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Abstract

To address the communication bottleneck prob-
lem in distributed optimization within a master-
worker framework, we propose LocalNewton, a
distributed second-order algorithm with local av-
eraging. In LocalNewton, the worker machines
update their model in every iteration by finding a
suitable second-order descent direction using only
the data and model stored in their own local mem-
ory. We let the workers run multiple such iterations
locally and communicate the models to the master
node only once every few (say L) iterations. Lo-
calNewton is highly practical since it requires only
one hyperparameter, the number L of local iter-
ations. We use novel matrix concentration based
techniques to obtain theoretical guarantees for Lo-
calNewton, and we validate them with detailed
empirical evaluation. To enhance practicability, we
devise an adaptive scheme to choose L, and we
show that this reduces the number of local itera-
tions in worker machines between two model syn-
chronizations as the training proceeds, successively
refining the model quality at the master. Via exten-
sive experiments using several real-world datasets
with AWS Lambda workers and an AWS EC2 mas-
ter, we show that LocalNewton requires fewer than
60% of the communication rounds (between mas-
ter and workers) and less than 40% of the end-
to-end running time, compared to state-of-the-art
algorithms, to reach the same training loss.

1 INTRODUCTION

An explosion in data generation and data collection capabil-
ities in recent years has resulted in the segregation of com-
puting and storage resources. Distributed machine learning
is one example where each worker machine processes only

a subset of the data, while the master machine coordinates
with workers to learn a good model. Such coordination can
be time-consuming since it requires frequent communica-
tion between the master and worker nodes, especially for
systems that have large compute resources, but are bottle-
necked by communication costs.

Communication costs in distributed optimization can be
broadly classified into two types—i(a) latency cost and (b)
bandwidth cost [Demmell 2013]]. Latency is the fixed cost
associated with sending a message, and it is generally in-
dependent of the size of the message. Bandwidth cost, on
the other hand, is directly proportional to the size of the
message. Many recent works have focused on reducing the
bandwidth cost by reducing the size of the gradient or the
model to be communicated using techniques such as sparsi-
fication [Acharya et al.| 2019, Stich et al.| 2018]], sketching
[Ivkin et al., 2019, |Konecny et al.,[2016]] and quantization
[Ghosh, Avishek et al., 2020, [Lin et al., 2017, |Bernstein
et al., 2018} [Dong et al.|[2019} Shen et al., [2020]]. Schemes
that perform inexact updates in each iteration, however, can
increase the number of iterations required to converge to
the same quality model, both theoretically and empirically
[Acharya et al.} 2019, Mayekar and Tyagi|, 2020]]. This can,
in turn, increase the total training time in systems where
latency costs dominate bandwidth costs.

One setting where latency costs may outweigh bandwidth
costs is federated learning, where the computation is per-
formed locally at the mobile device (which is generally the
source of the data) due to a high-cost barrier in transferring
the data to traditional computing platforms [Konecny et al.,
2016]. Such mobile resources (e.g., mobile phones, wear-
able devices, etc.) have reasonable compute power, but they
can be severely limited by communication latency (e.g., in-
adequate network connection to synchronize frequent model
updates). For this reason, schemes like Local Stochastic
Gradient Descent (Local SGD) have become popular, since
they try to mitigate the communication costs by performing
more [ocal computation at the worker machines, thus sub-
stantially reducing the number of communication rounds
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Figure 1: Training loss and testing accuracy versus communication rounds for Adaptive LocalNewton and existing schemes

for communication-efficient optimization.

required [McMabhan et al., 2017].

Serverless systems—such as Amazon Web Services (AWS)
Lambda and Microsoft Azure Functions—are yet another ex-
ample where high communication latency between worker
machines dominates the running time of the algorithm
[Hellerstein et al., [2018]]. Such systems are gaining pop-
ularity due to the ease-of-management, greater elasticity
and high scalability [Jonas et al),2019]. These systems use
cloud storage (e.g., AWS S3) to store enormous amounts of
data, while using a large number of low-quality workers for
large-scale computation. Naturally, the communication be-
tween the high-latency storage and the commodity workers
is extremely slow [e.g., seeJonas et al.,[2017]], resulting in
impractical end-to-end times for many popular optimization
algorithms such as SGD [Hellerstein et al., | 2018]|. Further-
more, communication failures between the cloud storage
and serverless workers consistently give rise to stragglers,
and this introduces synchronization delays [Gupta et al.|
2020a]].

These trends suggest that optimization schemes that reduce
communication rounds between workers are highly desir-
able. In this paper, we go one-step forward—we propose
and analyze a second order method with local computations.
Being a second order algorithm, the iteration complexity
of LocalNewton is inherently low. Moreover, its local na-
ture further cuts down the communication cost between the
worker and the master node. To the best of our knowledge,
this is the first work to propose and analyze a second order
optimization algorithm with local averaging.

Additionally, in this paper, we introduce an adaptive variant
of the LocalNewton algorithm, namely Adaptive LocalNew-
ton. This algorithm chooses the number of local iterations
adaptively at the master after each communication round by
observing the change in training loss. Thus, it further refines
the iterates obtained through LocalNewton by adaptively
and successively reducing the number of local iterations,
thereby improving the quality of the model updates. Fur-
thermore, when the number of local iterations, L, reduces to
1, Adaptive LocalNewton automatically switches to a stan-
dard second order optimization algorithm, namely GIANT,
proposed in [[Wang et al.|[2018].
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In Sec. 4] we show that the iterates of LocalNewton converge
to a norm ball (with small radius) around the global minima.
From this point of view, we may think of LocalNewton as
an initialization algorithm, rather than an optimization one;
since it takes the iterates close to the optimal point in only a
few rounds of communication. After reaching sufficiently
close to the solution point, one may choose some standard
optimization algorithm to reach to the solution. In Adaptive
LocalNewton, we first exploit the fast convergence of Lo-
calNewton (L > 1), and afterwards, when L = 1, Adaptive
LocalNewton switches to the standard optimization algo-
rithm (e.g., GIANT [Wang et al., 2018]]).

