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Abstract

For distributed computing environment, we consider the empirical risk minimiza-
tion problem and propose a distributed and communication-efficient Newton-type
optimization method. At every iteration, each worker locally finds an Approximate
NewTon (ANT) direction, which is sent to the main driver. The main driver, then,
averages all the ANT directions received from workers to form a Globally Improved
ANT (GIANT) direction. GIANT is highly communication efficient and naturally
exploits the trade-offs between local computations and global communications
in that more local computations result in fewer overall rounds of communica-
tions. Theoretically, we show that GIANT enjoys an improved convergence rate as
compared with first-order methods and existing distributed Newton-type methods.
Further, and in sharp contrast with many existing distributed Newton-type methods,
as well as popular first-order methods, a highly advantageous practical feature
of GIANT is that it only involves one tuning parameter. We conduct large-scale
experiments on a computer cluster and, empirically, demonstrate the superior
performance of GIANT.

1 Introduction

The large-scale nature of many modern “big-data” problems, arising routinely in science, engineering,
financial markets, Internet and social media, etc., poses significant computational as well as storage
challenges for machine learning procedures. For example, the scale of data gathered in many
applications nowadays typically exceeds the memory capacity of a single machine, which, in turn,
makes learning from data ever more challenging. In this light, several modern parallel (or distributed)
computing architectures, e.g., MapReduce [4], Apache Spark [44, 19], GraphLab [14], and Parameter
Server [11], have been designed to operate on and learn from data at massive scales. Despite the
fact that, when compared to a single machine, distributed systems tremendously reduce the storage
and (local) computational costs, the inevitable cost of communications across the network can often
be the bottleneck of distributed computations. As a result, designing methods which can strike an
appropriate balance between the cost of computations and that of communications are increasingly
desired.

The desire to reduce communication costs is even more pronounced in the federated learning
framework [8, 9, 1, 18, 37]. Similarly to typical settings of distributed computing, federated learning
assumes data are distributed over a network across nodes that enjoy reasonable computational
resources, e.g., mobile phones, wearable devices, and smart homes. However, the network has
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severely limited bandwidth and high latency. As a result, it is imperative to reduce the communications
between the center and a node or between two nodes. In such settings, the preferred methods are those
which can perform expensive local computations with the aim of reducing the overall communications
across the network.

Optimization algorithms designed for distributed setting are abundantly found in the literature. First-
order methods, i.e, those that rely solely on gradient information, are often embarrassingly parallel
and easy to implement. Examples of such methods include distributed variants of stochastic gradient
descent (SGD) [17, 27, 47], accelerated SGD [35], variance reduction SGD [10, 28], stochastic
coordinate descent methods [5, 13, 20, 31] and dual coordinate ascent algorithms [30, 43, 46].
The common denominator in all of these methods is that they significantly reduce the amount of
local computation. But this blessing comes with an inevitable curse that they, in turn, may require
a far greater number of iterations and hence, incur more communications overall. Indeed, as a
result of their highly iterative nature, many of these first-order methods require several rounds of
communications and, potentially, synchronizations in every iteration, and they must do so for many
iterations. In a computer cluster, due to limitations on the network’s bandwidth and latency and
software system overhead, communications across the nodes can oftentimes be the critical bottleneck
for the distributed optimization. Such overheads are increasingly exacerbated by the growing number
of compute nodes in the network, limiting the scalability of any distributed optimization method that
requires many communication-intensive iterations.

Table 1: Commonly used notation.

Notation Definition
n total number of samples
d number of features (attributes)
m number of partitions
f objective function
γ regularization parameter
wt the variable at iteration t
w? the variable that minimizes f
κ some condition number

To remedy such drawbacks of high number of iter-
ations for distributed optimization, communication-
efficient second-order methods, i.e., those that,
in addition to the gradient, incorporate curva-
ture information, have also been recently consid-
ered [16, 36, 29, 45, 7, 15, 38]; see also Section 1.1.
The common feature in all of these methods is that
they intend to increase the local computations with
the aim of reducing the overall iterations, and hence,
lowering the communications. In other words,
these methods are designed to perform as much
local computation as possible before making any
communications across the network. Pursuing similar objectives, in this paper, we propose a Globally
Improved Approximate NewTon (GIANT) method and establish its improved theoretical convergence
properties as compared with other similar second-order methods. We also showcase the superior
empirical performance of GIANT through several numerical experiments.

