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1 AUXILIARY LEMMAS AND THEIR PROOFS

Here, we prove the auxiliary lemmas that are used in the main proofs of the paper. (For completeness, we restate the lemma
statements).

Lemma 1.1. Let fp¨q satisfy assumptions 1-4 and 0 ă ε ď 1{2 and δ ă 1 be fixed constants. Then, if s ě 4B
κε2 log 2d

δ , the
local Hessian at the k-th worker satisfies

p1´ εqκ ď ∇2fkpwq “ Hkpwq ď p1` εqM, (1)

for all w P Rd and k P rKs with probability (w.p.) at least 1´ δ.

Proof. At the k-th worker which samples Sk observations from rns, the following is true by Matrix Chernoff (see Theorem
2.2 in Tropp (2011))

Ppλmin

`

∇2fkpwqq ď p1´ εqκ
˘

ď δ1 “ d

„

e´ε

p1´ εq1´ε

sκ{B

, (2)

Ppλmax

`

∇2fkpwqq ě p1` εqM
˘

ď δ2 “ d

„

eε

p1` εq1`ε

sM{B

. (3)

Now, using the inequality logp1´ εq ď ´ε?
1´ε

for 0 ď ε ă 1, we get

e´ε

p1´ εq1´ε
ď e´ε`ε

?
1´ε.

Further, utilizing the fact that
?

1´ ε ď 1
1`ε{2 , we get

e´ε`ε
?
1´ε ď e

´ε2

1`ε{2 ď e´ε
2
{4.

Hence, we have δ1 ď de´sκε
2
{4B . Further, using the fact that logp1` εq ě ε´ ε2{2, we get

eε

p1` εq1`ε
ď e´ε

2
{2`ε3{2 ď e´ε

2
{4,

where the last inequality follows from the fact that ε ď 1{2. Hence, δ2 ď de´sMε2{4B . Thus, by union bound and
subsequently using upper bounds on δ1 and δ2, we get

P
“

p1´ εqκI ď ∇2fkpwq ď p1` εqMI
‰

ě 1´ pδ1 ` δ2q

ě 1´ pde´sκε
2
{4B ` de´sMε2{4Bq

ě 1´ p2de´sκε
2
{4Bq,
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where the last inequality follows from the fact that κ ďM . Hence, the result follows by noting that

p1´ εqκI ď ∇2fkpwq ď p1` εqMI w. p. at least 1´ δ,

and requiring that δ ě 2de´sκε
2
{4B (or s ě 4B

κε2 log 2d
δ ).

Lemma 1.2. Let the function fp¨q satisfy assumptions 1-3, and step-size αkt that solves the line-search condition in Eq.
(5). Also, let 0 ă ε ď 1{2 and 0 ă δ ă 1 be fixed constants. Moreover, let the sample size s ě 4B

κε2 log 2d
δ . Then, the

LocalNewton update at the k-th worker satisfy

fkpwk
t`1q ´ f

kpwk
t q ď ´ψ||g

k
t ||

2 @ k P rKs,

w.p. at least 1´ δ, where ψ “ α‹β
Mp1`εq .

Proof. From Lemma 1.1, we know that fkp¨q is Mp1´ εq smooth with probability 1´ δ. M -smoothness of a function gp¨q
implies

gpyq ´ gpxq ď py ´ xqT∇gpxq ` M

2
||y ´ x||2 @ x,y P Rd. (4)

Hence,

fkpwk
t ´ αpkt q ´ f

kpwk
t q ď p´αpkt q

Tgkpwk
t q `

Mp1´ εq

2
α2||pkt ||

2. (5)

The above inequality is satisfied for all α P R. We know that αkt , the local step-size at worker k, satisfies the line-search
constraint in Eq. (5). Thus, for αkt P p0, 1s to exist that satisfies the line-search condition, it is enough to find α ą 0 that
satisfies

´αppkt q
THk

tp
k
t `

Mp1´ εq

2
α2}pkt }

2 ď ´αβppkt q
THk

tp
k
t , (6)

where we have used the fact that gkt “ Hk
tp

k
t . Thus, α must satisfy

Mp1´ εq

2
α}pkt }

2 ď p1´ βqppkt q
THk

tp
k
t . (7)

Using lemma 1.1, we know that for sufficiently large sample-size at the k-th worker, we get

p1´ εq∇2fpwq ĺ ∇2fkpwq ĺ p1` εq∇2fpwq (8)

with probability 1 ´ δ. Also, by κ-strong convexity of fp¨q, we know that ∇2fpwq ľ κI. Thus, the local line-search
constraint is always satisfied for

α ď
2p1´ βqκp1´ εq

Mp1` εq
.