Our contributions. Inspired by recent progress in local
optimization methods (that reduce communication cost by
limiting the frequency of synchronization) and distributed
and stochastic second order methods (that use the local
curvature information), we propose a local second-order
algorithm called LocalNewton. The proposed LocalNewton
method saves on communication costs in two ways. First,
it updates the models at the master only sporadically, thus
requiring only one communication round per multiple it-
erations. Second, it uses the second-order information to
reduce the number of iterations, and hence it reduces the
overall rounds of communication.

Important features of LocalNewton include:

1. Simplicity: In LocalNewton, each worker takes only a
few Newton steps [Boyd and Vandenberghel |2004] on local
data, agnostic of other workers. These local models are then
averaged once every L(> 1) iterations at the master node.

2. Practicality: Unlike many first-order and distributed
second-order schemes, LocalNewton does not require hy-
perparameter tuning for step-size, mini-batch size, etc., and
the only hyperparameter required is the number of local
iterations L. We also propose Adaptive LocalNewton, an
adaptive version which automatically reduces L as the train-
ing proceeds by monitoring the training loss at the master.

3. Convergence guarantees: In general, proving convergence
guarantees for local algorithms is not straightforward. Only
recently, it has been proved [Stich, 2018] that local SGD con-
verges as fast as SGD, thereby explaining the well-studied
empirical successes [Konecny et al., 2016]]. In this paper,



we develop novel techniques to highlight the convergence
behaviour of LocalNewton.

4. Reduced training times: We implement LocalNewton on
the Pywren framework [Jonas et al., [2017] using AWS
Lambdzﬂ workers and an AWS ECZE] master. Through exten-
sive empirical evaluation, we show that the significant sav-
ings in terms of communication rounds translate to savings
in running time on this high-latency distributed computing
environment.

5. Adaptivity: We propose Adaptive LocalNewton, which
is an adaptive variant of the LocalNewton algorithm. In the
adaptive scheme, based on the change in function objective
value, the master modulates the number of local iterations
at the worker machines. This improves the quality of the
model updates as discussed in detail in Sec. 3.2

6. LocalNewton as an initialization algorithm: Since the con-
vergence guarantees of LocalNewton (see Sec. ) only en-
sure that the iterates stay in a norm ball around the minima,
one may rethink LocalNewton as an initialization algorithm,
rather than an optimization one. In only a very few commu-
nication rounds, LocalNewton takes the iterates very close
to the optimal solution. After that, our algorithm switches
to a standard second-order algorithm, GIANT [Wang et al.|
2018].

Fig. |1] illustrates savings due to Adaptive LocalNewton,
where we plot training loss and test accuracy with communi-
cation rounds, for several popular communication-efficient
schemes for logistic regression on the w8a dataset [Chang
and Lin| 2011]] (see Sec. [5] for a details on experiments).
Observe that Adaptive LocalNewton reaches close to the op-
timal training loss very quickly, when compared to schemes
like Local SGD [Konecny et al.l 2016/ [Stich, 2018]], GIANT
[Wang et al.,|2018]] and BFGS [Fletcher} 2013].

Related Work. In recent years, schemes such as local SGD
have gained popularity, as they are communication-efficient
due to only sporadic model updates at the master [[Konecny
et al., 2016, McMahan et al.,2017]]. Such schemes that show
great promise have eluded a thorough theoretical analysis un-
til recently, when it was shown that local SGD converges at
the same rate as mini-batch SGD [Stich} 2018 [Haddadpour
et al., 2019, |IDieuleveut and Patel, [2019]. Similar ideas that
reduce communication by averaging the local models spo-
radically have also been applied in training neural networks
to improve the training times and/or model performance
[Lin et al., 2020l |Gupta et al., [2020b]]. Apart from local
first-order methods, many distributed second-order (also
known as Newton-type) algorithms have been proposed to
reduce communication (e.g., Jadbabaie et al.| [2009] and
Tutunov et al.|[2019] propose second-order algorithms in a
decentralized setting where communication happens over

' A high-latency serverless computing platform.
2A traditional serverful computing platform.
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a predefined graph). More recently, many communication-
efficient second-order methods were proposed in the cen-
tralized setting, e.g., see [Wang et al.l 2018, Shamir et al.|
2014, |Zhang and Lin, 2015} Smith et al., 2016, [Reddi et al.}
2015], |Duenner et al.| [2018| [Derezinski and Mahoneyl 2019,
Derezinski et al., (2020, |Ghosh et al., [2020alb]]. Such meth-
ods use both the gradient and the curvature information to
provide an order of improvement in convergence, compared
to vanilla first-order methods. This is done at the cost of
more local computation per iteration, which is acceptable
for systems with high communication latency. However,
such algorithms require at least two communication rounds
(for averaging gradients and the second-order descent direc-
tion), and a thorough knowledge of a fundamental trade-off
between communication and local computation is still lack-
ing for these methods. Stochastic second order optimization
theory has been developed recently [Roosta-Khorasani and
Mahoney, |2016albl | Xu et al.,[2020]], and second order im-
plementations motivated by this theory have been shown to
outperform state-of-the-art [Yao et al.,[2019, [2020].

2 PROBLEM FORMULATION

We first define the notation used and then introduce the basic
problem setup considered in this paper.

Notation. Throughout the paper, vectors (e.g., g) and matri-
ces (e.g., H) are represented as bold lowercase and upper-
case letters, respectively. For a vector g, |g| denotes its /o
norm, and ||H |5 denotes the spectral norm of matrix H. The
identity matrix is denoted as I, and the set {1,2,--- ,n}
is denoted as [n], for all positive integers n. Further, we
use superscript (e.g., g*) to denote the worker index and
subscript (e.g., g;) to denote the iteration counter (i.e., time
index), unless stated otherwise.