The rest of this paper is organized as follows. Section 1.1 briefly reviews prior works most closely
related to this paper. Section 1.2 gives a summary of our main contributions. The formal description
of the distributed empirical risk minimization problem is given in Section 2, followed by the derivation
of various steps of GIANT in Section 3. Section 4 presents the theoretical guarantees. The most
commonly used notation is listed in Table 1. Due to the page limit, the readers can refer to the long
version [41]; Section 5 provides a summary of our experiments. The proofs can be found in the long
version [41].

Table 2: The number of communications (proportional to the number of iterations) required for the
ridge regression problem. Here κ is the condition number of the Hessian matrix, µ is the matrix
coherence, and Õ conceals constants (analogous to µ) and logarithmic factors.

Method #Iterations Metric
GIANT [this work] t = O

(
log(dκ/E)

log(n/µdm)

)
‖wt −w?‖2 ≤ E

DiSCO [45] t = Õ
(
dκ1/2m3/4

n3/4 + κ1/2m1/4

n1/4 log 1
E

)
f(wt)− f(w?) ≤ E

DANE [36] t = Õ
(
κ2m
n

log 1
E

)
f(wt)− f(w?) ≤ E

AIDE [29] t = Õ
(
κ1/2m1/4

n1/4 log 1
E

)
f(wt)− f(w?) ≤ E

CoCoA [38] t = O
((
n+ 1

γ

)
log n

E

)
f(wt)− f(w?) ≤ E

AGD t = O
(
κ1/2 log d

E

)
‖wt −w?‖2 ≤ E
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1.1 Related Work

Among the existing distributed second-order optimization methods, the most notably are DANE [36],
AIDE [29], and DiSCO [45]. Another similar method is CoCoA [7, 15, 38], which is analogous to
second-order methods in that it involves sub-problems which are local quadratic approximations
to the dual objective function. However, despite the fact that CoCoA makes use of the smoothness
condition, it does not exploit any explicit second-order information.

We can evaluate the theoretical properties the above-mentioned methods in light of comparison
with optimal first-order methods, i.e., accelerated gradient descent (AGD) methods [22, 23]. It is
because AGD methods are mostly embarrassingly parallel and can be regarded as the baseline for
distributed optimization. Recall that AGD methods, being optimal in worst-case analysis sense [21],
are guaranteed to convergence to E-precision in O(√κ log 1

E ) iterations [23], where κ can be thought
of as the condition number of the problem. Each iteration of AGD has two rounds of communications—
broadcast or aggregation of a vector.

In Table 2, we compare the communication costs with other methods for the ridge regression
problem: minw

1
n‖Xw−y‖22+γ‖w‖22.1 The communication cost of GIANT has a mere logarithmic

dependence on the condition number κ; in contrast, the other methods have at least a square root
dependence on κ. Even if κ is assumed to be small, say κ = O(√n), which was made by [45],
GIANT’s bound is better than the compared methods regarding the dependence on the number of
partitions, m.
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Figure 1: One iteration of GIANT. Here X and y are respec-
tively the features and lables; Xi and yi denotes the blocks of
X and y, respectively. Each one-to-all operation is a Broad-
cast and each all-to-one operation is a Reduce.

Our GIANT method is motivated
by the subsampled Newton method
[33, 42, 25]. Later on, we realized
that a similar idea has been pro-
posed by DANE [36]; GIANT and
DANE are identical for quadratic
programming; they are different for
the general convex problems. Nev-
ertheless, we show better conver-
gence bounds than DANE, even for
quadratic programming. Our im-
provement over DANE is obtained
by better bounds the Hessian matrix
approximation and better analysis
of convex optimization.