Hence, if we choose α‹ ď 2p1´βqκp1´εq
Mp1`εq , or α‹ ď κp1´βq

M for ε ă 1{2, we are guaranteed to have the line-search condition
from Eq. (5) satisfied with αkt “ α‹. This is satisfied by the line search equation in Eq. (5). Hence, from the line-search
guarantee, we get

fkpwk
t`1q ´ f

kpwk
t q ď ´α

‹βppkt q
Tgkt (9)

“ α‹βpgkt q
T pHk

t q
´1gkt , (10)

ď ´α‹β
1

Mp1` εq
}gkt }

2, (11)

w.p. 1´ δ. Here, the last inequality uses the fact that fkp¨q is Mp1` εq–smooth, that is, Hk
t ĺ Mp1` εqI. This proves the

desired result.



2 PROOF OF THEOREM 4.3

The proofs for theorems in this paper use the auxiliary lemmas in Appendix 1.

Proof. The proof of the theorem is based on the following two high probability lower bounds:

Case 1:

fpw̄tq ´ fpw̄t`1q ě C}gpw̄tq}
2, (12)

where C “ α‹βp1´εq
2Mp1`εq is a constant, and

Case 2

fpw̄tq ´ fpw̄t`1q ě C1}gpw̄tq}
2 ´

ηΓ

κp1´ εq
, (13)

where C1 is a constant (ą 0) and η “ p1`
b

2 logp 1δ qq
b

1
sΓ.

We will prove the above result shortly, but let us complete the proof of the theorem assuming that Eq. (12) and Eq. (13) are
true.

Case 1 (using Eq. (12)) Invoking the κ strong convexity of the the function f we have

fpw̄tq ´ fpw
˚q ď

1

2κ
}gpw̄tq}

2, (14)

where w̄˚ is the unique global minimizer of the function f . Combining the last lower bound with equation (12) we obtain

fpw̄t`1q ´ fpw̄tq ď p1´ 2κCqpfpw̄tq ´ fpw
˚qq, (15)

with probability 1´ δ. Also note that

1 ą 1´ 2κC “ 1´
κα‹βp1´ εq

Mp1` εq
ą 0,

where the last inequality uses the definition of α‹ from Eq. (6). The completes the proof of Theorem 3.2.

Case 2 (using Eq. (13)) Using the same steps as before, and using the condition of Eq. (13), we obtain Theorem 3.2.

It remains to prove the claim (12) and (13).

Proof of the claim (12): Recall that for L “ 1, we have

wk
t`1 “ w̄t ´ α

k
t p

k
t , and w̄t`1 :“

1

K

K
ÿ

k“1

wk
t`1 “ w̄t ´

1

K

K
ÿ

k“1

αkt p
k
t ,

where the pkt “ pH
k
t q
´1gkt ,H

k
t “ pH

kq´1pw̄tq and gkt “ gkpw̄tq. Invoking the M-smoothness of the function fp¨q we
have

fpw̄tq ´ fpw̄t`1q ě
´M

2K2
}w̄t ´ w̄t`1}

2 ` xgpw̄tq, w̄t ´ w̄t`1y

ě
´M

2K2

›

›

›

›

›

K
ÿ

k“1

pαkt qp
k
t

›

›

›

›

›

2

` xgpw̄tq,
1

K

K
ÿ

k“1

αkt p
k
t y

piq
ě
´M

2K

K
ÿ

k“1

pαkt q
2}pkt }

2 ` xgpw̄tq,
1

K

K
ÿ

k“1

αkt p
k
t y

“
1

K

K
ÿ

k“1

ˆ

αkt pp
k
t q
Tgpw̄tq ´

M

2
pαkt q

2}pkt }
2

˙

(16)



where the inequality (i) uses the following fact
›

›

›

›

›

1

K

K
ÿ

k“1

ak

›

›

›

›

›

2

ď
1

K

K
ÿ

k“1

}ak}2, (17)

for all vectors a1,a2, ¨ ¨ ¨ ,aK P Rd.

