D
−1/2
A,A . (21)

Now it is easy to see that the right hand side in (20) is positive, i.e., α(ρ0 − ρ1)Q−1
A,AdA > 0. This

completes the proof of Lemma 4.

C.4 Proof of Lemma 13

This lemma is proved in Vershynin (2018, Proposition 2.4.1) which we reproduce here for com-
pleteness. By Chernoff’s inequality ((Vershynin, 2018, Theorem 2.3.1)), for some constant c0 > 0,

P {|Xi − µ| ≥ δµ} ≤ 2e−2c0δ2µ.

Using union bound,

P
{

max
i∈K
|Xi − µ| ≥ δd̄

}
≤ 2e−2c0δ2µ+log k.

Since log k ≤ c0δ
2µ by assumption, the result follows.

C.5 Proof of Lemma 14

This lemma follows directly from Lemma 13.
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C.6 Proof of Lemma 15

We have ‖Aj,K‖1 ∼ Binom(k, q) for j ∈ Kc, so using tail bound for Binomial distribution ((Arratia
and Gordon, 1989)), for any t > c,

P {‖Aj,K‖1 ≥ t} ≤ exp

[
−t log

(
t

k · q

)
− k

(
1− t

k

)
log

(
1− t/k
1− q

)]
.

Set t = c+ 3. Then, since log(1− x) ≥ −x for all 0 < x < 1
2 , then

−k
(

1− t

k

)
log

(
1− t/k
1− q

)
≤ −k log(1− t/k)− t log(1− q) ≤ t+ log 2 · t ≤ 2t = 2(c+ 3),

where the second inequality follows, since k ≥ 2(c + 3) by assumption, and that q ≤ 0.5 for n
sufficiently large. Then using union bound,

P
{

max
j∈Kc

1

‖Aj,K1‖1 ≥ c+ 3

}
≤ exp

[
−(c+ 3) log

(
(c+ 3)n

c · k

)
+ 2(c+ 3) + log(n− k)

]
≤ O

(
n−1

)
,

as long as n� k.

C.7 Proof of Lemma 16

First the results in Lemma 2 and Lemma 3 hold for any graph, seed vector s, and ρ > 0, so the result
can also be applied to (11). In particular, the solution x? is non-negative, and thus the optimality
condition can be expressed as

(E [Q]x?)j − α1j∈S =

{
−ραE [dj ] x?j > 0,

[−ραE [dj ] , 0] x?j = 0.
(22)

(Note s is 1 on the seed node and 0 on the rest.) For ρ > 1
d̄

the optimal solution (11) is the zero
vector. For ρ ≤ 1

d̄
the first nonzero nodes appear. From (22), as ρ decreases less than or equal to 1

d̄
,

we can see that the seed node becomes active at first.
Now let ρ\ > 0 be the regularization parameter for which the next set of nodes enters the active

set. Then, for ρ ∈ (ρ\, 1
d̄
], we know that x?S > 0 and x?Sc = 0. Writing x?S = u1S for some u > 0,

we can see that for the seed node j ∈ S,

(E [Q]x?)j =
1 + α

2
·

 ∑
i:(i,j)∈E

E [Aij ]x
?
j −

1− α
1 + α

∑
i:(i,j)∈E

E [Aij ]x
?
i

 =
1 + α

2
· u · d̄.

Substituting in the optimality condition (22), and solving with respect to u, we get

1 + α

2
· u · d̄− α = −ραd̄, and so u =

2(α− ραd̄)

(1 + α)d̄
.

It remains to be shown that x?S = u1S , for the above u, satisfies the optimality conditions for
j ∈ Sc. To verify this, we use the definition of u and the optimality conditions for j ∈ Sc. We need

(E [Q]x?)j ∈ [−ραE [dj ] , 0] for all j ∈ Sc. (23)

42



STATISTICAL GUARANTEES FOR LOCAL GRAPH CLUSTERING

We have that

(E [Q]x?)j = −1− α
2

p · u = −
(
α− ραd̄

) p(1− α)

d̄(1 + α)
for all j ∈ K\S,

and

(E [Q]x?)j = −1− α
2

q · u = −
(
α− ραd̄

) q(1− α)

d̄(1 + α)
for all j ∈ Kc.