Problem Setup. We are interested in solving empirical risk
minimization problems of the following form in a distributed

fashion
{f(vv> W <w>} ,

where f;(-) : RY — R, forall j € [n] = {1,2,---,n},
models the loss of the j-th observation given an underlying
parameter estimate w € R?. In machine learning, such
problems arise frequently, e.g., logistic and linear regression,
support vector machines, neural networks and graphical
models. Specifically, in the case of logistic regression,

(

min
weRd

ey

T
W X

Fi(w) = £5(w"x;) = log(1+ e %) + Twl?,

where £;(-) is the loss function for sample j € [n] and 7
is an appropriately chosen regularization parameter. Also,
X = [x1,X2,  ,X,] € R¥" is the sample matrix con-
taining the input feature vectors x; € R, j € [n], and
Yy = [y1,92, - ,yn] is the corresponding label vector.



Hence, (x;,y;) together define the j-th observation and
(X, y) define the training dataset.

For such problems, the gradient and the Hessian at the ¢-th
iteration are given by

1 < 1 en
g =~ >, VFi(we) and Hy = — 3 V2f; (wi),
7=1 7=1
respectively, where w; is the model estimate at the ¢-th
iteration.

Data distribution at each worker: Let there be a total of
K workers. We assume that the k-th worker is assigned
a subset S < [n], forall k € [K] = {1,2,---, K}, of
the n data points, chosen uniformly at random without
replacementE] Let the number of samples at each worker
be s = |S;| V k € [K], where s « n in practice. Also,
by the virtue of sampling without replacement, we have
S1uSu---USK = [n]and §;nS; = P foralli, j € [K].
Hence, the number of workers is given by K = n/s.

3 ALGORITHMS

In this section, we propose two novel algorithms for dis-
tributed optimization. First, we propose LocalNewton, a sec-
ond order algorithm with local averaging. Subsequently, we
also propose an adaptive variant of LocalNewton. Here Lo-
calNewton acts as a good initialization scheme that pushes
its iterates close to the optimal solution in a small number
of communication rounds. Finally, a standard second-order
algorithm is used to converge to the optimal solution.

3.1 LOCALNEWTON

We consider synchronous second-order methods for dis-
tributed learning, where local models are synced after every
L iterations. Let Z, < [t] be the set of indices where the
model is synced, that is, Z; = [0,L,2L,--- ,tg], where
to is the last iteration just before ¢ where the models were
synced.

At the k-th worker in the ¢-th iteration, the local function
value (at the local iterate wF) is

fEowh) = = ) fwh)

JESk

@)

The k-th worker tries to minimize the local function value
in Eq () in each iteration. The corresponding local gradient

3This corresponds simply to partitioning the dataset and as-
signing an equal number of observations to each worker, if the
observations are independent and identically distributed. If not,
randomly shuffling the observations and then performing a data-
independent partitioning is equivalent to uniform sampling without
replacement.

1
2
3
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Algorithm 1: LocalNewton

Input : Local function f*(-) at the k-th worker; Initial
iterate W, € R%; Line search parameter
0 < 8 < 1/2; Number of iterations 7', Set
Ir € {1,2,--- ,T} where models are synced

for k = 1 to K in parallel do
Initialization: w§ = W,
fort =0toT —1do
if t € Z1 then
// Master averages the local
models
_ 1 K
Wi = 2h1 W
Wf = V_Vt
end
// Compute the local gradient
g*(wy) = V.5 (wy).
// Compute the update direction
pf = HF(wh)~'g" (w})
t t t
Find step-size o using line search (Eq. (3))
Update model: wf, , = wi — afpf

k
t

end
end

gF and local Hessian HY, respectively, at k-th worker in
t-th iteration can be written as

1 1
gk = ; > Vfi(wf) and Hy = ; VR fi(w).
JESK JESK

Let us consider the following LocalNewton update at the
k-th worker and (¢ + 1)-st iteration:

whk wk — of HF(wh) " 1gh(wF), ifte¢Z, 3)
t+1 =) = EETE () —1 ok (= :
Wy —af HY(Wy) 7 'gh (W),  ift ey,

where W, = & 3% 'wk V¢, and o} is the step-size at the
k-th worker at iteration ¢ [

Also, define the local descent direction at the k-th worker
at iteration ¢ as p¥ = of H*(wF)~!g¥(wF) and similarly
define p;

% Zszl pF. We can see that W; 1 = W; — Py.
Detailed steps for LocalNewton are provided in Algorithm

il

Note that w; is not explicitly calculated for all ¢, but only
for t € Z,. However, we will use the technique of perturbed
iterate analysis and show the convergence of the sequence
f(w1), f(W2), -+, f(W¢) to f(w*). In the next section,
we present Adaptive LocalNewton, an algorithm to adap-
tively choose the number of local iterations, L.

*In practice, one need not calculate the exact
H*(wi) 'g®(wf), and efficient algorithms like conjugate

gradient descent can be used [[Shewchuk, |[1994].
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Algorithm 2: Adaptive LocalNewton

Input : Minimum decrement §(> 0) in global loss
function;

Initialization: f,,., = f(Wo), Number of local
iterations L, Set Zr < {1,2,--- , T} where models are
synced every L local iterations

fort =1t0oT —1do

// k—th worker runs
LocalNewton locally to get wf
Workers run Algorithm
if ¢ € Z1 then
// Master averages the local
models
= 1 K k
Wi = 3¢ Qi1 Wi
if fpreo — f(Wy) < dand L > 1 then
// The global function did
not decrease enough
if L = 1 then
| Switch to GIANT [Wang et al., 2018]]
end
else
Decrease L: L =L — 1
Update Z7 according to the new value
of L
end
end
fprev = f(V_Vt)
end
end

3.2 ADAPTIVE LOCALNEWTON

Motivating Example (Least-squares). Let us now con-
sider the simple example of unregularized linear least
squares, i.e., the loss function at the k-th worker is
fE(w) = L|y*—X*w|? where y* = [yf,u5,...,45]7 €
R® and X [x¥,...,x¥]T e R**< Note that one
second-order iteration (with step-size one) reaches the
optimal solution, say (w*)* = wF — (HF) 'ghwF
[(XF)TXF]=1(XF)Ty* ¥ wh e R?, for the local loss func-
tion f*(w) at the k-th worker.