We now complete the proof by using the following bound on the first term in Eq. (16). In particular, In the first case, we
show that, for all k P rKs provided

s Á

ˆ

Γ2

ε21G
2

logpd{δq

˙

,

and }gkpw̄tq} ě G, where ε1 ą 0 (small number), we have

αkt pp
k
t q
Tgpw̄tq ě

ˆ

ψ ´
ε1

κp1´ εq

˙

}gkt }
2 `

κp1´ εqpαkt q
2

2
}pkt }

2 (18)

with probability at least 1´ 4δ.

Let us substitute Eq. (18) in equation (16), we get

fpw̄tq ´ fpw̄t`1q ě
1

K

K
ÿ

k“1

„ˆ

ψ ´
ε1

κp1´ εq

˙

}gkt }
2 ´

pM ´ κp1´ εqqpαkt q
2

2
}pkt }

2



ě
1

K

K
ÿ

k“1

„ˆ

ψ ´
ε1

κp1´ εq

˙

}gkt }
2 ´

pM ´ κp1´ εqqpαkt q
2

2κ2p1´ εq2
}gkt }

2



(19)

where the last inequality follows from the fact that the function fk is κp1´ εq strongly convex with probability 1´ δ, and
thus

}pkt }
2 :“ }pHk

t q
´1gkt }

2
2 ď }pH

k
t q
´1}22}g

k
t }

2 ď
1

κ2p1´ εq2
}gkt }

2. (20)

with probability 1´ δ. Now, using the upper bound on αkt , we have

fpw̄tq ´ fpw̄t`1q ě
1

K

K
ÿ

k“1

„ˆ

ψ ´
ε1

κp1´ εq

˙

}gkt }
2 ´

pM ´ κp1´ εq2q

2

α‹2

κ2p1´ εq2
}gkt }

2



“

ˆ

ψ ´
ε1

κp1´ εq
´
pM ´ κp1´ εq2q

2

α‹2

κ2p1´ εq2

˙

1

K

K
ÿ

k“1

}gkt }
2

ě C
1

K

K
ÿ

k“1

}gkt }
2, (21)

with probability exceeding 1´ 6δ, where C “ p1´εqψ
2 ´ ε1

κp1´εq , and the last bound follows by substituting the value of α˚

from equation (6) and using the fact that 0 ă ε ă 1{2. Moreover, using Eq. (17), we get

}gp¨q}2 ď
1

K

K
ÿ

k“1

}gkp¨q}2,

which prove Eq. (12).

It now remains to prove bound (18).

Proof of bound (18): From the uniform subsampling property (similar to Lemma 1.1, see Appendix 4.2), we get

|ppkt q
Tgpw̄tq ´ pp

k
t q
Tgkpw̄tq| ď ε1}pp

k
t q}}g

kpw̄tq} w.p. 1´ δ. (22)



Thus,

ppkt q
Tgpw̄tq ě pp

k
t q
Tgkpw̄tq ´ ε1}pp

k
t q}}g

kpw̄tq} (23)

w.p. 1´ δ. Now, since the function fk is κp1´ εq strongly-convexity with probability 1´ δ, we have the following bound
w.p. at least 1´ δ:

αkt pp
k
t q
Tgkt ě pf

kpw̄tq ´ f
kpwk

t`1qq `
κp1´ εq

2
pαkt q

2}pkt }
2 (24)

Combing the equations (23)-(24) and using Lemma 1.2 we have

αkt pp
k
t q
Tgpw̄tq ě pf

kpw̄tq ´ f
kpwk

t`1qq `
κp1´ εq

2
pαkt q

2}pkt }
2 ´ ε1}pp

k
t q}}g

kpw̄tq}

piq
ě ψ}gkt }

2 `
κp1´ εq

2
pαkt q

2}pkt }
2 ´ ε1}pp

k
t q}}g

kpw̄tq}

piiq
ě ψ}gkt }

2 `
κp1´ εqpαkt q

2

2
}pkt }

2 ´
ε1

κp1´ εq
}gkpw̄tq}

2

“

ˆ

ψ ´
ε1

κp1´ εq

˙

}gkt }
2 `

κp1´ εqpαkt q
2

2
}pkt }

2

with probability exceeding 1´ 4δ, where the inequality (i) follows from Lemma 1.2 and inequality (ii) follows from (20).

