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Abstract
We study the fundamental problem of selecting
optimal features for model construction. This
problem is computationally challenging on large
datasets, even with the use of greedy algorithm
variants. To address this challenge, we extend
the adaptive query model, recently proposed for
the greedy forward selection for submodular func-
tions, to the faster paradigm of Orthogonal Match-
ing Pursuit for non-submodular functions. The
proposed algorithm achieves exponentially fast
parallel run time in the adaptive query model,
scaling much better than prior work. Further-
more, our extension allows the use of downward-
closed constraints, which can be used to encode
certain fairness criteria into the feature selection
process. We prove strong approximation guaran-
tees for the algorithm based on standard assump-
tions. These guarantees are applicable to many
parametric models, including Generalized Linear
Models. Finally, we demonstrate empirically that
the proposed algorithm competes favorably with
state-of-the-art techniques for feature selection,
on real-world and synthetic datasets.

1. Introduction
We study the fundamental problem of selecting a few fea-
tures out of many for a given modeling problem, while sat-
isfying additional side constraints. This setup can be used
to encode certain notions of fairness in feature selection in a
principled way.1 Formally, given a function l : Rn → R>0

expressing the goodness of fit, we search for a set of features
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1In this paper, we consider several fairness constraints proposed
in the literature, but there may be other notions of fairness which
do not fall within our theoretical framework.

S maximizing the function

f(S) := l(β(S))− l(0). (1)

Here, 0 represents the n-dimensional zero vector, and β(S)

is a vector maximizing l(·) with support in S. If we de-
note by I the set of all solution sets that satisfy the side
constraints, then the feature selection optimization problem
with side constraints can be formalized as

argmax
S⊆[n] : S∈I

f(S) = argmax
S⊆[n] : S∈I

l(β(S))− l(0), (2)

where [n] is the index set of all the features. Often, I
corresponds to an r-sparsity constraint, i.e., a solution S is
feasible if it contains at most r features.

Several algorithms have been proposed for feature selection
under sparsity constraints. Some examples include forward
step-wise selection methods (Elenberg et al., 2018; Qian &
Singer, 2019), the Orthogonal Matching Pursuit (Needell &
Tropp, 2010; Elenberg et al., 2018; Sakaue, 2020), forward-
backward methods (Jalali et al., 2011; Liu et al., 2014),
Pareto optimization (Qian et al., 2015; 2020), Exponential
Screening (Rigollet & Tsybakov, 2010), and gradient-based
methods (Jain et al., 2014; Yuan et al., 2017). These algo-
rithms, however, are computationally inefficient on large
datasets. Furthermore, there are a limited number of stud-
ies that take into account additional side constrains (e.g.,
matroids (Chen et al., 2018; Gatmiry & Gomez-Rodriguez,
2018)), which can be crucial when deploying machine learn-
ing systems in the real world.

Recently, there has been a growing effort towards develop-
ing fair algorithms for many fundamental problems, such as
regression and classification (Zafar et al., 2017a; Kim et al.,
2018; Feldman et al., 2015; Agarwal et al., 2018; Grgic-
Hlaca et al., 2018b), matching (Chierichetti et al., 2019),
and summarization (Halabi et al., 2020). Several defini-
tions of fairness can be incorporated in the learning process
as additional side constraints (Grgic-Hlaca et al., 2018b;a;
Grgic-Hlaca et al., 2016; Chierichetti et al., 2019; Halabi
et al., 2020; Zafar et al., 2017a; Woodworth et al., 2017;
Donini et al., 2018; Agarwal et al., 2018; 2019). Motivated
by this line of research, we consider the following question:
How can we efficiently perform feature selection, while tak-
ing into account additional constraints such as fairness?
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We address this question by proposing a novel algorithm that
combines the paradigms of matching pursuit together with
the adaptive query model for the problem (2). This algo-
rithm is much faster than previously known techniques. At
the same time, it allows to incorporate certain notions of fair-
ness in the learning process, via a reduction to the p-system
side constraints (see Jenkyns (1976) and Section 2.2).

Our Contribution. We propose a novel matching pursuit
algorithm for the constrained feature selection problem (2).
This algorithm uses oracle access to the gradient ∇l(β(S)),
and to an oracle for the evaluation of the feasibility of an
input solution set. The feasibility oracle is well-aligned with
previous related work (Elenberg et al., 2018; Sakaue, 2020).
The main technical contributions of this paper are two-
fold: (i) we extend the adaptive query model to a class
of non-submodular objectives using the paradigm of gradi-
ent based pursuit algorithms; and (ii) we incorporate general
downward-closed constraints in the optimization process
beyond the standard sparsity constraints.

