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Abstract
First order optimization methods, which rely only on
gradient information, are commonly used in diverse ma-
chine learning (ML) applications, owing to their sim-
plicity of implementations and low per-iteration com-
putational/storage costs. However, they suffer from
significant disadvantages; most notably, their perfor-
mance degrades with increasing problem ill-conditioning.
Furthermore, they often involve a large number of hyper-
parameters, and are notoriously sensitive to parameters
such as the step-size. By incorporating additional infor-
mation from the Hessian, second-order methods, have
been shown to be resilient to many such adversarial ef-
fects. However, these advantages come at the expense of
higher per-iteration costs, which in “big data” regimes,
can be computationally prohibitive.

In this paper, we show that, contrary to conventional
belief, second-order methods, when designed suitably,
can be much more efficient than first-order alternatives
for large-scale ML applications. In convex settings, we
show that variants of classical Newton’s method in which
the Hessian and/or gradient are randomly subsampled,
coupled with efficient GPU implementations, far out-
perform state of the art implementations of existing
techniques in popular ML software packages such as
TensorFlow. We show that our proposed methods (i)
achieve better generalization errors in significantly lower
wall-clock time – orders of magnitude faster, compared
to first-order alternatives (in TensorFlow) and, (ii) offers
significantly smaller (and easily parameterized) hyper-
parameter space making our methods highly robust.

1 Introduction
Optimization techniques are at the core of many ML
applications. First-order methods that rely solely on
gradient of the objective function, have been methods
of choice in these applications. The scale of commonly
encountered problems in typical applications necessitates
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optimization techniques that are fast, i.e., have low
per-iteration cost and require few overall iterations,
and robust to adversarial effects such as problem ill-
conditioning and hyper-parameter tuning. First-order
methods such as stochastic gradient descent (SGD) are
widely known to have low per-iteration costs. However,
they often require many iterations before suitable results
are obtained, and their performance can deteriorate even
for moderately ill-conditioned problems. Contrary to
popular belief, ill-conditioned problems often arise in ML
applications. For example, the “vanishing and exploding
gradient problem” encountered in training deep neural
nets [2], is a well-known and important issue. What is
less known is that this is a consequence of the highly
ill-conditioned nature of the problem. A subtle, yet
potentially more serious, disadvantage of most first-order
methods is the large number of hyper-parameters, as
well as their high sensitivity to parameter-tuning, which
can significantly slow down the training procedure and
often necessitate many trial and error steps [3].

Compared with first-order alternatives, second-order
methods use additional curvature information in the
form of the Hessian matrix. As a result of incorporating
such information, in addition to faster convergence rates,
second-order methods offer a variety of, rather more
subtle, benefits. For example, unlike first-order methods,
Newton-type methods have been shown to be highly
resilient to increasing problem ill-conditioning [16, 17].
Furthermore, second-order methods typically require
fewer parameters (e.g., inexactness tolerance for the
sub-problem solver and line-search parameters), and
are less sensitive to their specific settings [3].By using
curvature information at each iteration, these methods
scale the gradient so that it is a more suitable direction
to follow. Consequently, they typically require much
fewer iterations, as compared to first-order counterparts.

However, these benefits come at a cost: each
iteration of second-order methods may be more expensive
than those of the first-order alternatives. Arguably,
due to this reason alone, second order methods have
not received the attention from the ML community
that they deserve. In this paper, we show that by
reducing the cost of each iteration through efficient
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approximation of curvature, coupled with hardware
specific acceleration, one can obtain methods that are
much faster and more robust than state of the art
techniques. In most ML applications, this typically
translates to achieving a high test-accuracy early on in
the iterative process and without significant parameter
tuning. This is in sharp contrast with the slow-
ramping trend, typically observed in training with first-
order methods, which is often preceded by a lengthy
trial and error procedure for parameter tuning. We
demonstrate that the desirable numerical/ statistical
properties, coupled with algorithmic innovations and
hardware-specific implementations, hold the promise
for significantly changing the landscape of optimization
techniques for machine learning.