Note that the bound in (18) hold for all k P rKs with probability 1´ δ1 (thus, the sample size increases by a factor of K in
the logp¨q term). This concludes the Case 1 of our proof. We now move to Case 2.

Proof of the claim (13): We now continue with the same analysis and show the following

fpw̄tq ´ fpw̄t`1q ě C1
1

K

K
ÿ

k“1

}gkt }
2 ´

ηΓ

κp1´ εq
, (25)

with probability at least 1´ 4δ.

In this case, we show that the requirement of a lower bound on }gkpw̄tq} and s can be relaxed at the expense of getting hit
by an error floor. In particular, we show that

αkt pp
k
t q
Tgpw̄tq ě ψ}gkt }

2 `
κp1´ εqpαkt q

2

2
}pkt }

2 ´
ηΓ

κp1´ εq
(26)

with probability at least 1´ 4δ, where η “ p1`
b

2 logp 1δ qq
b

1
sΓ. Substituting this yields the bound of Eq. (25).

Proof of bound Eq. (26) : From the uniform subsampling property (see Appendix 4.1), we get

|ppkt q
Tgpw̄tq ´ pp

k
t q
Tgkpw̄tq| ď η}ppkt q} w.p. 1´ δ. (27)

where η “ p1`
b

2 logp 1δ qq
b

1
sΓ. Thus,

ppkt q
Tgpw̄tq ě pp

k
t q
Tgkpw̄tq ´ η}pp

k
t q} (28)

w.p. 1´ δ. Now, since the function fk is κp1´ εq strongly-convexity with probability 1´ δ, we have the following bound
w.p. at least 1´ δ:

αkt pp
k
t q
Tgkt ě pf

kpw̄tq ´ f
kpwk

t`1qq `
κp1´ εq

2
pαkt q

2}pkt }
2 (29)

Combing the equations (28)-(29) and using Lemma 1.2 we have

αkt pp
k
t q
Tgpw̄tq ě pf

kpw̄tq ´ f
kpwk

t`1qq `
κp1´ εq

2
pαkt q

2}pkt }
2 ´ η}ppkt q}

piq
ě ψ}gkt }

2 `
κp1´ εq

2
pαkt q

2}pkt }
2 ´ η}ppkt q}

piiq
ě ψ}gkt }

2 `
κp1´ εqpαkt q

2

2
}pkt }

2 ´
η

κp1´ εq
Γ



with probability exceeding 1´ 4δ, where the inequality (i) follows from Lemma 1.2 and inequality (ii) follows from (20)
and the fact that }gkpw̄tq} ď Γ.

3 PROOF OF THEOREM 4.4

Proof. Recall from perturbed iterate analysis

w̄t`1 “ w̄t0 ´

t
ÿ

τ“t0

p̄τ , (30)

where p̄τ “
1
K

řK
k“1 α

k
τp

k
τ is the average descent direction and pkτ “ pH

k
τ q
´1gkτ is the local descent direction at the k-th

worker at time τ .