GIANT also bears a resemblance
to FADL [16], but we show better
convergence bounds. Mahajan et
al. [16] has conducted comprehen-
sive empirical comparisons among
many distributed computing meth-
ods and concluded that the local
quadratic approximation, which is
very similar to GIANT, is the final
method which they recommended.

1.2 Contributions

In this paper, we consider the problem of empirical risk minimization involving smooth and strongly
convex objective function (which is the same setting considered in prior works of DANE, AIDE, and
DiSCO). In this context, we propose a Globally Improved Approximate NewTon (GIANT) method
and establish its theoretical and empirical properties as follows.

• For quadratic objectives, we establish global convergence of GIANT. To attain a fixed precision,
the number of iterations of GIANT (which is proportional to the communication complexity) has

1As for general convex problems, it is very hard to present the comparison in an easily understanding way.
This is why we do not compare the convergence for the general convex optimization.
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a mere logarithmic dependence on the condition number. In contrast, the prior works have at least
square root dependence. In fact, for quadratic problems, GIANT and DANE [36] can be shown to be
identical. In this light, for such problems, our work improves upon the convergence of DANE.

• For more general problems, GIANT has linear-quadratic convergence in the vicinity of the optimal
solution, which we refer to as “local convergence”.2 The advantage of GIANT mainly manifests in
big-data regimes where there are many data points available. In other words, when the number of
data points is much larger than the number of features, the theoretical convergence of GIANT enjoys
significant improvement over other similar methods.

• In addition to theoretical features, GIANT also exhibits desirable practical advantages. For example,
in sharp contrast with many existing distributed Newton-type methods, as well as popular first-order
methods, GIANT only involves one tuning parameter, i.e., the maximal iterations of its sub-problem
solvers, which makes GIANT easy to implement in practice. Furthermore, our experiments on a
computer cluster show that GIANT consistently outperforms AGD, L-BFGS, and DANE.

2 Problem Formulation

In this paper, we consider the distributed variant of empirical risk minimization, a supervised-
learning problem arising very often in machine learning and data analysis [34]. More specifically,
let x1, · · · ,xn ∈ Rd be the input feature vectors and y1, · · · , yn ∈ R be the corresponding response.
The goal of supervised learning is to compute a model from the training data, which can be achieved
by minimizing an empirical risk function, i.e.,

min
w∈Rd

{
f(w) ,

1

n

n∑

j=1

`j(w
Txj) +

γ

2
‖w‖22

}
, (1)

where `j : R 7→ R is convex, twice differentiable, and smooth. We further assume that f is strongly
convex, which in turn, implies the uniqueness of the minimizer of (1), denoted throughout the text
by w?. Note that yj is implicitly captured by `j . Examples of the loss function, `j , appearing in (1)
include

linear regression: `j(zj) =
1
2 (zj − yj)2,

logistic regression: `j(zj) = log(1 + e−zjyj ).

Suppose the n feature vectors and loss functions (x1, `1), · · · , (xn, `n) are partitioned among m
worker machines. Let s , n/m be the local sample size. Our theories require s > d; nevertheless,
GIANT empirically works well for s < d.

We consider solving (1) in the regimes where n� d. We assume that the data points, {xi}ni=1 are
partitioned among m machines, with possible overlaps, such that the number of local data is larger
than d. Otherwise, if n � d, we can consider the dual problem and partition features. If the dual
problem is also decomposable, smooth, strongly convex, and unconstrained, e.g., ridge regression,
then our approach directly applies.

3 Algorithm Description

In this section, we present the algorithm derivation and complexity analysis. GIANT is a central-
ized and synchronous method; one iteration of GIANT is depicted in Figure 1. The key idea of
GIANT is avoiding forming of the exact Hessian matrices Ht ∈ Rd×d in order to avoid expensive
communications.