We focus on the commonly encountered finite-sum
optimization problem:

min
x∈Rd

F (x) ,
n∑

i=1

fi(x),(1.1)

where each fi(x) is a smooth convex function, represent-
ing a loss (or misfit) corresponding to the ith observation
(or measurement) [10, 5, 19]. In many ML applications,
F in eq. (1.1) corresponds to the empirical risk [18],
and the goal of solving eq. (1.1) is to obtain a solution
with small generalization error, i.e., high predictive ac-
curacy on “unseen” data. We consider eq. (1.1) at scale,
where the values of n and d are large. In such settings,
the mere computation of the Hessian and the gradi-
ent of F increases linearly in n. Indeed, for large-scale
problems, operations on the Hessian, e.g., matrix-vector
products involved in the (approximate) solution of the
sub-problems of most Newton-type methods, typically
constitute the main computational bottleneck. In such
cases, randomized sub-sampling has been shown to be
highly successful in reducing computational and mem-
ory costs of a variety of second-order methods to be
effectively independent of n. Indeed, the theoretical
properties of sub-sampled Newton-type methods, for
both convex and non-convex problems of the form in
eq. (1.1), have been recently studied, e.g., [16, 17, 4, 7, 9].
However, efficient algorithms, coupled with practical and
hardware-specific implementations that can effectively
draw upon all available computing resources, are lacking.
Contributions: Our contributions can be summarized
as follows: Through a judicious mix of statistical tech-
niques, algorithmic innovations, and highly optimized
GPU implementations, we develop an accelerated vari-
ant of the classical Newton’s method that has low per-
iteration cost, fast convergence, and minimal memory
overhead. We show that, for solving eq. (1.1), our ran-
domized method significantly outperforms state of the
art implementations of existing techniques in popular

ML software packages such as TensorFlow [1], in terms
of improved training time, generalization error, and ro-
bustness to various adversarial effects. In particular we
show that our methods achieve significantly better gener-
alization errors orders of magnitude faster compared to
state-of-the-art first-order and quasi-Newton alternatives
on real-world datasets.

1.1 Related Work The class of first-order methods
includes a number of techniques that are commonly
used in diverse ML applications. Many of these
techniques have been efficiently implemented in popular
software packages. For example, TensorFlowhas enjoyed
considerable success among ML practitioners. Among
first-order methods implemented in TensorFlow for
solving (1.1) are Adagrad, RMSProp, Adam, Adadelta,
and SGD with/without momentum.Excluding SGD,
the rest of these methods are adaptive, in that they
incorporate prior gradients to choose a preconditioner at
each gradient step. Through the use of gradient history
from previous iterations, these adaptive methods non-
uniformly scale the current gradient to obtain an update
direction that takes larger steps along the coordinates
with smaller derivatives and, conversely, smaller steps
along those with larger derivatives. At a high level, these
methods aim to capture non-uniform scaling of Newton’s
method, albeit, using limited curvature information.

Theoretical properties of a variety of randomized
Newton-type methods, for both convex and non-convex
problems of the form eq. (1.1), have been recently
studied in a series of results, in the context of ML
applications [16, 17, 4, 7, 9].

GPUs have been successfully used in a variety of
ML applications to speed up computations [8, 15, 13].
In particular, Raina et al. [15] demonstrate that modern
GPUs can far surpass the computational capabilities
of multi-core CPUs, and have the potential to address
many of the computational challenges encountered in
training large-scale learning models. Most relevant
to this paper, Ngiam et al. [13] show that off-the-
shelf optimization methods such as Limited memory
BFGS (L-BFGS) and Conjugate Gradient (CG), have
the potential to outperform variants of SGD in deep
learning applications. It was further demonstrated that
the difference in performance between LBFGS/CG and
SGD is more pronounced if one considers hardware
accelerators such as GPUs. Deriving similar results
for full-fledged second-order methods, is a major goal of
our effort.

2 Sub-Sampled Newton’s Method: A Review
We first describe a sub-sampled variant of the classical
Newton’s method, which provides the basis for our
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implementation of second-order methods. In this
discussion, vectors, v, and matrices, V, are denoted by
bold lower and upper case letters, respectively. ∇f(x)
and ∇2f(x) represent the gradient and the Hessian of
f at x, respectively. The superscript, e.g., x(k), denotes
iteration count. S denotes a collection of indices drawn
from the set {1, 2, · · · , n}, with potentially repeated
items, and its cardinality is denoted by |S|.