Similar to the proof of theorem 3.2, we next invoke the M -smoothness property of fp¨q to get

fpw̄t0q ´ fpw̄t`1q ě
´M

2
}

t
ÿ

τ“t0

p̄τ }
2 ` xgpw̄t0q,

t
ÿ

τ“t0

p̄τ y

“
´M

2
}

1

K

K
ÿ

k“1

t
ÿ

τ“t0

αkτp
k
τ }

2 `
1

K

K
ÿ

k“1

t
ÿ

τ“t0

xgpw̄t0q, α
k
τp

k
τ y

ě
´M

2K

K
ÿ

k“1

}

t
ÿ

τ“t0

αkτp
k
τ }

2 `
1

K

K
ÿ

k“1

t
ÿ

τ“t0

xgpw̄t0q, α
k
τp

k
τ y, (31)

where the last inequality uses the fact
˜

K
ÿ

k“1

}ak}

¸2

ď K
K
ÿ

k“1

}ak}
2, @ ak P Rd, k P rKs. (32)

Similarly, by κp1´ εq strong-convexity of fkp¨q, we get

fkpwk
t0q ´ f

kpwk
t`1q ď

´κp1´ εq

2
}

t
ÿ

τ“t0

αkτp
k
t }

2 ` xgkt ,
t
ÿ

τ“t0

αkτp
k
τ y, (33)

with probability 1´ δ. The above inequality, when averaged across k, becomes

1

K

K
ÿ

k“1

`

fkpwk
t0q ´ f

kpwk
t`1q

˘

ď
´κp1´ εq

2K

K
ÿ

k“1

}

t
ÿ

τ“t0

αkτp
k
t }

2 `
1

K

K
ÿ

k“1

t
ÿ

τ“t0

xgkt , α
k
τp

k
τ y (34)

Moreover, similar to Eq. (27), we get

|rTgpw̄tq ´ rTgkpw̄tq| ď η}r} w.p. 1´ δ. (35)

where η “ p1`
a

2 logpmδ qq
b

1
sΓ. Keeping r “ αkτp

k
τ and w “ w̄t0 , we get

pαkτp
k
τ q
Tgpw̄t0q ě pα

k
τp

k
τ q
Tgkpw̄t0q ´ ηα

k
τ }p

k
τ }, (36)

w. p. 1´ δ, where η “ p1`
a

2 logpmδ qq
b

1
sΓ.

Now, after combining inequalities (31) and (34) using (36) to eliminate the terms 1
K

řK
k“1

řt
τ“t0

xgpw̄t0q, α
k
τp

k
τ y and

1
K

řK
k“1

řt
τ“t0

xgkpw̄t0q, α
k
τp

k
τ y, we get

fpw̄t0q ´ fpw̄t`1q ě
1

K

K
ÿ

k“1

pfkpw̄k
t0q ´ f

kpw̄k
t`1q ´

pM ´ κp1´ εqq

2K

K
ÿ

k“1

p}

t
ÿ

τ“t0

αkτp
k
t }

2q

´
1

K

K
ÿ

k“1

t
ÿ

τ“t0

ηαkτ }p
k
τ }. (37)



Also, from Lemma 1.2, we have

fkpw̄k
t0q ´ f

kpw̄k
t`1q ě ψ

t
ÿ

τ“t0

}gkτ }
2. (38)

Using above, we get

fpw̄t0 ´ fpw̄t`1q ě
1

K
ψ

K
ÿ

k“1

t
ÿ

τ“t0

}gkτ }
2 ´

pM ´ κp1´ εqq

2K

K
ÿ

k“1

p}

t
ÿ

τ“t0

αkτp
k
t }

2q

´
1

K

K
ÿ

k“1

t
ÿ

τ“t0

ηαkτ }p
k
τ }. (39)

Using triangle inequality above, we get

fpw̄t0q ´ fpw̄t`1q ě
1

K
ψ

K
ÿ

k“1

t
ÿ

τ“t0

}gkτ }
2 ´

pM ´ κp1´ εqq

2K

K
ÿ

k“1

t
ÿ

τ“t0

pαkτ q
2}pkτ }

2

´
1

K

K
ÿ

k“1

t
ÿ

τ“t0

ηαkτ }p
k
τ }. (40)

Also, since αkt ď 1 and }pkτ } ď
1

κp1´εq}g
k
τ }, we get

fpw̄t0 ´ fpw̄t`1q ě
1

K
ψ

K
ÿ

k“1

t
ÿ

τ“t0

}gkτ }
2 ´

pM ´ κp1´ εqq

2Kκ2p1´ εq2

K
ÿ

k“1

t
ÿ

τ“t0

}gkτ }
2

´
1

K

K
ÿ

k“1

t
ÿ

τ“t0

η

κp1´ εq
}gkτ }

“
C

K

K
ÿ

k“1

t
ÿ

τ“t0

}gkτ }
2 ´

ηLΓ

κp1´ εq
(41)

where C “ ψ ´ pM´κp1´εqq
2Kκ2p1´εq2 , which proves the claim.