2. Preliminaries
Notation. We denote with n the number of features, i.e.,
the dimension of the domain of l(·), and we define [n] :=
{1, 2, . . . , n}. For any s ∈ [n], we denote with es the unit
vector, with a 1 for the coefficient indexed by s, and 0
otherwise. Feature sets are represented by sans script fonts,
i.e., S,T. Vectors are represented by lower-case bold letters
as x, y, β and matrices are represented by upper-case bold
letters, i.e., X , Y , Σ. For a feature set S, we denote with
β(S) a vector maximizing l(·) with non-zero entries indexed
by the set S. For a feature set T and a parameter vector β,
we define ∇l(β)T := ⟨∇l(β),

∑
s∈T es⟩. We denote with

OPT the optimal value attained by the function f(·) as in (2).
We denote with I the p-system side constraint, and with r
its rank, as defined in Section 2.1. The notation Cond(T)
denotes the set {s ∈ [n] \ T : T ∪ {s} ∈ I}.

2.1. Problem Formulation

We study optimization tasks as in the problem (2) under
some additional assumptions on l(·), which are often sat-
isfied in practical applications. We specifically consider
functions that are (M,m)-(smooth, restricted concave) of
a function (Negahban et al., 2010) (see Appendix A). Fur-
thermore, we model the side constraints as p-systems (see
Appendix B).

2.2. Embedding Certified Notions of Fairness via
p-Systems

Procedural fairness metrics. Procedural fairness focuses
on selecting features based on perceived fairness as envi-
sioned by human beings during the decision-making process,
rather than on the fairness of the outcome. This notion of

fairness is measured by gauging “the degree to which peo-
ple consider various features to be fair” (Grgic-Hlaca et al.,
2016). This is in contrast to measuring fairness of the out-
comes of such decisions, for example, by down weighing
decisions that affect users of protected groups (e.g., race
or gender).
In this work, we consider measures for procedural fairness
studied by (Grgic-Hlaca et al., 2016) and (Grgic-Hlaca et al.,
2018b). However, our framework is not specific to these def-
initions. These measures consist of monotone set functions
h : 2[n] → [0, 1]. For an input feature set T ⊆ [n], the value
h(T) quantifies the perceived fairness of T, with h(T) = 0
corresponding to maximum fairness and h(T) = 1 corre-
sponding to maximum unfairness. We refer the reader to
(Grgic-Hlaca et al., 2016; Grgic-Hlaca et al., 2018b) for
a precised definition of these concepts. While procedural
fairness may not imply fairness of the outcome, it has been
observed that in some cases procedurally fair feature sets
maintain good outcome fairness (Grgic-Hlaca et al., 2016;
Grgic-Hlaca et al., 2018b).

Feature partitions. Our proposed approach also includes
as a special case the framework proposed by (Celis et al.,
2018). Here, features are grouped into disjoint clusters
[n] = X1 ∪ · · · ∪ Xℓ. The constraints are specified using
λj which encodes the maximum number of features that
can be selected from cluster Xj . In other words, feature
sets T ⊆ [n] is feasible if the number of data-points in-
tersecting a class Xj does not exceed the corresponding
threshold λj . Formally, we define the set of constraints
Iλcl := {T ⊆ [n] : |T ∩ Xj | ≤ λj ∀j ∈ [ℓ]}. This set of
constraints is a matroid, which is a p-system with p = 1.
A generalization of the aforementioned partition matroid
was considered by (Halabi et al., 2020). For each ele-
ment in any partition set Xj , we are given a lower- and
an upper-bound on the number of elements that can be
selected from this set. Bounds are denoted by ℓj and
uj respectively. The set of constraints can be written as
Ip := {T ⊆ [n] : ℓj ≤ |T ∩ Xj | ≤ cj ∀j ∈ [ℓ]}. This set of
constraints is, in general, not a p-system. However, (Halabi
et al., 2020) show that one can consider a relaxation of the
constraint set Ip :=

{
T ⊆ [n] : T ⊆ S for any set S ∈ Ip

}
,

which is equivalent from the optimization perspective. Any
monotone optimization objective (as in (1)) yields the same
solution sets on Ip and Ip. The set of constraints Ip is a
matroid, i.e., a p-system with p = 1 (Edmonds, 1970).