For the optimization problem eq. (1.1), in each
iteration, consider selecting two sample sets of indices
from {1, 2, . . . , n}, uniformly at random with or without
replacement. Let Sg and SH denote the sample
collections, and define g and H as:

(2.2a) g(x) ,
n

|Sg|
∑
j∈Sg

∇fj(x),

(2.2b) H(x) ,
n

|SH|
∑
j∈SH

∇2fj(x),

to be the sub-sampled gradient and Hessian, respectively.
It has been shown that, under certain bounds on

the size of the samples, |Sg| and |SH|, one can, with
high probability, ensure that g and H are “suitable”
approximations to the full gradient and Hessian, in an
algorithmic sense [16, 17]. For each iterate x(k), using
the corresponding sub-sampled approximations of the
full gradient, g(x(k)), and the full Hessian, H(x(k)), we
consider inexact Newton-type iterations of the form

x(k+1) = x(k) + αkpk,(2.3a)

where pk is a search direction satisfying:

‖H(x(k))pk + g(x(k))‖ ≤ θ‖g(x(k))‖,(2.3b)

for some inexactness tolerance 0 < θ < 1 and αk is the
largest α ≤ 1 such that:

F (x(k) + αpk) ≤ F (x(k)) + αβpT
k g(x

(k)),(2.3c)

for some β ∈ (0, 1). The requirement in eq. (2.3c) is
often referred to as Armijo-type line-search [14], and
eq. (2.3b) is the θ-relative error approximation condition
of the exact solution to the linear system

H(x(k))pk = −g(x(k)),(2.4)

which is similar to that arising in classical Newton’s
Method. Note that in (strictly) convex settings, where
the sub-sampled Hessian matrix is symmetric positive
definite (SPD), conjugate gradient (CG) with early
stopping can be used to obtain an approximate solution
to eq. (2.4) satisfying eq. (2.3b). It has also been

shown [16, 17], that to inherit the convergence properties
of the, rather expensive, algorithm that employs the
exact solution to eq. (2.4), the inexactness tolerance,
θ, in eq. (2.3b) need only be chosen in the order of
the inverse of the square root of the problem condition
number. As a result, even for ill-conditioned problems,
only a relatively moderate tolerance for CG ensures that
we indeed maintain convergence properties of the exact
update (see also examples in Section 4). Putting all of
these together, we obtain Algorithm 1, which under
specific assumptions, has been shown [16, 17] to be
globally linearly convergent1 with problem-independent
local convergence rate 2.

Algorithm 1 Sub-Sampled Newton Method
1: Inputs: Initial iterate, x(0)

2: Parameters: 0 < ε, β, θ < 1
3: for k = 0, 1, 2, . . . do
4: Form g(x(k)) as in eq. (2.2a)
5: Form H(x(k)) as in eq. (2.2b)
6: if ‖g(x(k))‖ < ε then
7: STOP
8: end if
9: end for

10: Update x(k+1) as in eq. (2.3)

Computation Cost: First-order methods only
compute gradient, per mini-batch, several times in each
epoch. Compared to first-order methods, our proposed
methods requires several matrix-vector products during
the linear solve, Hp = −g. Note that for convex prob-
lems, H is positive semi-definite and, in our experiments,
we only use a maximum of 10 CG iterations for estimat-
ing the newton-direction. Armijo-type line search, which
is used to estimate the step-size, α, requires function
evaluation several times (in our experiments we limit this
to a maximum of 20). Quasi-Newton methods approxi-
mate Hessian of the problem, H, either using rank-one
updates (SR1) or rank-two updates (BFGS). However,
for these methods, the operation of multiplying the in-
verse of approximated Hessian × vector is clearly defined,
and requires at least two matrix-vector products, two
vector outer-products, and a matrix summation for such
computation. These methods also employ line search
methods, similar to our proposed methods, to estimate
step-size, α.

1It converges linearly to the optimum starting from any initial
guess x(0).