4 CONCENTRATION INEQUALITIES: WITH AND WITHOUT ERROR FLOOR

Consider a vector v P Rd. We have defined the following: gpw̄tq “
1
n

ř

i gipw̄tq and gkpw̄tq “
1
s

ř

iPS gipw̄tq, where gi
denotes the local gradient in worker machine i, and S is the random set consisting data points for machine k. Let us do the
calculation in two settings:

4.1 WITH ERROR FLOOR

Here we have the error floor. Note that having an error floor is not restrictive, if we go for the adaptive variation of the
algorithm, where we run GIANT for the final iterations. Since GIANT has no error floor, the final accuracy won’t be affected
by the error floor obtained in the first few steps of the algorithm (check if this is true).

Lemma 4.1 (McDiarmid’s Inequality). Let X “ X1, . . . , Xm be m independent random variables taking values from some
set A, and assume that f : Am Ñ R satisfies the following condition (bounded differences ):

sup
x1,...,xm,x̂i

|fpxi, . . . , xi, . . . , xmq ´ fpxi, . . . , x̂i, . . . , xmq| ď ci,

for all i P t1, . . . ,mu. Then for any ε ą 0 we have

P rfpX1, . . . , Xmq ´ ErfpX1, . . . , Xmqs ě εs ď exp

ˆ

´
2ε2

řm
i“1 c

2
i

˙

.



The property described in the following is useful for uniform row sampling matrix.

Let S P Rnˆs be any uniform sampling matrix, then for any matrix B “ rb1, . . . ,bns P Rdˆn with probability 1´ δ for
any δ ą 0 we have,

}
1

n
BSSJ1´

1

n
B1} ď p1`

c

2 logp
1

δ
qq

c

1

s
max
i
}bi}, (42)

where 1 is all ones vector.

Let us first see the justification of the above statement.The vector B1 is the sum of column of the matrix B and BSSJ1 is
the sum of uniformly sampled and scaled column of the matrix B where the scaling factor is 1?

sp with p “ 1
n . If pi1, . . . , isq

is the set of sampled indices then BSSJ1 “
ř

kPpi1,...,isq
1
spbk.

Define the function fpi1, . . . , isq “ } 1nBSSJ1´ 1
nB1}. Now consider a sampled set pi1, . . . , ij1 , . . . , isq with only one

item (column) replaced then the bounded difference is

∆ “ |fpi1, . . . , ij , . . . , isq ´ fpi1, . . . , ij1 , . . . , isq|

“ |
1

n
}

1

sp
bi1j ´

1

sp
bij }| ď

2

s
max
i
}bi}.

Now we have the expectation

Er}
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n
B1}2s ď

n

sn2

n
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i“1

}bi}
2 “

1

s
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i
}bi}

2

ñ Er}
1

n
BSSJ1´

1

n
B1}s ď

c

1

s
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i
}bi}.

Using McDiarmid inequality (Lemma 4.1) we have

P

«

}
1

n
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1

n
B1} ě

c

1

s
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i
}bi} ` t

ff

ď exp

ˆ

´
2t2

s∆2

˙

.

Equating the probability with δ we have

expp´
2t2

s∆2
q “ δ

ñt “ ∆

c

s

2
logp

1

δ
q “ max

i
}bi}

c

2

s
logp

1

δ
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Finally we have with probability 1´ δ

}
1

n
BSSJ1´

1

n
B1} ď p1`

c

2 logp
1

δ
qq

c

1

s
max
i
}bi},

and hence equation (42) is justified.