3. Algorithmic Overview
Our algorithm, which we call FASTOMP, is presented in
Algorithm 1. This algorithm is based on a technique called
adaptive sequencing (Balkanski et al., 2019; Breuer et al.,
2020), which was recently proposed for highly scalable
maximization of submodular functions.
Say X is the complete set of candidate features, and
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Algorithm 1 FASTOMP
S← ∅;
while the number of iterations is less than ε−1 and
Cond(S) ̸= ∅ do
X← {s ∈ [n] : {s} ∪ S ∈ I};
t← (1− ε) m

|T|M ∥∇l(β
(S))T∥22 with T ⊆ X maximiz-

ing ∥∇l(β(S))T∥22 s.t. |T| ≤ r;
while X ̸= ∅ and Cond(S) ̸= ∅ do
{a1, a2, . . . , ak} ← RNDSEQ (X,S) and define
Sj ← S ∪ {a1, . . . , aj};
observe Xj ← {s ∈ X : ⟨∇l(β(Sj)), es⟩2 ≥
t and s ∈ Cond(Sj)};
j∗ ← minj{j : |Xj | < (1− ε) |X|}
X← Xj∗ and S← Sj∗ ;

end while
end whilereturn S;

S is the current solution. Starting from S ← ∅, the
FASTOMP iteratively generates a random sequence of fea-
tures {a1, a2, . . . , ak} with the RNDSEQ sub-routine (de-
tails in Appendix H), such that the set {a1, a2, . . . , ak} ∪ S
is a maximal independent set of I. After a sequence is
generated, the FASTOMP identifies a prefix {a1, . . . , aj∗}
that is added to the current solution. The index j∗ defining
this prefix is chosen such that it holds |Xj | ≥ (1 − ε) |X|,
for all 0 ≤ j < j∗. This inequality ensures that any point
added to the current solution yields ⟨∇l(β(S)), es⟩2 ≥ t in
expected value. Finally, the ground set X is updated as to
include only those points that yield a good improvement to
the new solution. The RNDSEQ sub-routine used to generate
{a1, a2, . . . , ak} corresponds to Algorithm A by Karp et al.
(1988). Here, k is the size of the independent set returned
in the current iteration.

4. Approximation Guarantees
In this section, we study the approximation guarantees for
Algorithm 1, when solving Problem (2).

Theorem 4.1. Define the support selection function f(·) as
in (1), for the given function l(·) that is (M,m)-(restricted
smooth, restricted strong concave), on the sparse sub-
domain Ω2r. Consider a p-system I of rank r over [n],
and let S∗ be the output of Algorithm 1 while OPT is the
optimum solution set for the Problem 2. Then,

E [ f(S∗) ]

OPT
≥ 1

1 + p

(
1− exp

{
−(1− ε)2

m3

M3

})
,

for all 0 < ε < 1. Furthermore, in the specific case when I
is r-sparsity constraint over [n], then,

E [ f(S∗) ]

OPT
≥
(
1− exp

{
−(1− ε)2

m2

M2

})
.

A full proof of this theorem is deferred to Appendix J. The
parameter p in Theorem 4.1 is always upper-bounded by the
maximum number of features r that we wish to select for
model construction.

We also provide bounds for the run time of the FASTOMP
as follows.
Theorem 4.2. Algorithm 1 terminates after O

(
ε−2 log n

)
rounds of calls to the oracle function, and it uses at most
O
(
ε−2r log n

)
oracle queries. Furthermore, Algorithm 1

requires expectedO
(
ε−2
√
r log n

)
independent calls to the

oracle for the p-system I, and the total expected number of
calls to the oracle for the p-system I is O

(
ε−2nr log n

)
.

The proof of Theorem 4.2 is deferred to Appendix K. The
estimates on the rounds of adaptivity extends to the PRAM
model. If we denote with dl the depth required to eval-
uate the oracle function on a set, then the FASTOMP has
O
(
ε−2dl log n

)
depth.

5. Experiments
5.1. Benchmarks

We compare our algorithm against the Orthogonal Matching
Pursuit (SDSOMP, Krause & Cevher (2010); Elenberg et al.
(2018)), a submodular optimization algorithm (ISK, Iyer
& Bilmes (2013)), the simple lasso (Lasso), and uniform
random sampling (Random, see H).