Using the above equalities, we get that the optimality conditions are satisfied if and only if

ρ > ρ\ :=
(1− α)p

d̄
[
(1 + α)d̄+ (1− α)p

] .
Next, we prove that, when ρ reaches ρ\, the nodes in K\S appear in the active set. To see this,

from (22), we can check that the first ρ value allowing nonzero nodes for K\S is given by

−1− α
2

p · u = −ραd̄ , and so ρ = ρ\ =
(1− α)p

d̄
[
(1 + α)d̄+ (1− α)p

] .
Now assuming that x? takes the form of u1S + v1K , and substituting in the optimality condi-
tion (22), we obtain the following equations:

j ∈ S :
1 + α

2

[
(u+ v) · d̄− 1− α

1 + α
· p · v(k − 1)

]
︸ ︷︷ ︸

=(E[Q]x?)j

−α = −ραd̄,

j ∈ K\S :
1 + α

2

[
v · d̄− 1− α

1 + α
· p · (u+ v(k − 1))

]
︸ ︷︷ ︸

=(E[Q]x?)j

= −ραd̄.

So, solving with respect to u and v, we obtainu = 2α

[(1+α)d̄+(1−α)p]
,

v =
1−α
2
pu−ραd̄

αd̄+ 1−α
2
q(n−k)

.
(24)

Also, x? = u1S + v1K , with u and v given in (24), satisfies the optimality conditions for Kc if and
only if

ρ > ρ] :=
q(1− α)

2αd̄ · E
[
d`]
]

+ q(1− α)
[
kd̄+ (n− k)E

[
d`]
]] ,

where E
[
d`]
]

= min`∈Kc E [d`]. We claim that ρ\ > ρ], in which case we have proved that
x? = u1S + v1K satisfies the optimality condition (22) for ρ ∈ [ρ], ρ\), which proves the theorem.

It now remains to check that ρ\ > ρ]. With some algebra, we have that

ρ\ > ρ] ⇐⇒ 2pα · d̄ · E
[
d`]
]

+ pq(1− α) · kd̄+ pq(1− α)(n− k)E
[
d`]
]

> q(1 + α)d̄2 + pq(1− α)d̄

⇐⇒ 2pα · d̄ · E
[
d`]
]

+ pq(1− α) · kd̄+ pq(1− α)(n− k)E
[
d`]
]

> q(1− α+ 2α)d̄2 + pq(1− α)d̄

⇐⇒ 2αd̄(pE
[
d`]
]
− qd̄) + pq(1− α)(k − 1)d̄+ pq(1− α)(n− k)E

[
d`]
]

> q(1− α)d̄2.
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Also, since d̄ = p(k − 1) + q(n− k), we have

q(1− α)d̄2 = q(1− α)d̄ [p(k − 1) + q(n− k)] ,

and so

ρ\ > ρ] ⇐⇒ 2αd̄(pE
[
d`]
]
− qd̄) + (1− α)q(n− k)(pE

[
d`]
]
− qd̄) > 0. (25)

Under Assumption 1, we know that pE
[
d`]
]

= O (1) while qd̄ = O
(
d̄
n

)
, so pE

[
d`]
]
− qd̄ > 0 for

a sufficiently large n. This verifies (25).

C.8 Proof of Lemma 17

Define
x̌R(ρ) = αQ−1

K,K(sK − ρdK).

We will prove that x̌R = x̌R(ρ) > 0 for any ρ ≤ ρ(δ) where ρ(δ) is defined in (5). In particular,
this means that x̌R satisfies the optimality condition for the reduced problem (12), implying that
x̂R
K = x̌R > 0 and thus proving the result.

First, using (21), we can write

x̌R =
2α

1 + α
D−1
K,K

[
I +

1− α
1 + α

AK,KD
−1
K,K +

(
1− α
1 + α

)2

(AK,KD
−1
K,K)2 + · · ·

]
(sK − ρdK).