Thus, applying LocalNewton here with L > 1 would imply
that the local iterates at the k-th worker are fixed at w¥
(w")* while the global iterates at the master are fixed at
Wy =+ Zle(wk)* for all ¢t € [T]. Note that w; # Ww*
in general, where w* is the optimal solution for the global
problem in Eq. (I). Hence, LocalNewton (Algorithm [I])
does not reach the optimal solution for unregularized least-
squares. In fact, in Theorems and we show that
running LocalNewton algorithm results in an error floor of
the order 1/4/s for any convex loss function.

Motivated from the above example, if we want to attain
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the optimal solution, one needs to switch to optimization
algorithms which yield no error floor. One standard exam-
ple of such an algorithm is GIANT (Wang et al.| [2018]]),
which is a communication-efficient distributed second-order
algorithm. However, for general convex functions, the con-
vergence of GIANT requires the initial point to be close to
the optimal solution. From this point of view, one can think
of LocalNewton as an initialization scheme that pushes the
iterates close to the solution (within a radius of O(1/4/5s))
with a few rounds of communication. Then, one can switch
to the GIANT algorithm to obtain convergence to the solu-
tion point. We call this algorithm Adaptive LocalNewton,
where the master modulates the value of L successively over
iterations and finally switches to GIANT to obtain the final
solution. The details are given in Algorithm 2}

Recall that GIANT synchronizes the local gradients and
the local descent direction in every iteration [Wang et al.|
2018]]. Further, it finds the step-size by doing a distributed
backtracking line-search requiring an additional round of
communication (Sec. 5.2, Wang et al.|[2018]]). Finally, the
master updates the model by using the average descent
direction and the obtained step-size and ships the model to
all the workers. Thus, each iteration in GIANT requires three
rounds of communication. This approach has compared
favorably to other popular distributed second-order methods
(e.g., DANE [Shamir et al.|[2014], AGD [Nesterov|[2014],
BFGS [Fletcher| [2013]], CoCoA Smith et al.|[2016]], DiSCO
/hang and Lin| [2015])).

In Fig.[2] we compare GIANT to LocalNewton, where Lo-
calNewton is run with 100 workers for L = 1,2 and 3, for
two datasets—w8a and EPSILON obtained from LIBSVM
[Chang and Lin| 2011]. Note that LocalNewton converges
much faster with respect to communication rounds for all
the three datasets since it communicates intermittently, i.e.,
once every few local second-order iterations (e.g., after 3
local iterations for L = 3). Not shown here is that testing
accuracy follows the same trends. Further, the quality of the
final solution improves as we reduce L. However, it reaches
extremely close to the optimal training loss, but it converges
very slowly (or flattens out) after that.

These empirical observations further motivate Adaptive Lo-
calNewton: a second-order distributed algorithm that adapts
the number of local iterations as the training progresses and
ultimately finishes with GIANT. This can be done by moni-
toring the objective function at the master, e.g., reduce L if
the loss stops improving (or switch to GIANT if L = 1)E]
See Algorithm [2} where we provide the pseudo-code for
Adaptive LocalNewton. Whenever the global function value
at the master does not decrease more than a constant 8, we

5To further reduce the communication rounds and dependency
on L, each worker can update the model for multiple values of L
and send the concatenated model updated to the master. The master
can decide the right value of L by evaluating the loss/accuracy for
these different models.
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Figure 2: Comparing LocalNewton (for different values of L) and GIANT. In general, LocalNewton reaches very close
to the optimal solution. In that region, however, the convergence rate of LocalNewton is slow. This is mitigated by using
Adaptive LocalNewton which appends the LocalNewton iterations with better quality (but more expensive) updates from

GIANT.

decrease the value of L to improve the quality of second
order estimate. In this sense, Adaptive LocalNewton can
be seen as providing a carefully-constructed or gradually-
annealed initialization for GIANT.

Comparison with GIANT: Algorithm 2]is further motivated
by the theoretical guarantees we obtain in the subsequent
section. In Theorems [.3] and F.4] of Sec.[d] we prove the
convergence of LocalNewton to the optimal solution within
an error floor starting with any initial point in R?. In sharp
contrast, Theorem 2 in GIANT [Wang et al., 2018]], the au-
thors convergence guarantees to the optimal solution when
the current model is sufficiently close to the optimal model.
From Fig.[2] we see that Adaptive LocalNewton significantly
outperforms GIANT in terms of rounds of communication.
Adaptive LocalNewton starts from L=3, and yellow dots in
its plot denote the reduction in the value of L by one or a
switch to GIANT if L = 1.

4 CONVERGENCE GUARANTEES

In this section, we present the main theoretical contributions
of the paper. For this, we only consider the (non-adaptive)
LocalNewton algorithm. Obtaining theoretical guarantees
for Adaptive LocalNewton is kept as an interesting future
work.

First, we delineate some assumptions on f(-) required to
prove theoretical convergence of the proposed method.

Assumptions: We make the following standard assumptions
on the objective function f(-) for all w € R%:
1. fi(+), for all i € [n], is twice differentiable.
2. f(+) is s-strongly convex, that is, V2 f(w) > xL.
3. f(+) is M-smooth, that is, V2 f(w) < ML,
4. |[V2fi(-)|2,@ € [n], is upper bounded. That is,
V2 f;(w) < BL forall i € [n].

In the following lemma, we make use of matrix concentra-
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tion inequalities to show that, for sufficiently large sample
size s, the local Hessian at each worker is also strongly
convex and smooth with high probability. The proof of all
auxiliary lemmas is deferred to Appendix [I}

Lemma 4.1. Let f(-) satisfy assumptions 1-4 and 0 <
€ < 1/2and 0 < 0 < 1 be fixed constants. Then, if s >
i—eBz log %, the local Hessian at the k-th worker satisfies

1—er < V2fi(w)=Hw)< (1+eM, @)

for all w € R and k € [K] with probability at least 1 — 6.