2The second-order methods typically have the local convergence issue. Global convergence of GIANT can
be trivially established by following [32], however, the convergence rate is not very interesting, as it is worse
than the first-order methods.
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3.1 Gradient and Hessian

GIANT iterations require the exact gradient, which in the t-th iteration, can be written as

gt = ∇f(wt) =
1

n

n∑

j=1

`′j(w
T
t xj) xj + γwt ∈ Rd. (2)

The gradient, gt can be computed, embarrassingly, in parallel. The driver Broadcasts wt to all
the worker machines. Each machine then uses its own {(xj , `j)} to compute its local gradient.
Subsequently, the driver performs a Reduce operation to sum up the local gradients and get gt. The
per-iteration communication complexity is Õ(d) words, where Õ hides the dependence on m (which
can be m or logm, depending on the network structure).

More specifically, in the t-th iteration, the Hessian matrix at wt ∈ Rd can be written as

Ht = ∇2f(wt) =
1

n

n∑

j=1

`′′j (w
T
t xj) · xjxTj + γId. (3)

To compute the exact Hessian, the driver must aggregate the m local Hessian matrices (each of size
d × d) by one Reduce operation, which has Õ(d2) communication complexity and is obviously
impractical when d is thousands. The Hessian approximation developed in this paper has a mere
Õ(d) communication complexity which is the same to the first-order methods.

3.2 Approximate NewTon (ANT) Directions

Assume each worker machine locally holds s random samples drawn from {(xj , `j)}nj=1.3 Let Ji be
the set containing the indices of the samples held by the i-th machine, and s = |Ji| denote its size.
Each worker machine can use its local samples to form a local Hessian matrix

H̃t,i =
1

s

∑

j∈Ji

`′′j (w
T
t xj) · xjxTj + γId.

Clearly, E[H̃t,i] = Ht. We define the Approximate NewTon (ANT) direction by p̃t,i = H̃−1t,i gt.
The cost of computing the ANT direction p̃t,i in this way, involves O(sd2) time to form the d× d
dense matrix H̃t,i and O(d3) to invert it.

To reduce the computational cost, we opt to compute the ANT direction by the conjugate gradient
(CG) method [24]. Let aj =

√
`′′j (w

T
t xj) · xj ∈ Rd,

At = [aT1 ; · · · ;aTn ] ∈ Rn×d, (4)

and At,i ∈ Rs×d contain the rows of At indexed by the set Ji. Using the matrix notation, we can
write the local Hessian matrix as

H̃t,i = 1
sA

T
t,iAt,i + γId. (5)

Employing CG, it is unnecessary to explicitly form H̃t,i. Indeed, one can simply approximately solve
(
1
sA

T
t,iAt,i + γId

)
p = gt (6)

in a “Hessian-free” manner, i.e., by employing only Hessian-vector products in CG iterations. In each
round of GIANT, the local computational cost of a worker machine is O

(
q · nnz(At,i)

)
, where q is

the number of CG iterations specified by the users and typically set to tens.

3If the samples themselves are i.i.d. drawn from some distribution, then a data-independent partition is
equivalent to uniform sampling. Otherwise, the system can Shuffle the data.
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3.3 Globally Improved ANT (GIANT) Direction

Using random matrix concentration, we can show that for sufficiently large s, the local Hessian matrix
H̃t,i is a spectral approximation to Ht. Now let p̃t,i be an ANT direction. The Globally Improved
ANT (GIANT) direction is defined as

p̃t =
1

m

m∑

i=1

p̃t,i =
1

m

m∑

i=1

H̃−1t,i gt = H̃−1t gt. (7)

Interestingly, here H̃t is the harmonic mean defined as H̃t , ( 1
m

∑m
i=1 H̃−1t,i )

−1, whereas the true
Hessian Ht is the arithmetic mean defined as Ht , 1

m

∑m
i=1 H̃t,i. If the data is incoherent, that

is, the “information” is spread-out rather than concentrated to a small fraction of samples, then
the harmonic mean and the arithmetic mean are very close to each other, and thereby the GIANT
direction p̃t = H̃−1gt very well approximates the true Newton direction H−1gt. This is the intuition
of our global improvement.