2If the iterates are close enough to the optimum, it converges
with a constant linear rate independent of the problem-related
quantities.
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3 Algorithms and Implementation Details
We present the algorithmic machinery involved in
implementation of iterations described in eq. (2.3),
applied to the function defined in (3.5), with an added
`2 regularization term: F (x) + λ‖x‖2/2. Here, λ is the
regularization parameter. Detailed discussion of CG
and line search algorithms used in our methods can be
found in [11]. Implementation details, pseudo-code, and
GPU optimizations used by our methods are discussed
in-detail in the supplementary material Section 1.

3.1 Multi-Class classification We briefly review
multi-class classification using softmax and cross-entropy
loss function, as an important instance of finite sum
minimization problems. Consider a p dimensional feature
vector a, with corresponding labels b, drawn from one of
C classes. The probability that a belongs to a class c ∈
{1, 2, . . . , C} is given by Pr (b = c | a,w1, . . . ,wC) =

e〈a,wc〉/
∑C

c′=1 e
〈a,wc′ 〉, where wc ∈ Rp is the weight

vector corresponding to class c. Since probabilities
must sum to one, there are in fact only C − 1 degrees
of freedom. Consequently, by defining xc , wc −
wC , c = 1, 2, . . . , C − 1, for training data {ai, bi}ni=1 ⊂
Rp × {1, . . . , C}, the cross-entropy loss function for
x = [x1;x2; . . . ;xC−1] ∈ R(C−1)p can be written as

F (x) , F (x1,x2, . . . ,xC−1)(3.5)

=

n∑
i=1

log

(
1 +

C−1∑
c′=1

e〈ai,xc′ 〉

)

−
n∑

i=1

C−1∑
c=1

1(bi = c)〈ai,xc〉.

Note that here, d = (C − 1)p. It then follows that
the full gradient of F with respect to xc is:

∇xc
F (x) =

n∑
i=1

(
e〈ai,xc〉

1 +
∑C−1

c′=1 e
〈ai,xc′ 〉

− 1(bi = c)

)
ai.

(3.6)

Similarly, for the full Hessian of F , we have

∇2
xc,xc

F =

(3.7a)

n∑
i=1

 e〈ai,xc〉

1 +
∑C−1

c′=1 e
〈ai,xc′ 〉

− e2〈ai,xc〉(
1 +

∑C−1
c′=1 e

〈ai,xc′ 〉
)2
aia

T
i ,

and for ĉ ∈ {1, 2, . . . , C − 1} \ {c}, we get

∇2
xc,xĉ

F =

n∑
i=1

− e〈ai,xĉ+xc〉(
1 +

∑C−1
c′=1 e

〈ai,xc′ 〉
)2
aix

T
i .

(3.7b)

Sub-sampled variants of the gradient and Hessian
are obtained similarly. Finally, after training phase, a
new data a is classified as

b = argmax


{

e〈a,xc〉∑C−1
c′=1 e

〈a,xc′ 〉

}C−1

c=1

, 1− e〈a,xC〉∑C
c′=1 e

〈a,xc′ 〉

 .

(3.8)

3.1.1 Numerical Stability To avoid over-flow in the
evaluation of exponential functions in (3.5), we use
the “Log-Sum-Exp” trick [12]. Specifically, for each
data point ai, we first find the maximum value among
〈ai,xc〉, c = 1, . . . , C − 1. Define

M(a) = max
{
0, 〈a,x1〉, 〈a,x2〉, . . . , 〈a,xC−1〉

}
, and

(3.9)

α(a) := e−M(a) +

C−1∑
c′=1

e〈a,xc′ 〉−M(a).(3.10)

Note that M(a) ≥ 0, α(a) ≥ 1. Now, we have
1 +

∑C−1
c′=1 e

〈ai,xc′ 〉 = eM(ai)α(ai). For computing (3.5),
we use log

(
1 +

∑C−1
c′=1 e

〈ai,xc′ 〉
)
= M(ai) + log

(
α(ai)

)
.

Similarly, for (3.6) and (3.7), we use

e〈ai,xc〉

1 +
∑C−1

c′=1 e
〈ai,xc′ 〉

=
e〈ai,xc〉−M(ai)

α(ai)
.

Note that in all these computations, we are guar-
anteed to have all the exponents appearing in all the
exponential functions to be negative, hence avoiding
numerical over-flow.