Let w = D−1
K,KsK . Then

x̌R =
2α

1 + α

[ ∞∑
j=0

(
1− α
1 + α

)j
(D−1

K,KAK,K)jw − ρ
∞∑
j=0

(
1− α
1 + α

)j
(D−1

K,KAK,K)j1
]

=
2α

1 + α

[
w +

1− α
1 + α

D−1
K,KAK,Kw +

∞∑
j=0

(
1− α
1 + α

)j+2

(D−1
K,KAK,K)j+2w

− ρ
∞∑
j=0

(
1− α
1 + α

)j
(D−1

K,KAK,K)j1
]
. (26)

Note that sK has mass 1 on the seed node, so we have w = sK/dS , where dS is the degree of the
seed node. Denoting by FON the first-order neighbors of the seed node in K, i.e., FON = {i ∈ K :
i is a neighbor of the seed node}, we then have

D−1
K,KAK,Kw = D−1

K,K1FON/dS ,

where 1FON is the indicator vector for the set FON. Applying the degree concentration Lemma 14,
then with probability at least 1− 2e−c0δ

2d̄,

D−1
K,KAK,Kw ≥

1

(1 + δ)2d̄2
1FON. (27)
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Next, using Lemma 13, we have that |FON| ≥ (1−δ)pk with probability at least 1−2e−c0δ
2pk.

Furthermore, for each non-seed node i /∈ FON in K, it is connected to nodes in FON with prob-
ability p, independently of all other pairs. Then A>i,K1FON| |FON| iid∼ Binom(|FON|, p), and thus
applying Lemma 13, and using the assumption (1− δ)p2k ≥ c−1

0 δ−2 log k, we get

P
{
A>i,K1FON ≥ (1− δ)|FON|p for all i /∈ FON

∣∣∣ |FON|
}
≥ 1− 2e−c0δ

2|FON|p

≥ 1− 2e−c0δ
2(1−δ)p2k.

Hence, we can conclude that with probability at least 1− 4e−c0δ
2(1−δ)p2k,

A>i,K1FON ≥ (1− δ)2p2k for all i /∈ FON. (28)

Then, (
1− α
1 + α

)2

(D−1
K,KAK,K)2w ≥

(
1− α
1 + α

)2

(D−1
K,KAK,K) · 1

(1 + δ)2d̄2
1FON

≥
(

1− α
1 + α

)2(1− δ
1 + δ

)2 p2k

d̄2
D−1
K,K1

≥
(

1− α
1 + α

)2(1− δ
1 + δ

)2 γp

(1 + δ)d̄2
1,

where the first step applies (27), the second step uses (28), and the third applies Lemma 14 and
the fact that p · k = γd̄. Returning to (26), we can now see that x̌R > 0 as long as ρ is less than

ρ(δ) =
(

1−α
1+α

)2 (
1−δ
1+δ

)2
γp

(1+δ)d̄2
. This completes the proof of Lemma 17.

C.9 Proof of Lemma 18

Recall that x̂ is the `1-regularized PageRank on the original graph (2). If ρ > 1/dS , then we can
easily check that x̂ = x̂R = 0, while for ρ = 1/dS , we have support(x̂R) = support(x̂) = S. To
prove that support(x̂R) ⊆ support(x̂) holds for ρ < 1/dS , we proceed by induction.

Writing A1 = support(x̂R) and A2 = support(x̂), by the optimality condition, we have

x̂R
A1

= αQ−1
A1,A1

(sA1 − ρdA1) and x̂A2 = αQ−1
A2,A2

(sA2 − ρdA2).

By inductive hypothesis, assume A1 ⊆ A2. According to the expression (21), then we can see
that x̂A1 ≥ x̂R

A1
, where the inequality applies component-wise. Now let i ∈ K be a node such

that x̂R
i = x̂i = 0. Using the optimality condition, we know that i becomes active for the full-

dimensional problem (2) whenever the following condition is satisfied:

−1− α
2

∑
j∼i,j∈A2

wij x̂j = −ραdi. (29)

Analogously, the node i becomes active for the reduced problem (12) when the following condition
is satisfied:

−1− α
2

∑
j∼i,j∈A1

wij x̂
R
j = −ραdi. (30)

Comparing the left-hand sides in (29) and (30), it is obvious that under the induction assumption,
the left-hand side in (29) is larger than in (30). This implies that x̂i becomes active earlier than x̂R

i ,
so the induction assumption continues to hold. This completes the proof of the lemma.
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C.10 Proof of Lemma 19

Since x̂R = (x̂R
S , x̂

R
K\S) is the solution to the reduced problem (12), fixing x̂R

S , then x̂R
K\S is the

minimizer of the following optimization problem:

x̂R
K\S = arg min

y∈Rk−1

{
1

2
(x̂R
S , y)>QK,K(x̂R

S , y) + ρα‖D · (x̂R
S , y)‖1

}
. (31)

Due to Lemma 17, the subgradient of ‖D · (x̂R
S , y)‖1 at y = x̂R

K\S is given by dK\S . Using opti-
mality, it follows that

0 = QK\S,K x̂
R︸ ︷︷ ︸

gradient at y = x̂R
K\S

+ραdK\S .