The motivation of using the harmonic mean, H̃t, to approximate the arithmetic mean (the true Hessian
matrix), Ht, is the communication cost. Computing the arithmetic mean Ht , 1

m

∑m
i=1 H̃t,i would

require the communication of d × d matrices which is very expensive. In contrast, computing p̃t
merely requires the communication of d-dimensional vectors.

3.4 Time and Communication Complexities

For each worker machine, the per-iteration time complexity is O(sdq), where s is the local sample
size and q is the number of CG iterations for (approximately) solving (6). (See Proposition 5 for the
setting of q.) If the feature matrix X ∈ Rn×d has a sparsity of % = nnz(X)/(nd) < 1, the expected
per-iteration time complexity is then O(%sdq).
Each iteration of GIANT has four rounds of communications: two Broadcast for sending and two
Reduce for aggregating some d-dimensional vector. If the communication is in a tree fashion, the
per-iteration communication complexity is then Õ(d) words, where Õ hides the factor involving
m which can be m or logm. In contrast, the naive Newton’s method has Õ(d2) communication
complexity, because the system sends and receives d× d Hessian matrices.

4 Theoretical Analysis

In this section, we formally present the convergence guarantees of GIANT. Section 4.1 focuses on
quadratic loss and treats the global convergence of GIANT. This is then followed by local convergence
properties of GIANT for more general non-quadratic loss in Section 4.2. For the results of Sections 4.1
and 4.2, we require that the local linear system to obtain the local Newton direction is solved exactly.
Section 4.3 then relaxes this requirement to allow for inexactness in the solution, and establishes
similar convergence rates as those of exact variants.

For our analysis here, we frequently make use of the notion of matrix row coherence, defined as
follows. Such a notation has been used in compressed sensing [3], matrix completion [2], and
randomized linear algebra [6, 40, 39].

Definition 1 (Coherence). Let A ∈ Rn×d be any matrix and U ∈ Rn×d be its column orthonormal
bases. The row coherence of A is µ(A) = n

d maxj ‖uj‖22 ∈ [1, nd ].

Remark 1. Our work assumes At ∈ Rn×d, which is defined in (4), is incoherent, namely µ(At) is
small. The prior works, DANE, AIDE, and DiSCO, did not use the notation of incoherence; instead,
they assume ∇2

wlj(w
Txj) |w=wt

= aja
T
j is upper bounded for all j ∈ [n] and wt ∈ Rd, where

aj ∈ Rd is the j-th row of At. Such an assumption is different from but has similar implication as
our incoherence assumption; under either of the two assumptions, it can be shown that the Hessian
matrix can be approximated using a subset of samples selected uniformly at random.
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4.1 Quadratic Loss

In this section, we consider a special case of (1) with `i(z) = (z − yi)
2/2, i.e., the quadratic

optimization problems:

f(w) = 1
2n

∥∥Xw − y
∥∥2
2
+ γ

2 ‖w‖22. (8)

The Hessian matrix is given as∇2f(w) = 1
nXTX + γId, which does not depend on w. Theorem 1

describes the convergence of the error in the iterates, i.e., ∆t , wt −w?.
Theorem 1. Let µ be the row coherence of X ∈ Rn×d and m be the number of partitions. Assume
the local sample size satisfies s ≥ 3µd

η2 log md
δ for some η, δ ∈ (0, 1). It holds with probability 1− δ

that
‖∆t‖2 ≤ αt

√
κ ‖∆0‖2,

where α = η√
m

+ η2 and κ is the condition number of ∇2f(w) = 1
nXTX + γId.

Remark 2. The theorem can be interpreted in the this way. Assume the total number of samples, n,
is at least 3µdm log(md). Then

‖∆t‖2 ≤
(

3µdm log(md/δ)
n +

√
3µd log(md/δ)

n

)t√
κ ‖∆0‖2

holds with probability at least 1− δ.

If the total number of samples, n, is substantially bigger than µdm, then GIANT converges in a very
small number of iterations. Furthermore, to reach a fixed precision, say ‖∆t‖2 ≤ E , the number of
iterations, t, has a mere logarithmic dependence on the condition number, κ.