Step-size selection: Let each worker locally choose a step-
size according to the following rule

af = max o such that

ala

F—apf) < ¥ (wf) — BTV (W), (5)

1F (Wt -
for some constant 5 € (0, 1/2], where the parameter a* (<
1) depends on the properties of the objective functionﬂ

(1-B)r } C®

M
Now, we are almost ready to prove the main theorems—
Theorem @ discusses the case when L = 1, and Theo-
rem @ discusses the case when L > 1. Before that, let
us state the following auxiliary lemma which is required to
prove the main theorems.

28K>
"3M[M — /4]

a* < min{

Lemma 4.2. Let the function f(-) satisfy assumptions I-
3, and suppose that step-size o satisfies the line-search
condition in ). Also, let 0 < € < 1/2and 0 < § <
1 be fixed constants. Moreover, let the sample size s =

SWe introduce o* here to establish theoretical guarantees. In
our empirical results, we use the Armijo backtracking line-search
rule with o* = 1 (e.g., see Boyd and Vandenberghe| [2004]) to
find the right step-size.



4B 1og . Then, the LocalNewton update, defined in Eq.
(E]) at the k-th worker satisfies

FHwE) = R wy) < —vllgfl]” ¥ ke [K],
with probability at least 1 — 6, where 1 = 37 Ife)

We next use the result in Lemma .2 to prove linear conver-
gence for the global function f(-). We first prove guarantees
for the L = 1 case, where the models are communicated
every iteration but the gradient is computed locally instead
of globally contrary to previous results [Wang et al., [2018]|
(thus reducing two communication rounds per iteration). We
then extend it to the general case of L > 1 and show that
the updates converge at a sublinear rate in that case.

Theorem 4.3. [L = 1 case] Suppose Assumptions 1-5 hold
and the step-size of satisfies the line-search condition (©).
Also, let 0 < 6 < 1,0 < ¢,e1 < 1/2 be fixed constants
and let T' = maxi<i<n |V fi(.)|l. Moreover, assume that
the sample size for each worker satisfies s > m—:z B log 2dK

where the samples are chosen without replacement. Then
with the LocalNewton updates, {W}>0, from Algorithm([]]
and L = 1, we obtain

1 Ifsz 2G2 log(d/d) for G = miny, || g* (W), we get
with probablllty at least 1 — 6K 6,

fWe1) = F(WF) < po(f (W) — f(WF)).
2. We obtain, with probability at least 1 — 6K,
r

F(Wi1) = F(W*) < pa(f(We) — F(W¥)) + 1 e
where n = ﬁ 1+ 210g(%)).

Here p; = (1 2’%0) fori = {172}’ ¢y = 1*25)@1’_,%{:1_6)

1 € *
Cy = $ld=e) ,and Y = M(li)

Proof. The proof is presented in Appendix 2} Here, we
provide a sketch of the proof.

1. Due to the uniform sampling guarantee from Lemma
[.1] the strong-convexity and smoothness of the global
function f(-) implies that the local function at the k-th
worker, f¥(-), also satisfy similar properties. Using
this, we can lower bound f(w;) — f(W41) in terms
of % Zk 1 fH(wp) - fk(wf+1).

. Apply Lemma [{.7] (that is, the result for standard
Newton step) which says f*(wF) — f*(wk, ;) >
Vllgil1? v ke [K].

. Using uniform sketching argument, local gradients
g" (W) are close to global gradient g(W;).

O
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Some remarks regarding the convergence guarantee in The-
orem[d.3]are in order.

Remark 1. The above theorem implies that for L = 1,
the convergence rate of LocalNewton is linear with high
probability. Choosing § = 1/poly(K), we obtain the high
probability as 1 — 1/poly(K).

Remark 2. We have two different settings in the above
theorem. The first setting implies that provided the local
gradients {g* (W)}, are large enough, and the amount
of local data s is reasonably large, then the convergence is
purely linear and does not suffer an error floor. This will
typically happen in the earlier iterations of LocalNewton.
Note that the gradients vanish as we get closer to the opti-
mum, which is why the setting will eventually be violated. If
this happens, we move to the next setting.

Remark 3. The second setting implies that, if the gradient
condition and the restriction of s are violated, although the
convergence rate of LocalNewton is still linear, the algo-
rithm incurs an error floor. However, in this setting, the error
floor is O(1/+/s), and hence it is quite small for sufficiently
large sample-size, s, at each worker.

To understand the linear convergence rate of LocalNewton,
we consider the following example. Assume all the workers
initialize at W and run LocalNewton with L = 1 for T’
iterations and the first setting is true (that is, |g* (w;)| = G
for all k € [K] and t € [T]). Then, from Theorem
to reach within ¢ of the optimal function value (that is,
f(wr) — f(W*) < &), the number of iterations T is upper
bounded by

1 §
T < |log ) log ——————=
( p1 f(Wo) — f(W*)
with probability 1 — 6 K§ for a sample size
dT }
(Note the increase in sample size s by a factor of 7" in the
log(+) due to a union bound). The fully synchronized second
order method GIANT [Wang et al.| 2018]] also has similar
linear quadratic convergence but it assumes that the gra-
dients are synchronized in every iteration. We remove this
assumption by tracking how far the iterate deviates when the
gradients are computed locally, thereby cutting the commu-

nication costs in half while still showing linear convergence
(within some error floor in the most general case).

2dKT T?
5 ’2G2

4B

@ log

sZmaX{

We now prove convergence guarantees for the case when
L > 1 in this algorithm.