5.2. Datasets
Synthetic Datasets. We generate a synthetic dataset with
106 features, 104 observations, and size ∼ 19GB. Features
are sampled with a joint Gaussian distribution with mean
vector µ = 0, and a covariance matrix Σ designed to en-
sure that 10% of the features are highly correlated with the
response, while the remaining features have low correlation
with the response variable. We then add posterior uniform
noise, and normalize the observations.

The ProPublica COMPAS DataSet. We consider the
well-known ProPublica COMPAS dataset, which is a
pretrial risk assessment instrument (Larson et al., 2016).
This dataset was constructed in 2016, using data of
defendants from Broward County, FL (US), who had been
arrested in 2013 or 2014. This dataset was intended to be
used to predict if a criminal was likely to re-offend, based
on previous arrest charges and demographic information.
Predictions based on the COMPAS datasets were found to
be racially biased (Angwin et al., 2016; Berk et al., 2021)
(see Appendix N for details).

5.3. Results
Synthetic Dataset. We search for a set of features maxi-
mizing the R2 objective. We consider a randomly generated
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<latexit sha1_base64="WEYTpbYqaDyrYIQCY3iEshSbIAU=">AAACBXicbVDLSsNAFJ34rPUVdamLwSq4KokUdVkQxGUF+4A2hMl02g6dScLMjVhCNm78FTcuFHHrP7jzb5y2EbT1wIUz59zL3HuCWHANjvNlLSwuLa+sFtaK6xubW9v2zm5DR4mirE4jEalWQDQTPGR14CBYK1aMyECwZjC8HPvNO6Y0j8JbGMXMk6Qf8h6nBIzk2wcdYPegaXpFNGR++vOMZJxlvl1yys4EeJ64OSmhHDXf/ux0I5pIFgIVROu268TgpUQBp4JlxU6iWUzokPRZ29CQSKa9dHJFho+N0sW9SJkKAU/U3xMpkVqPZGA6JYGBnvXG4n9eO4HehZfyME6AhXT6US8RGCI8jgR3uWIUxMgQQhU3u2I6IIpQMMEVTQju7MnzpHFads/KlZtKqXqUx1FA++gQnSAXnaMqukY1VEcUPaAn9IJerUfr2Xqz3qetC1Y+s4f+wPr4BnIJmb0=</latexit>

Fastomp
<latexit sha1_base64="0ljsUvM0a6/iv76vAYcunqFc7Bs=">AAACBHicbVDLSsNAFJ34rPUVddnNYBVclUSKuiy4cVnRPqANYTKZtEMnD2ZuxBKycOOvuHGhiFs/wp1/47SNoK0HLpw5517m3uMlgiuwrC9jaXlldW29tFHe3Nre2TX39tsqTiVlLRqLWHY9opjgEWsBB8G6iWQk9ATreKPLid+5Y1LxOLqFccKckAwiHnBKQEuuWekDuwdFsxtf5W7284rDJM9ds2rVrCnwIrELUkUFmq752fdjmoYsAiqIUj3bSsDJiAROBcvL/VSxhNARGbCephEJmXKy6RE5PtaKj4NY6ooAT9XfExkJlRqHnu4MCQzVvDcR//N6KQQXTsajJAUW0dlHQSowxHiSCPa5ZBTEWBNCJde7YjokklDQuZV1CPb8yYukfVqzz2r163q1cVTEUUIVdIhOkI3OUQNdoSZqIYoe0BN6Qa/Go/FsvBnvs9Ylo5g5QH9gfHwDqoSZTw==</latexit>