4.2 General Smooth Loss

For more general (not necessarily quadratic) but smooth loss, GIANT has linear-quadratic local
convergence, which is formally stated in Theorem 2 and Corollary 3. Let H? = ∇2f(w?) and
Ht = ∇2f(wt). For this general case, we assume the Hessian is L-Lipschitz, which is a standard
assumption in analyzing second-order methods.
Assumption 1. The Hessian matrix is L-Lipschitz continuous, i.e.,

∥∥∇2f(w) − ∇2f(w′)
∥∥
2
≤

L‖w −w′‖2, for all w and w′.

Theorem 2 establishes the linear-quadratic convergence of ∆t , wt −w?. We remind that At ∈
Rn×d is defined in (4) (thus AT

t At + γId = Ht). Note that, unlike Section 4.1, the coherence of At,
denote µt, changes with iterations.
Theorem 2. Let µt ∈ [1, n/d] be the coherence of At and m be the number of partitions. Assume
the local sample size satisfies st ≥ 3µtd

η2 log md
δ for some η, δ ∈ (0, 1). Under Assumption 1, it holds

with probability 1− δ that
∥∥∆t+1

∥∥
2
≤ max

{
α
√

σmax(Ht)
σmin(Ht)

∥∥∆t

∥∥
2
, 2L
σmin(Ht)

∥∥∆t

∥∥2
2

}
,

where α = η√
m

+ η2.

Remark 3. The standard Newton’s method is well known to have local quadratic convergence; the
quadratic term in Theorem 2 is the same as Newton’s method. The quadratic term is caused by the
non-quadritic objective function. The linear term arises from the Hessian approximation. For large
sample size, s, equivalently, small η, the linear term is small.

Note that in Theorem 2 the convergence depends on the condition numbers of the Hessian at every
point. Due to the Lipschitz assumption on the Hessian, it is easy to see that the condition number of
the Hessian in a neighborhood of w? is close to κ(H?). This simple observation implies Corollary 3,
in which the dependence of the local convergence of GIANT on iterations via Ht is removed.
Assumption 2. Assume wt is close to w? in that ‖∆t‖2 ≤ 3L · σmin(H

?), where L is defined in
Assumption 1.
Corollary 3. Under the same setting as Theorem 2 and Assumption 2, it holds with probability 1− δ
that ∥∥∆t+1

∥∥
2
≤ max

{
2α
√
κ
∥∥∆t

∥∥
2
, 3L
σmin(H?)

∥∥∆t

∥∥2
2

}
,

where κ is the condition number of the Hessian matrix at w?.
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4.3 Inexact Solutions to Local Sub-Problems

In the t-th iteration, the i-th worker locally computes p̃t,i by solving H̃t,ip = gt, where H̃t,i is
the i-th local Hessian matrix defined in (5). In high-dimensional problems, say d ≥ 104, the exact
formation of H̃t,i ∈ Rd×d and its inversion are impractical. Instead, we could employ iterative linear
system solvers, such as CG, to inexactly solve the arising linear system in (6). Let p̃′t,i be an inexact
solution which is close to p̃t,i , H̃−1t,i gt, in the sense that

∥∥∥H̃1/2
t,i

(
p̃′t,i − p̃t,i

)∥∥∥
2
≤ ε0

2

∥∥∥H̃1/2
t,i p̃t,i

∥∥∥
2
, (9)

for some ε0 ∈ (0, 1). GIANT then takes p̃′t =
1
m

∑m
i=1 p̃′t,i as the approximate Newton direction in

lieu of p̃t. In this case, as long as ε0 is of the same order as η√
m

+ η2, the convergence rate of such
inexact variant of GIANT remains similar to the exact algorithm in which the local linear system is
solved exactly. Theorem 4 makes convergence properties of inexact GIANT more explicit.

Theorem 4. Suppose inexact local solution to (6), denote p̃′t,i, satisfies (9). Then Theorems 1 and 2
and Corollary 3 all continue to hold with α =

(
η√
m

+ η2
)
+ ε0.