Next, we can prove that our choice of ρ = ρ(δ) lies in the interval [ρ], ρ\).

Lemma 22 Under the conditions of Lemma 19, we have ρ = ρ(δ) ∈ (ρ], ρ\).

Hence, by Lemma 16, the population version of `1-regularized PageRank (11) has support K,
so it follows that x? is also the solution to the reduced problem

x? = min
x

{
1

2
x>E [QK,K ]x− αx>sK + ρα‖E [DK,K ]x‖1 : xKc = 0

}
. (32)

(Abusing notation, we use x? and x?K interchangeably throughout the proof.) So, using the optimal-
ity condition, we obtain

0 = E
[
QK\S,K

]
x?︸ ︷︷ ︸

gradient at y = x?
K\S

+ραE
[
dK\S

]
,

where we have ∂‖E [D] · (x?S , y)‖1 = E
[
dK\S

]
due to Lemma 16 and Lemma 22. Combining the

two optimality equations, and adding and subtracting QK\S,Kx?, it follows that

0 = E
[
QK\S,K

]
x? −QK\S,K x̂R + ραE

[
dK\S

]
− ραdK\S

= (E
[
QK\S,K

]
−QK\S,K)x? +QK\S,K(x? − x̂R) + ρα(E

[
dK\S

]
− dK\S).

WritingQK\S,K(x?−x̂R) = QK\S,S(x?S−x̂R
S)+QK\S,K\S(x?K\S−x̂

R
K\S), and rearranging terms,

we get

QK\S,K\S(x̂R
K\S − x

?
K\S) = (E

[
QK\S,K

]
−QK\S,K)x? +QK\S,S(x?S − x̂R

S)

+ ρα(E
[
dK\S

]
− dK\S).

Taking the `∞ norm on both sides,

‖QK\S,K\S(x̂R
K\S − x

?
K\S)‖∞ ≤ ‖(E

[
QK\S,K

]
−QK\S,K)x?‖∞︸ ︷︷ ︸

term 1

+ ρα‖E[dK\S ]− dK\S‖∞︸ ︷︷ ︸
term 2

+ ‖QK\S,S(x̂R
S − x?S)‖∞︸ ︷︷ ︸

term 3

. (33)
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For term 1 we know that x? = u1S + v1K from Lemma 16, so plugging in to term 1,

(E
[
QK\S,K

]
−QK\S,K)x? = −1− α

2
(AK\S,S − E[AK\S,S ]) · u

+
1 + α

2
(dK\S − E

[
dK\S

]
) · v − 1− α

2
(AK\S,K − E

[
AK\S,K

]
)1K · v.

Thus,

term 1 = ‖(E
[
QK\S,K

]
−QK\S,K)x?‖∞

≤ 1− α
2
‖AK\S,S − E[AK\S,S ]‖∞ · u

+

(
1 + α

2
‖dK\S − E

[
dK\S

]
‖∞ +

1− α
2
‖(AK\S,K − E

[
AK\S,K

]
)1K‖∞

)
· v

≤ 1− α
2
‖AK\S,S − E[AK\S,S ]‖∞ · u+ δd̄ · v ≤ 1− α

2
u+ δd̄ · v,

with probability at least 1− 4e−c0δ
2pk, where the second step uses the triangle inequality, the third

step applies Lemma 13 and Lemma 14, and the last step holds since |Aj,S − p| ≤ 1 for all j ∈ K\S.
Furthermore, by Lemma 14, we can bound term 2 as

term 2 ≤ ρα · δd̄,

while for term 3, simple calculation leads to

term 3 ≤ 1− α
2

∣∣x̂R
S − x?S

∣∣ .
Putting the results together, we have

‖QK\S,K\S(x̂R
K\S − x

?
K\S)‖∞ ≤

1− α
2

u+ δd̄ · v + ρα · δd̄+
1− α

2

∣∣x̂R
S − x?S

∣∣ . (34)