3.1.2 Hessian Vector Product Given a vector v ∈
Rd, we can compute the Hessian-vector product without
explicitly forming the Hessian. Define:

h(a,x) :=
e〈a,x〉−M(x)

α(a)
,
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where M(x) and α(x) were defined in eqs. (3.9)
and (3.10), respectively. Now using matrices

V =


〈a1,v1〉 〈a1,v2〉 . . . 〈a1,vC−1〉
〈a2,v1〉 〈a2,v2〉 . . . 〈a2,vC−1〉

...
...

. . .
...

〈an,v1〉 〈an,v2〉 . . . 〈an,v(C−1)〉


n×(C−1)

,

(3.11)

and

W =


h(a1,x1) h(a1,x2) . . . h(a1,xC−1)
h(a2,x1) h(a2,x2) . . . h(a2,xC−1)

...
...

. . .
...

h(an,x1) h(an,x2) . . . h(an,xC−1)


n×(C−1)

,

(3.12)

we compute

U = V �W −W �
((

(V �W) e
)
eT
)
,(3.13)

to get

Hv = vec
(
ATU

)
,(3.14)

where v = [v1;v2; . . . ;vC−1] ∈ Rd, vi ∈ Rp, i =
1, 2, . . . , C − 1, e ∈ RC−1 is a vector of all 1’s, and each
row of the matrix A ∈ Rn×p is a row vector correspond-
ing to the ith data point, i.e, AT =

[
a1,a2, . . . ,an

]
.

Remark: Note that the memory overhead of our
accelerated randomized sub-sampled Newton’s method
is determined by matrices U, V, and W, whose sizes
are dictated by the Hessian sample size, |SH|, which is
much less than n. This small memory overhead enables
our Newton-type method to scale to large problems,
inaccessible to traditional second order methods.

4 Experimental Results
We compare our methods to state of the art methods
– SGD with momentum (henceforth referred to as
Momentum) Adagrad Adadelta Adam and RMSProp
as implemented in TensorFlow.We also evaluate our
methods in the context of quasi-newton methods, such
as NonlinearCG, BFGS and SR1. In the interest
of space we direct readers to sections 5.2, 6.1 and
6.2 in [14] for detailed discussion of these competing
methods. The code developed in this work along with the
processed datasets are publicly available 3. Additionally,
raw datasets are also available from the UCI Machine
Learning Repository4.

3https://github.com/kylasa/NewtonCG
4http://archive.ics.uci.edu/ml/index.php

4.1 Experimental Setup and Data Newton-type
methods are implemented in C/C++ using CUDA/8.0
toolkit. First order-methods are implemented using
TensorFlow/1.2.1 python scripts. All results are gener-
ated using an Ubuntu server with 256GB RAM, 48-core
Intel Xeon E5-2650 processors, and Tesla P100 GPU
cards. For all of our experiments, we consider the `2-
regularized objective F (x) + λ‖x‖2/2, where F is the
Softmax Log-likelihood function. and λ is the regular-
ization parameter. Table 1 presents the datasets used,
along with the Lipschitz continuity constant of ∇F (x),
denoted by L. Recall that, an (over-estimate) of the
condition-number of the problem, as defined in [16], can
be obtained by (L+λ)/λ. As it is often done in practice,
we first normalize the datasets such that each column
of the data matrix A ∈ Rn×p has Euclidean norm one.
This helps with the conditioning of the problem. The
resulting dataset is, then, split into training and testing
sets, as shown in the Table 1.

4.2 Parameterization of Various Methods The
Lipschitz constant, L, is used to estimate the learning
rate (step-size) for first order methods. For each dataset,
we use a range of learning rates from 10−6/L to 106/L,
in increments of 10, a total of 13 step sizes, to determine
the best performing learning rate (one that yields the
maximum test accuracy). Rest of the hyper-parameters
required by first-order methods are set to the default
values, as recommended in TensorFlow. Two batch sizes
are used for first-order methods: a small batch size of
128 (empirically, it has been argued that smaller batch
sizes lead to better performance [6]), and a larger batch
size of 20% of the dataset. For Newton-type methods,
when the gradient is sampled, its sample size is set to
|Sg| = 0.2n.