Theorem 4.4 (L > 1 case). Suppose Assumptions 1-4 hold
and step-size ozf solves the line-search condition @ Also,
let0 < 6 < 1,0 < € < 1/2 be fixed constants and let



I' = maxi<i<n |V fi(.)|. Moreover, assume that the sam-
ple size for each worker satisfies s > % log %, where
the samples are chosen without replacement. Then, the Lo-
calNewton updates, {W},>0, from Algorithm[l|and L > 1,

with probability at least 1 — 6 LK 6, satisfy

F(Wre1) — f(W Z = i Igh )+
t+1 to) < SA\K & & =y
where n = %F(l + 210g(%)) C=v¢- %

where t is the last iteration where the models were synced,

- v(1=e?®
P = (H),andC 5

Proof. The proof is presented in Appendix 3] O

Remark 4. The theorem shows that LocalNewton with high
probability produces a descent direction, provided that the
error floor is sufficiently small, i.e. for sufficiently large s
(since n is proportional to 1/+/s). Observe that the con-
vergence rate here is no longer linear. In other words, we
are trading-off the rate of convergence for local iterations
(L>1).

Remark 5. Choosing 6 = 1/poly(K, L), we get that the
theorem holds with probability at least 1 — 1/poly(K, L).
Note that this is not restrictive since the dependence on 6 is
logarithmic.

While the theoretical guarantees for L > 1 in Theorem 4.4]
are not as strong as those for L = 1 in Theorem (linear
versus sublinear convergence), empirically we observe a fast
rate of convergence even when L > 1 (see Section [5]and
Appendix [5] for empirical results). Nevertheless, to the best
of our knowledge, Theorem@]is the first to show a descent
guarantee for a distributed second-order method without
synchronizing at every iteration. Obtaining a better rate of
convergence for general L, with or without error floor, is an
interesting and relevant future research direction.

S EMPIRICAL EVALUATION

In this section, we present an empirical evaluation of our ap-
proach when solving a large-scale logistic regression prob-
lem. We ran our experiments on AWS Lambda workers
using the PyWren [Jonas et al., 2017]] framework. AWS
Lambda is a serverless computing platform which uses a
high-latency cloud storage (AWS S3) to exchange data with
the workers. The master is a serverful AWS EC2 machine
of type m4 . 4x1arge which co-ordinates with the server-
less workers and holds the central model during the entire
training run. We ran experiments on the real-world datasets
described in Table|l| (obtained from LIBSVM [Chang and
Lin| 201 1])).

We compare the following distributed optimization schemes
for the above datasets: 1. Local SGD [Stichl 2018]]: The
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Dataset Training Features  Testing
samples (n) (d) samples

w8a 48,000 300 15,000
Covtype 500, 000 2916 81,000
EPSILON 400, 000 2000 100, 000
a9a 32,000 123 16,000
ijennl 49,000 22 91, 000

Table 1: Datasets considered for experiments in this paper

workers communicate their models once every epoch, where
training on one epoch implies applying SGD (with mini-
batch size one) over one pass of the dataset stored locally at
the worker. The best step-size was obtained through hyper-
parameter tuning.

2. BFGS [Fletcher, [2013]]: BFGS is a popular quasi-Newton
method that estimates an approximate Hessian from the gra-
dient information from previous iterations. The step-size
was obtained using backtracking line-search. The best step-
size was obtained through hyperparameter tuning.

3. GIANT [Wang et al., 2018]]: A state-of-the-art distributed
second order algorithm proposed in Wang et al.| [2018].
The authors show that GIANT outperforms many popular
schemes such as DANE, AGD, etc. The step-size was ob-
tained using distributed line-search as described in [Wang
et al.| [2018]].

4. Adaptive LocalNewton: For all the considered datasets,
Adaptive LocalNewton gradually reduces L if the loss func-
tion stops decreasing, starting from L = 3 in the first round
of communication. In general, during the later stages of op-
timization, it switches to GIANT owing to its convergence
to the optimal solution when Wy is sufficiently close to w*.
The step-size was obtained using backtracking line-search
locally at each worker as described in Algorithm|[I]

We also implemented the distributed second-order optimiza-
tion scheme from [Duenner et al.|[2018]] with moderate hy-
perparameter tuning, and observed that its performance is
either comparable or worse than the baseline GIANT Wang
et al.|[2018]]. Hence, for clarity, we omit those results from
our plots.

For all the experiments presented in this paper, we fixed the
number of workers, K, to be 100. Hence, the number of
samples per worker, s = n,/100, for all datasets. The regu-
larization parameter was chosen to be v = 1/n. Note that
there are several other schemes—such as AGD [Nesterov,
2014]], DANE [Shamir et al., 2014] and SVRG Johnson
and Zhang| [2013]]-that have been proposed in the literature
for communication-efficient optimization. However, most
of these schemes have been shown to be outperformed by
one of Local SGD, BFGS or GIANT, and hence, we do not
perform the comparison again. In Fig.[3] we plot the training
loss and testing accuracy for w8a, covtype[] and EPSILON

"The covtype dataset has d = 54 features and it does not
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Figure 3: Experiments on the w8a, Covtype and EPSILON datasets on AWS Lambda. Both in terms of training loss and
testing accuracy, Adaptive LocalNewton converges to the optimal value at least 50% faster than existing schemes.
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Figure 4: Training times (red bars) and communication rounds (blue bars) required to reach the same training loss of
0.19,0.65 and 0.3 for the w8a, Covtype and EPSILON datasets, respectively, on AWS Lambda. Here, A: Adaptive

LocalNewton, B: BFGS, C: Local SGD, D: GIANT.

datasets (see Fig.[I]in Appendix [5]for experiments on a%a
and ijennl datasets). For all the datasets considered, Adap-
tive LocalNewton significantly outperforms its competitors
in terms of time required to reach the same training loss (or
testing accuracy). Furthermore, since the number of workers,
K, is fixed and serverless platform charges are proportional
to the total CPU hours, end-to-end training time is directly
proportional to the costs charged by AWS for training.