Now it remains to upper bound the term
∣∣x̂R
S − x?S

∣∣. Following the same steps as before, indeed
we can check that the following holds:

‖QS,S(x̂R
S − x?S)‖∞ ≤ ‖(E [QS,K ]−QS,K)x?‖∞︸ ︷︷ ︸

term 4

+ ρα‖E[dS ]− dS‖∞︸ ︷︷ ︸
term 5

+ ‖QS,K\S(x̂R
K\S − x

?
K\S)‖∞︸ ︷︷ ︸

term 6

. (35)

Also, we can see that using x? = u1S + v1K ,

term 4 = ‖1 + α

2
(u+ v)(dS − d̄)− 1− α

2
v((AS,K − E [AS,K ])1K)‖∞ ≤ (u+ v)δd̄,

where the inequality applies Lemma 13 and Lemma 14. It is also easy to see that term 5 ≤ ρα · δd̄,
while

term 6 =
1− α

2
‖AS,K\S(x̂R

K\S − x
?
K\S)‖∞ ≤

1− α
2
‖AS,K\S‖1‖x̂R

K\S − x
?
K\S‖∞

≤ 1− α
2

(1 + δ)p(k − 1)‖x̂R
K\S − x

?
K\S‖∞,
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where the second step uses Hölder’s inequality and the next step applies Lemma 13. Furthermore,
QS,S = 1+α

2 dS by definition, which is bounded below by 1+α
2 (1− δ)d̄. Thus, from (35), we get

‖x̂R
S − x?S‖∞ ≤

δd̄(u+ v) + ρα · δd̄+ 1−α
2 (1 + δ)p(k − 1)‖x̂R

K\S − x
?
K\S‖∞

1+α
2 (1− δ)d̄

.

Finally, return to (34) and substitute the above bound in place of ‖x̂R
S − x?S‖∞, then

‖QK\S,K\S(x̂R
K\S − x

?
K\S)‖∞ ≤

1− α
2

u+ δd̄ · v + ρα · δd̄

+

(
1− α
1 + α

) δd̄(u+ v) + ρα · δd̄+ 1−α
2 (1 + δ)p(k − 1)‖x̂R

K\S − x
?
K\S‖∞

(1− δ)d̄
. (36)

The following lemma concerns the local strong convexity of the matrix QK\S,K\S in `∞ norm.

Lemma 23 Under the conditions of Lemma 19, with probability at least 1− 2e−c0δ
2d̄,

‖QK\S,K\Sy‖∞ ≥ α(1− δ)d̄‖y‖∞ for all y ∈ Rk−1.

Applying Lemma 23 to the left-hand side of (36), and rearranging terms and simplifying, we
have that[

α(1− δ)d̄− γ

2

(
1− α
1 + α

)(
1 + δ

1− δ

)]
‖x̂R

K\S − x
?
K\S‖∞

≤
(

1− α
2

+
1− α
1 + α

δ

1− δ

)
u+

(
δd̄+

1− α
1 + α

δ

1− δ

)
v + ρα

(
δd̄+

1− α
1 + α

δ

1− δ

)
,

where we use α < 1 and p(k − 1) = γd̄. By assumption of the lemma, we have that δ ≤ 0.1 and
that α ∈ [0.1, 0.9] while γ ∈ (0, 1) by definition (4), so[

α(1− δ)d̄− γ

2

(
1− α
1 + α

)(
1 + δ

1− δ

)]
≥ c1d̄ and

1− α
1 + α

δ

1− δ
≤ δd̄,

for some numerical constant c1 > 0. As a result,

c1d̄‖x̂R
K\S − x

?
K\S‖∞ ≤ (1− α)u+ 2δd̄(v + ρα).

Dividing both sides by c1d̄,

‖x̂R
K\S − x

?
K\S‖∞ ≤

c−1
1 (1− α)u

d̄
+ 2c−1

1 δ(v + ρα).

Using the triangle inequality, Lemma 19 now follows.
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C.11 Proof of Lemma 20

By Lemma 3 we know that

(Qx̂− αs)i

{
= −ραdi, x̂i > 0,

≤ 0, x̂i = 0.