Proposition 5 gives conditions to guarantee (9), which is, in turn, required for Theorem 4.

Proposition 5. To compute an inexact local Newton direction from the sub-problem (6), suppose
each worker performs

q = log 8
ε20

/
log
√
κ̃t+1√
κ̃t−1

≈
√
κt−1
2 log 8

ε20

iterations of CG, initialized at zero, where κ̃t and κt are, respectiely, the condition number of H̃t,i

and Ht. Then requirement (9) is satisfied.

5 A Summary of the Empirical Study

Due to the page limit, the experiments are not included in this paper; please refer to the long
version [41] for the experiments. The Apache Spark code is available at https://github.com/
wangshusen/SparkGiant.git. Here we briefly describe our results.

We implement GIANT, Accelerated Gradient Descent (AGD) [23], Limited memory BFGS (L-
BFGS) [12], and Distributed Approximate NEwton (DANE) [36] in Scala and Apache Spark [44].
We empirically study the `2-regularized logistic regression problem (which satisfies our assumptions):

min
w

1

n

n∑

j=1

log
(
1 + exp(−yjxTj w)

)
+
γ

2
‖w‖22, (10)

We conduct large-scale experiments on the Cori Supercomputer maintained by NERSC, a Cray XC40
system with 1632 compute nodes, each of which has two 2.3GHz 16-core Haswell processors and
128GB of DRAM. We use up to 375 nodes (12,000 CPU cores).

To apply logistic regression, we use three binary classification datasets: MNIST8M (digit “4” versus
“9”, thus n = 2M and d = 784), Covtype (n = 581K and d = 54), and Epsilon (n = 500K and
d = 2K), which are available at the LIBSVM website. We randomly hold 80% for training and the
rest for test. To increase the size of the data, we generate 104 random Fourier features [26] and use
them in lieu of the original features in the logistic regression problem.

For the four methods, we use different settings of the parameters and report the best convergence
curve; we do not count the cost of parameter tuning. (This actually favors AGD and DANE because
they have more tuning parameters than GIANT and L-BFGS.) Using the same amount of wall-clock
time, GIANT consistently converges faster than AGD, DANE, and L-BFGS in terms of both
training objective value and test classification error (see the figures in [41]).

Our theory requires the local sample size s = n
m to be larger than d. But in practice, GIANT

converges even if s is smaller than d. In this set of experiments, we set m = 89, and thus s is about
half of d. Nevetheless, GIANT converges in all of our experiments. Our empirical may imply that the
theoretical sample complexity can be potentially improved.
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We further use data augmentation (i.e., adding random noise to the feature vectors) to increase n to
5 and 25 times larger. In this way, the feature matrices are all dense, and the largest feature matrix
we use is about 1TB. As we increase both n and the number of compute nodes, the advantage of
GIANT further increases, which means GIANT is more scalable than the compared methods. It is
because as we increase the number of samples and the number of nodes by the same factor, the local
computation remains the same, but the communication and synchronization costs increase, which
favors the communication-efficient methods; see the figures and explanations in [41].

6 Conclusions and Future Work

We have proposed GIANT, a practical Newton-type method, for empirical risk minimization in
distributed computing environments. In comparison to similar methods, GIANT has three desirable
advantages. First, GIANT is guaranteed to converge to high precision in a small number of iterations,
provided that the number of training samples, n, is sufficiently large, relative to dm, where d is
the number of features and m is the number of partitions. Second, GIANT is very communication
efficient in that each iteration requires four or six rounds of communications, each with a complexity
of merely Õ(d). Third, in contrast to all other alternates, GIANT is easy to use, as it involves tuning
one parameter. Empirical studies also showed the superior performance of GIANT as compared
several other methods.

GIANT has been developed only for unconstrained problems with smooth and strongly convex
objective function. However, we believe that similar ideas can be naturally extended to projected
Newton for constrained problems, proximal Newton for non-smooth regularization, and trust-region
method for nonconvex problems. However, strong convergence bounds of the extensions appear
nontrivial and will be left for future work.
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[29] Sashank J Reddi, Jakub Konecnỳ, Peter Richtárik, Barnabás Póczós, and Alex Smola. AIDE: fast and
communication efficient distributed optimization. arXiv preprint arXiv:1608.06879, 2016.