In Fig. [ we highlight the fact that runtime savings on AWS
Lambda are a direct consequence of significantly fewer
rounds of communication. Specifically, to reach the same
training loss, we plot the training times and communication
rounds as bar plots for three datasets, and we note that
savings in communication rounds results in commensurate
savings on end-to-end runtimes on AWS Lambda. In Fig.
2] in Appendix [5] we provide detailed plots for training
losses and testing accuracies with respect to communication
rounds for all the five datasets.

perform well with logistic regression. Hence, we apply polynomial
feature extension (using pairwise products) to increase the number
of features to d* = 2916.
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6 CONCLUSION

The practicality of second-order optimization methods has
been questioned since naive ways to implement them re-
quire large compute and power storage to work with the
Hessian. However, in the last few decades, trends such as
Moore’s law have made computation faster and memory
cheaper, while improvements in communication costs have
been at best marginal. These trends, combined with a flurry
of efficient but approximate algorithms [Pilanci and Wain+{
wright, 2017, [Roosta-Khorasani and Mahoney, [2016alb],
have revived interest in second-order methods. In this pa-
per, we identify and concretize the role that second-order
methods—combined with local optimization algorithms—
can play in reducing the communication costs during dis-
tributed training, in particular in serverless environments.
Since second-order information has recently been used to
develop state-of-the-art methods for deep neural networks
with extremely large model sizes [Dong et al.l 2019, |Yao
et al.,|2019, [Shen et al., 2020} [Yao et al.,|2020], we expect
that methods such as ours will play a significant role in
motivating and designing next-generation communication-
efficient algorithms for fast distributed training of machine
learning models.



References

Jayadev Acharya, Chris De Sa, Dylan Foster, and Karthik
Sridharan. Distributed learning with sublinear communi-

cation. In International Conference on Machine Learning,
pages 40-50, 2019.

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzade-
nesheli, and Animashree Anandkumar. signSGD: Com-
pressed Optimisation for Non-Convex Problems. In In-
ternational Conference on Machine Learning, pages 560—
569, 2018.

Stephen Boyd and Lieven Vandenberghe. Convex Optimiza-
tion. Cambridge University Press, New York, NY, USA,
2004. ISBN 0521833787.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library
for support vector machines. ACM transactions on intel-
ligent systems and technology (TIST), 2(3):27, 2011.

James Demmel. Communication-avoiding algorithms for
linear algebra and beyond. In 2013 IEEE 27th Int. Sym.
on Parallel and Distributed Processing, pages 585-585,
May 2013. doi: 10.1109/IPDPS.2013.123.

Michat Dereziriski and Michael W Mahoney. Distributed
estimation of the inverse hessian by determinantal aver-
aging. In Advances in Neural Information Processing
Systems 32, pages 11405—-11415. Curran Associates, Inc.,
2019.

Michal Derezinski, Burak Bartan, Mert Pilanci, and
Michael W Mahoney. Debiasing distributed second order
optimization with surrogate sketching and scaled regular-
ization. In Advances in Neural Information Processing
Systems, volume 33, pages 6684—-6695, 2020.

Aymeric Dieuleveut and Kumar Kshitij Patel. Communica-
tion trade-offs for local-sgd with large step size. In Ad-
vances in Neural Information Processing Systems, pages
13579-13590, 2019.

Zhen Dong, Zhewei Yao, Amir Gholami, Michael W Ma-
honey, and Kurt Keutzer. HAWQ: Hessian aware quan-
tization of neural networks with mixed-precision. In

Proceedings of the IEEE International Conference on
Computer Vision, pages 293-302, 2019.

Celestine Duenner, Aurelien Lucchi, Matilde Gargiani,
An Bian, Thomas Hofmann, and Martin Jaggi. A dis-
tributed second-order algorithm you can trust. In Jen-
nifer Dy and Andreas Krause, editors, Proceedings of the
35th International Conference on Machine Learning, vol-
ume 80 of Proceedings of Machine Learning Research,
pages 1358-1366. PMLR, 10-15 Jul 2018.

Roger Fletcher. Practical methods of optimization. John
Wiley & Sons, 2013.

641

Avishek Ghosh, Raj Kumar Maity, and Arya Mazumdar. Dis-
tributed newton can communicate less and resist byzan-
tine workers. arXiv preprint arXiv:2006.08737, 2020a.

Avishek Ghosh, Raj Kumar Maity, Arya Mazumdar, and
Kannan Ramchandran. Communication efficient dis-
tributed approximate newton method. In 2020 IEEE
International Symposium on Information Theory (ISIT),
pages 2539-2544. IEEE, 2020b.

Ghosh, Avishek, Maity, Rajkumar, Kadhe, Swanand,
Mazumdar, Arya, and Ramachandran, Kannan. Com-
munication efficient and byzantine tolerant distributed
learning. In 2020 IEEE International Symposium on In-
formation Theory (ISIT), pages 2545-2550, 2020.

Vipul Gupta, Dominic Carrano, Yaoqing Yang, Vaishaal
Shankar, Thomas Courtade, and Kannan Ramchan-
dran. Serverless straggler mitigation using local error-
correcting codes. IEEE International Conference on Dis-
tributed Computing Systems, 2020a.

Vipul Gupta, Santiago Akle Serrano, and Dennis DeCoste.
Stochastic weight averaging in parallel: Large-batch train-
ing that generalizes well. In International Conference on
Learning Representations, 2020b.

Farzin Haddadpour, Mohammad Mahdi Kamani, Mehrdad
Mahdavi, and Viveck Cadambe. Local SGD with periodic
averaging: Tighter analysis and adaptive synchronization.

In Advances in Neural Information Processing Systems,
pages 11080-11092, 2019.

Joseph M Hellerstein, Jose Faleiro, Joseph E Gonzalez, Jo-
hann Schleier-Smith, Vikram Sreekanti, Alexey Tumanov,
and Chenggang Wu. Serverless computing: One step for-
ward, two steps back. arXiv preprint arXiv:1812.03651,
2018.

Nikita Ivkin, Daniel Rothchild, Enayat Ullah, Ion Stoica,
and Raman Arora. Communication-efficient distributed
SGD with sketching. In Advances in Neural Information
Processing Systems, pages 13144—13154, 2019.

Ali Jadbabaie, Asuman Ozdaglar, and Michael Zargham.
A distributed newton method for network optimization.
In Proceedings of the 48h IEEE Conference on Decision
and Control (CDC) held jointly with 2009 28th Chinese
Control Conference, pages 2736-2741. IEEE, 2009.