Summing over i’s, we have∑
i

(Qx̂− αs)i = α
∑
i

dix̂i − α

≤ −ρα
∑
j:x̂j>0

dj = −ρα · Vol(support(x̂)),

where the first equality holds since 1>Qx̂ = 1>(αD + (1 − α)/2 · L)x̂ = α
∑

i dix̂i. Dividing
both sides by −ρα, we get

Vol(support(x̂)) ≤ 1− d>x̂
ρ

.

C.12 Proof of Lemma 21

This result follows from simple probability calculation. We have

P {∪i∈K(i is not connected to Kc)} = 1− P {∩i∈K(i is connected to Kc)}
= 1− (P {i is connected to Kc})k

= 1− (1− P {i is not connected to Kc})k

= 1− (1− (1− q)n−k)k

≥ 1− (1− (1− q)n)k.

Here, the second and fourth steps hold since each pair of nodes has an edge independently of all
other pairs. Now suppose that n is sufficiently large so that q ≤ 0.5. Then, we have (1 − q)n ≥
exp(−1.5c), which leads to

P {∪i∈K(i is not connected to Kc)} ≥ 1− (1− exp(−1.5c))k.

C.13 Proof of Lemma 22

Letting c̄ =
(

1−α
1+α

)(
1−δ
1+δ

)2
γ

1+δ , we can write ρ = ρ(δ) = c̄(1−α)p

(1+α)d̄2
. Following the same steps

as (25) (proof of Lemma 16), we can see

ρ > ρ] ⇐⇒ 2c̄pα · d̄ · E
[
d`]
]

+ c̄pq(1− α) · kd̄+ c̄pq(1− α)(n− k)E
[
d`]
]
> q(1 + α)d̄2

⇐⇒ 2αd̄(c̄pE
[
d`]
]
− qd̄) + (1− α)q(n− k)(c̄pE

[
d`]
]
− qd̄) (37)

− pq(1− α)(k − 1)d̄(1− c̄) > 0.

Since δ ≤ 0.1 and α ∈ [0.1, 0.9], we know that c̄ ≥ c′γ for some constant c′ > 0. Also, since q = c
n

while p = k = O (1) by Assumption 1, we have that γ = O (1), and thus{
2αd̄(c̄pE

[
d`]
]
− qd̄) + (1− α)q(n− k)(c̄pE

[
d`]
]
− qd̄) = O

(
d̄
)

;

pq(1− α)(k − 1)d̄(1− c̄) = O
(
kd̄
n

)
.
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Therefore, if n is sufficiently large, the first two terms on the right-hand side of (37) are positive and
much larger than the last term. This proves that ρ > ρ].

To see ρ < ρ\, it suffices to check(
1− α
1 + α

)2 p

d̄2
<

p(1− α)

d̄
[
(1 + α)d̄+ (1− α)p

] = ρ\.

Rearranging the terms, we equivalently need to show 2α(1+α)d̄ > (1−α)2p. Since d̄ ≥ p·(k−1),
we then have 2α(1 +α) · (k− 1) > (1−α)2 which, due to the assumption α ∈ [0.1, 0.9], holds for
any k ≥ 5.

C.14 Proof of Lemma 23

Denoting by 1 the vector whose entries are all ones, we have

QK\S,K\S = αDK\S,K\S +
1− α

2
(DK\S,K\S −AK\S,K\S)

= αDK\S,K\S +
1− α

2
(diag (A1)K\S,K\S −AK\S,K\S)

= αDK\S,K\S +
1− α

2
diag

(
AK\S,S∪Kc1S∪Kc

)
+

1− α
2

LK\S,K\S ,

where LK\S,K\S is the graph Laplacian of the sub-graph induced by AK\S,K\S .
Now assume ‖y‖∞ = 1. Without loss of generality, we will assume y1 = 1 (the same argument

holds in the case of y1 = −1). Then, by definition of graph Laplacian, it is easy to see (LK\S,K\S ·
y)1 ≥ 0, and so

(QK\S,K\S · y)1 ≥ αd1.

Hence, applying degree concentration to d1 (Lemma 14),

‖QK\S,K\S · y‖∞ ≥ (QK\S,K\S · y)1 ≥ αd1 ≥ (1− δ)αd̄,

with probability at least 1− 2e−c0δ
2d̄, proving the result.
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