[30] Peter Richtárik and Martin Takác. Distributed coordinate descent method for learning with big data.
Journal of Machine Learning Research, 17(1):2657–2681, 2016.

[31] Peter Richtárik and Martin Takávc. Parallel coordinate descent methods for big data optimization. Mathe-
matical Programming, 156(1-2):433–484, 2016.

[32] Farbod Roosta-Khorasani and Michael W Mahoney. Sub-sampled Newton methods I: globally convergent
algorithms. arXiv preprint arXiv:1601.04737, 2016.

[33] Farbod Roosta-Khorasani and Michael W Mahoney. Sub-sampled Newton methods II: Local convergence
rates. arXiv preprint arXiv:1601.04738, 2016.

[34] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: from theory to algorithms.
Cambridge University Press, 2014.

[35] Ohad Shamir and Nathan Srebro. Distributed stochastic optimization and learning. In Annual Allerton
Conference on Communication, Control, and Computing, 2014.

[36] Ohad Shamir, Nati Srebro, and Tong Zhang. Communication-efficient distributed optimization using an
approximate Newton-type method. In International conference on machine learning (ICML), 2014.

10



[37] Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet Talwalkar. Federated multi-task learning.
arXiv preprint arXiv:1705.10467, 2017.

[38] Virginia Smith, Simone Forte, Chenxin Ma, Martin Takac, Michael I Jordan, and Martin Jaggi. CoCoA: A
general framework for communication-efficient distributed optimization. arXiv preprint arXiv:1611.02189,
2016.

[39] Shusen Wang, Alex Gittens, and Michael W. Mahoney. Sketched ridge regression: Optimization perspective,
statistical perspective, and model averaging. In International Conference on Machine Learning (ICML),
2017.

[40] Shusen Wang, Luo Luo, and Zhihua Zhang. SPSD matrix approximation vis column selection: Theories,
algorithms, and extensions. Journal of Machine Learning Research, 17(49):1–49, 2016.

[41] Shusen Wang, Farbod Roosta-Khorasani, Peng Xu, and Michael W. Mahoney. GIANT: Globally improved
approximate Newton method for distributed optimization. arXiv:1709.03528, 2018.

[42] Peng Xu, Jiyan Yang, Farbod Roosta-Khorasani, Christopher Ré, and Michael W Mahoney. Sub-sampled
Newton methods with non-uniform sampling. In Advances in Neural Information Processing Systems
(NIPS), 2016.

[43] Tianbao Yang. Trading computation for communication: distributed stochastic dual coordinate ascent. In
Advances in Neural Information Processing Systems (NIPS), 2013.

[44] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion Stoica. Spark: Cluster
computing with working sets. HotCloud, 10(10-10):95, 2010.

[45] Yuchen Zhang and Xiao Lin. DiSCO: distributed optimization for self-concordant empirical loss. In
International Conference on Machine Learning (ICML), 2015.

[46] Shun Zheng, Fen Xia, Wei Xu, and Tong Zhang. A general distributed dual coordinate optimization
framework for regularized loss minimization. arXiv preprint arXiv:1604.03763, 2016.

[47] Martin Zinkevich, Markus Weimer, Lihong Li, and Alex J Smola. Parallelized stochastic gradient descent.
In Advances in Neural Information Processing Systems (NIPS), 2010.

11


	Introduction
	Related Work
	Contributions

	Problem Formulation
	Algorithm Description
	Gradient and Hessian
	Approximate NewTon (ANT) Directions
	Globally Improved ANT (GIANT) Direction
	Time and Communication Complexities

	Theoretical Analysis
	Quadratic Loss
	General Smooth Loss
	Inexact Solutions to Local Sub-Problems

	A Summary of the Empirical Study
	Conclusions and Future Work