We present results for two implementations of
second-order methods: (a) FullNewton, the classical
Newton-CG algorithm [14], which uses the exact gradient
and Hessian, and (b)SubsampledNewton-20, |Sg| = 0.2n,
and SubsampledNewton-100,|Sg| = n, are compared
against first-order methods using batch sizes 128 and
20% respectively. These methods use |SH| = 0.05n.
CG-tolerance is set to 10−4. Maximum number of CG
iterations is 10 for all datasets except Drive Diagnostics
and Gisette, for which it is 1000. λ is set to 10−3 and
we perform 100 iterations (epochs) for each dataset.

4.3 Computing Platforms For benchmarking first
order methods with batch size 128, we use CPU-
cores only and for the larger batch size 1-GPU and
1-CPU-core are used. For brevity we only present
the best performance results (lowest time-per-epochs).
Newton-type methods always use 1-GPU and 1-CPU-
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Table 1: Description of the datasets.
Classification Dataset Train Size (n) Test Size p C L

Multi-Class

Drive Diagnostics 50000 8509 48 11 3.95
MNIST 38000 38000 785 10 28.67

CIFAR-10 50000 10000 3072 10 534.92
Newsgroups20 10142 1127 53975 20 128.79

core for computations. Please see [11] for detailed
discussion on TensorFlow’s performance on various
hardware platforms.

4.4 Performance Comparisons with First-order
methods Table 2 presents the performance results.
Columns 1 and 3 show the plots for cumulative-time vs.
test-accuracy and columns 2 and 4 plot the numbers for
cumulative-time vs. objective function (training). Please
note that x-axis in all the plots is in “log-scale”. Detailed
discussion on additional datasets can be found in [11].

4.4.1 Drive Diagnostics Dataset Row 1 of Table. 2
shows the results for the Drive Diagnostics dataset.
We notice that all Newton-type methods achieve lower
objective function in the initial few iterations compared
to first order counterparts. When the batch size is
larger we notice first-order methods take longer time to
achieve the same objective function value compared to
smaller batch sized counterparts. Note that sub-sampled
methods yields similar results (objective function value
and generalization error) compared to Full-Newton
method.

4.4.2 MNIST and CIFAR-10 Datasets Rows 2
and 3 in Table. 2 present plots for MNIST and CIFAR-
10 datasets, respectively. Regardless of the batch size,
Newton-type methods clearly outperform first order
methods for these two datasets. When larger batch
size is used for first order methods we notice that these
methods take more epochs compared to their smaller
batch sized counterparts in reaching same objective
function value and generalization error. This behavior is
more prominent in CIFAR-10 dataset, which represents
a relatively ill -conditioned problem. As a result, in
terms of lowering the objective function on CIFAR-10,
first-order methods are negatively impacted by problem
ill-conditioning, whereas all Newton-type methods show
excellent robustness. (Note that, for CIFAR-10, our
proposed methods are ≈ 700× faster than first-order
alternatives irrespective of the mini-batch size.)

4.4.3 Newsgroups20 Dataset Plots in row 4 of
Table. 2 represent Newsgroups20 dataset, which is a

sparse dataset, and the Hessian size is ≈ 1e6 × 1e6.
We clearly notice SubsampledNewton-100 yields superior
training accuracy compared to all methods (column 1).
However, SubsampledNewton-20 takes more epochs to
achieve the same objective function value as its full-
gradient counterpart, as seen in column 4. This can be
attributed to a smaller gradient sample size, and sparse
nature of this dataset.

4.5 Sensitivity to Hyper-Parameter Tuning A
major consideration for first-order methods is that of
fine-tuning of various underlying hyper-parameters, most
notably, the step-size [3].Indeed, the success of most such
methods is strongly determined by many trial and error
steps to find proper parameter settings. In contrast,
second-order optimization methods involve much less
parameter tuning, and are less sensitive to specific
choices of their hyper-parameters [3].