Rie Johnson and Tong Zhang. Accelerating stochastic gra-
dient descent using predictive variance reduction. In Ad-
vances in neural information processing systems, pages
315-323, 2013.

Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica,
and Benjamin Recht. Occupy the cloud: distributed com-
puting for the 99%. In Proceedings of the 2017 Sympo-
sium on Cloud Computing, pages 445-451. ACM, 2017.



Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-
Che Tsai, Anurag Khandelwal, Qifan Pu, Vaishaal
Shankar, Joao Carreira, Karl Krauth, Neeraja Yadwadkar,
et al. Cloud programming simplified: A berkeley view on
serverless computing. arXiv preprint arXiv:1902.03383,
2019.

Jakub Konecny, H Brendan McMahan, Felix X Yu, Peter
Richtarik, Ananda Theertha Suresh, and Dave Bacon.
Federated learning: Strategies for improving communica-
tion efficiency. arXiv preprint arXiv:1610.05492, 2016.

Tao Lin, Sebastian U. Stich, Kumar Kshitij Patel, and Martin
Jaggi. Don’t Use Large Mini-batches, Use Local SGD. In
International Conference on Learning Representations,
2020.

Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J
Dally. Deep gradient compression: Reducing the commu-
nication bandwidth for distributed training. arXiv preprint
arXiv:1712.01887, 2017.

Prathamesh Mayekar and Himanshu Tyagi. Limits on Gra-
dient Compression for Stochastic Optimization. arXiv
e-prints, art. arXiv:2001.09032, jan 2020.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth
Hampson, and Blaise Aguera y Arcas. Communication-
Efficient Learning of Deep Networks from Decentralized
Data. In Proceedings of the 20th International Confer-
ence on Artificial Intelligence and Statistics, volume 54,
pages 12731282, 2017.

Yurii Nesterov. [Introductory Lectures on Convex Opti-
mization: A Basic Course. Springer Publishing Com-
pany, Incorporated, 1 edition, 2014. ISBN 1461346916,
9781461346913.

Mert Pilanci and Martin J Wainwright. Newton sketch:
A near linear-time optimization algorithm with linear-
quadratic convergence. SIAM Jour. on Opt., 27:205-245,
2017.

Sashank J. Reddi, Ahmed Hefny, Suvrit Sra, Barnabas Poc-
zos, and Alex Smola. On variance reduction in stochastic
gradient descent and its asynchronous variants. In Pro-
ceedings of the 28th International Conference on Neural
Information Processing Systems - Volume 2, NIPS’15,
pages 2647-2655, 2015.

Farbod Roosta-Khorasani and Michael W. Mahoney. Sub-
Sampled Newton Methods I: Globally Convergent Algo-
rithms. arXiv e-prints, art. arXiv:1601.04737, January
2016a.

Farbod Roosta-Khorasani and Michael W. Mahoney. Sub-
Sampled Newton Methods II: Local Convergence Rates.
arXiv e-prints, art. arXiv:1601.04738, January 2016b.

642

Ohad Shamir, Nathan Srebro, and Tong Zhang.
Communication-efficient  distributed  optimization
using an approximate Newton-type method. In Pro-
ceedings of the 3lst International Conference on

International Conference on Machine Learning - Volume
32, I1CML’ 14, 2014.

Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei Yao,
Amir Gholami, Michael W Mahoney, and Kurt Keutzer.
Q-BERT: Hessian based ultra low precision quantization
of BERT. In Proceedings of the AAAI Conference on Ar-
tificial Intelligence, volume 34, pages 8815-8821, 2020.

Jonathan Richard Shewchuk. An introduction to the conju-
gate gradient method without the agonizing pain, 1994.

Virginia Smith, Simone Forte, Chenxin Ma, Martin Takéc,
Michael I Jordan, and Martin Jaggi. Cocoa: A general
framework for communication-efficient distributed opti-
mization. arXiv preprint arXiv:1611.02189, 2016.

Sebastian U Stich. Local SGD converges fast and commu-
nicates little. arXiv preprint arXiv:1805.09767, 2018.

Sebastian U Stich, Jean-Baptiste Cordonnier, and Martin
Jaggi. Sparsified SGD with memory. In Advances in Neu-
ral Information Processing Systems, pages 4447-4458,
2018.

Rasul Tutunov, Haitham Bou-Ammar, and Ali Jadbabaie.
Distributed newton method for large-scale consensus op-
timization. IEEE Transactions on Automatic Control, 64
(10):3983-3994, 2019.

Shusen Wang, Farbod Roosta-Khorasani, Peng Xu, and
Michael W Mahoney. Giant: Globally improved approx-
imate newton method for distributed optimization. In
Advances in Neural Information Processing Systems 31,
pages 2332-2342. Curran Associates, Inc., 2018.

Peng Xu, Fred Roosta, and Michael W Mahoney. Newton-
type methods for non-convex optimization under inexact
hessian information. Mathematical Programming, 184

(1):35-70, 2020.

Zhewei Yao, Amir Gholami, Kurt Keutzer, and Michael
Mahoney. PyHessian: Neural Networks Through the
Lens of the Hessian. arXiv preprint arXiv:1912.07145,
2019.

Zhewei Yao, Amir Gholami, Sheng Shen, Kurt Keutzer, and
Michael Mahoney. ADAHESSIAN: An adaptive second
order optimizer for machine learning. arXiv preprint
arXiv:2006.00719, 2020.

Yuchen Zhang and Xiao Lin. DiSCO: Distributed Optimiza-
tion for Self-Concordant Empirical Loss. In Francis Bach
and David Blei, editors, Proceedings of the 32nd Inter-
national Conference on Machine Learning, volume 37,
pages 362-370, Lille, France, 07-09 Jul 2015. PMLR.



	Introduction
	Problem Formulation
	Algorithms
	LocalNewton
	Adaptive LocalNewton

	Convergence Guarantees
	Empirical Evaluation
	Conclusion