We now apply the above in distributed gradient estimation. For the k-th worker machine, we have

}
1

n
BSkS

J
k 1´

1

n
B1} ď p1`

c

2 logp
1

δ
qq

c

1

s
max
i
}bi},

with probability 1´ δ, which implies

}gkpw̄tq ´ gpw̄tq} ď p1`

c

2 logp
1

δ
qq

c

1

s
Γ,

with probability at least 1´ δ provided }gipw̄tq} ď Γ for all i P rms

Writing, η “ p1`
b

2 logp 1δ qq
b

1
sL, we succinctly write

|xv,gkpw̄tq ´ gpw̄tqy| ď }v}}g
kpw̄tq ´ gpw̄tq} ď η}v}

with probability at least 1´ δ, where η “ Op1{
?
sq is small.



4.2 WITHOUT ERROR FLOOR

In this section, we analyze the same quantity using vector Bernstein inequality. Intuitively, we show that unless gpw̄tq is too
small, we can overcome the error floor shown in the previous calculation. In particular, we assume that

}gkpw̄tq} ě G.

The idea here is to use the vector Bernstein inequality. Using the notation of Appendix 4.1, gkpw̄tq “
1
nBSSJ1, where S

is appropriately defined sampling matrix. Also gpw̄tq “
1
nB1. For the k-th machine,

gkpw̄tq “
1

s

ÿ

iPS
gipw̄tq,

and so,

gkpw̄tq ´ gpw̄tq “
1

s

ÿ

iPS
pgipw̄tq ´ gpw̄tqq,

with |S| “ s. We also have }gipw̄tq ´ gpw̄tq} ď Γ` Γ “ 2Γ, and E}gipw̄tq ´ gpw̄tq}
2 ď 4Γ2. Using vector Bernstein

inequality with t “ ε1}g
k}, we obtain

P
`

}gkpw̄tq ´ gpw̄tq} ě ε1}g
kpw̄tq}

˘

ď d expp´s
ε21}g

k}2

32Γ2
` 1{4q ď d expp´s

ε21G
2

32L2
` 1{4q.

So, as long as
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ε21s
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,

or,

s Á
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ε21G
2
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,

we have,

|xv,gkpw̄tq ´ gpw̄tqy| ď }v}}g
kpw̄tq ´ gpw̄tq} ď ε1}v}}g

k}

with probability at least 1´ δ.

5 EXPERIMENTS: ADDITIONAL DETAILS AND PLOTS

In this section, we include additional details regarding the experiments that couldn’t be added in the main paper due to space
constraints.

Hyperparameters for Local SGD and BFGS: In Table 1, we provide the step-sizes for local SGD and BFGS that were
obtained through hyperparameter tuning, where s “ n{K, n is the number of training examples in the dataset and K “ 100.

Dataset Samples per worker (s) Local SGD BFGS
w8a 480 10{s 100

Covtype 5000 10{s 1
EPSILON 4000 500{s 10

a9a 320 10{s 1
ijcnn1 490 100{s 10

Table 1: Step-sizes obtained using tuning for Local SGD and BFGS for several datasets

Running Times for a9a and ijcnn1 Datasets: In Figure 1, we plot the results on AWS Lambda for a9a and ijcnn1 datasets.
Again, adaptive LocalNewton considerable outperforms Local SGD, GIANT and BFGS in terms of end-to-end runtimes.

Convergence w.r.t. Communication Rounds: In our main paper, we skipped the plots for convergence behavior w.r.t.
communication rounds due to space constraints. In Figure 2, we show the convergence of adaptive LocalNewton, GIANT,
Local SGD and BFGS with communication rounds for all the five datasets considered in this paper. Again, LocalNewton sig-
nificantly outperforms existing schemes by reducing the communication rounds by at least 60% to reach the same training
loss.
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Figure 1: Experiments on the a9a and ijcnn1 datasets on AWS Lambda
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(c) EPSILON dataset
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(d) a9a dataset
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Figure 2: Comparing LocalNewton with competing schemes w.r.t. communication rounds. Yellow dots on adaptive Local-
Newton denote transition from larger to smaller values of L (or to GIANT if L “ 1).


	Auxiliary Lemmas and their Proofs
	Proof of Theorem 4.3
	Proof of Theorem 4.4
	Concentration Inequalities: With and without Error Floor
	With error floor
	Without error floor

	Experiments: Additional Details and Plots