To further highlight these issues, we demonstrate the
sensitivity of several first-order methods with respect to
their learning rate. Table. 3 shows the results of multiple
runs of SGD with Momentum, Adagrad, RMSProp and
Adam on Newsgroups20 dataset with several choices of
step-size. Each method is run 13 times using step-sizes
in the range 10−6/L to 106/L, in increments of 10, where
L is the Lipschitz constant; see Table. 1. It is clear that
small step-sizes can result in stagnation, whereas large
step sizes can cause the method to diverge. Only if the
step-size is within a particular and often narrow range,
which greatly varies across various methods, does one
see reasonable performance.

Remark: For some first-order methods, e.g.,
momentum based, line-search type techniques simply
cannot be used. For others, the starting step-size for
line-search is, almost always, a priori unknown. This
is sharp contrast with randomized Newton-type methods
considered here, which come with a priori “natural” step-
size, i.e., α = 1 , and furthermore, only occasionally
require the line-search to intervene; see [16, 17] for
theoretical guarantees in this regard.

4.6 Performance Comparison with Quasi-
Newton methods We compare our methods to
well-known quasi-newton methods BFGS and their
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Table 2: Performance comparison between first-order and second-order methods.
Time vs. Accuracy Time vs. Misfit Time vs. Accuracy Time vs. Misfit

First Order Batch Size = 128 First Order Batch Size = 20%
Alg. 1 Gradient Sample Size = 100% Alg. 1 Gradient Sample Size = 20%
Alg. 1 Hessian Sample Size = 5% Alg. 1 Hessian Sample Size = 5%
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newsgroups

limited-memory variants, SR1 and Nonlinear-CG with
Fletcher-Reeves’ step size formulation. Our implemen-
tation of these methods is done in C++/CUDA8.0
and benchmarked on GPUs. Note that quasi-newton
methods use strong-wolf conditions to compute the
step-size. This is more expensive than Armijo-type
conditions in eq. (2.3c) used by our methods. We refer
readers to [14] for detailed discussion of these methods.
Additional performance results can be found in [11].

4.6.1 Drive Diagnostics Dataset Plots in row 1
of Table. 4 show the results for the Drive Diagnostics
dataset. We clearly notice that NonlinearCG is the
only quasi-Newton method that achieves comparable
results to Newton-type methods, irrespective of the
gradient sample size. SR1 variants yield sub-par
performance compared to all the methods irrespective

of the gradient sample size. Variants of BFGS method
are negatively affected when gradient sample size is 20%
where subsampled Newton-type methods are robust to
such changes.

4.6.2 MNIST and CIFAR-10 Datasets Results
for MNIST and CIFAR-10 datasets are shown in Rows
2 and 3 respectively of Table. 4. We notice Newton-type
methods outperforming all quasi-Newton methods for
CIFAR-10 dataset. Note that this dataset is highly
ill-conditioned, which impacts all the quasi-Newton
methods significantly, whereas Newton-type methods
are robust. For the MNIST dataset, when gradient-
sample size is 20%, we notice variants of BFGS and SR1
making very little progress in minimizing the objective
function until the end of the execution, whereas Newton-
type methods achieve significantly lower values in the
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Table 3: Sensitivity of various first-order methods with respect to the choice of the step-size, i.e., learning-rate.
It is clear that, too small a step-size can lead to slow convergence, while larger step-sizes cause the method to
diverge. The range of step-sizes for which many of these methods perform reasonably, can be very narrow. This
is in contrast with Newton-type methods, which come with a priori “natural” step-size, i.e., α = 1 , and only
occasionally require the line-search to intervene.

first few epochs.

4.6.3 Newsgroups20 Dataset Results for the
Newsgroups20 dataset are shown in Row 4 of Table. 4.
We notice that Newton-type methods yield better objec-
tive function values compared to quasi-newton methods
early in the simulations. BFGS variants and Nonlin-
earCG takes longer time to reach comparable objective
function value, 1 sec compared to ≈10 secs. When sub-
sampled gradient is used, interestingly, BFGS variants
outperform NonlinearCG and also SubsampledNewton-
20 method in minimizing the objective function value.

5 Conclusions And Future Work
We presented sampled Hessian Newton solvers, which
has been shown to be significantly better than state-of-
the-art solvers in terms of solution time, robustness, and
use of hardware accelerators. In doing so, we have sig-
nificantly advanced the state-of-the-art in optimization
techniques for training a diverse set of ML applications.
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