Sdsomp
<latexit sha1_base64="gRVEb+v+NAPU5THtTGx0Ca7Ud3Q=">AAAB9HicbVDLSgNBEOz1GeMr6tHLYhQ8hV0J6jHgxWMU84BkCbOzs8mQeawzs8Gw5Du8eFDEqx/jzb9xkuxBEwsaiqpuurvChFFtPO/bWVldW9/YLGwVt3d29/ZLB4dNLVOFSQNLJlU7RJowKkjDUMNIO1EE8ZCRVji8mfqtEVGaSvFgxgkJOOoLGlOMjJWCLg/lU3aPRCT5pFcqexVvBneZ+DkpQ456r/TVjSROOREGM6R1x/cSE2RIGYoZmRS7qSYJwkPUJx1LBeJEB9ns6Il7ZpXIjaWyJYw7U39PZIhrPeah7eTIDPSiNxX/8zqpia+DjIokNUTg+aI4Za6R7jQBN6KKYMPGliCsqL3VxQOkEDY2p6INwV98eZk0Lyr+ZaV6Vy3XTvM4CnAMJ3AOPlxBDW6hDg3A8AjP8Apvzsh5cd6dj3nripPPHMEfOJ8/PA6SUg==</latexit>
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<latexit sha1_base64="WEYTpbYqaDyrYIQCY3iEshSbIAU=">AAACBXicbVDLSsNAFJ34rPUVdamLwSq4KokUdVkQxGUF+4A2hMl02g6dScLMjVhCNm78FTcuFHHrP7jzb5y2EbT1wIUz59zL3HuCWHANjvNlLSwuLa+sFtaK6xubW9v2zm5DR4mirE4jEalWQDQTPGR14CBYK1aMyECwZjC8HPvNO6Y0j8JbGMXMk6Qf8h6nBIzk2wcdYPegaXpFNGR++vOMZJxlvl1yys4EeJ64OSmhHDXf/ux0I5pIFgIVROu268TgpUQBp4JlxU6iWUzokPRZ29CQSKa9dHJFho+N0sW9SJkKAU/U3xMpkVqPZGA6JYGBnvXG4n9eO4HehZfyME6AhXT6US8RGCI8jgR3uWIUxMgQQhU3u2I6IIpQMMEVTQju7MnzpHFads/KlZtKqXqUx1FA++gQnSAXnaMqukY1VEcUPaAn9IJerUfr2Xqz3qetC1Y+s4f+wPr4BnIJmb0=</latexit>

Fastomp
<latexit sha1_base64="0ljsUvM0a6/iv76vAYcunqFc7Bs=">AAACBHicbVDLSsNAFJ34rPUVddnNYBVclUSKuiy4cVnRPqANYTKZtEMnD2ZuxBKycOOvuHGhiFs/wp1/47SNoK0HLpw5517m3uMlgiuwrC9jaXlldW29tFHe3Nre2TX39tsqTiVlLRqLWHY9opjgEWsBB8G6iWQk9ATreKPLid+5Y1LxOLqFccKckAwiHnBKQEuuWekDuwdFsxtf5W7284rDJM9ds2rVrCnwIrELUkUFmq752fdjmoYsAiqIUj3bSsDJiAROBcvL/VSxhNARGbCephEJmXKy6RE5PtaKj4NY6ooAT9XfExkJlRqHnu4MCQzVvDcR//N6KQQXTsajJAUW0dlHQSowxHiSCPa5ZBTEWBNCJde7YjokklDQuZV1CPb8yYukfVqzz2r163q1cVTEUUIVdIhOkI3OUQNdoSZqIYoe0BN6Qa/Go/FsvBnvs9Ylo5g5QH9gfHwDqoSZTw==</latexit>

Sdsomp
<latexit sha1_base64="gRVEb+v+NAPU5THtTGx0Ca7Ud3Q=">AAAB9HicbVDLSgNBEOz1GeMr6tHLYhQ8hV0J6jHgxWMU84BkCbOzs8mQeawzs8Gw5Du8eFDEqx/jzb9xkuxBEwsaiqpuurvChFFtPO/bWVldW9/YLGwVt3d29/ZLB4dNLVOFSQNLJlU7RJowKkjDUMNIO1EE8ZCRVji8mfqtEVGaSvFgxgkJOOoLGlOMjJWCLg/lU3aPRCT5pFcqexVvBneZ+DkpQ456r/TVjSROOREGM6R1x/cSE2RIGYoZmRS7qSYJwkPUJx1LBeJEB9ns6Il7ZpXIjaWyJYw7U39PZIhrPeah7eTIDPSiNxX/8zqpia+DjIokNUTg+aI4Za6R7jQBN6KKYMPGliCsqL3VxQOkEDY2p6INwV98eZk0Lyr+ZaV6Vy3XTvM4CnAMJ3AOPlxBDW6hDg3A8AjP8Apvzsh5cd6dj3nripPPHMEfOJ8/PA6SUg==</latexit>
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<latexit sha1_base64="WEYTpbYqaDyrYIQCY3iEshSbIAU=">AAACBXicbVDLSsNAFJ34rPUVdamLwSq4KokUdVkQxGUF+4A2hMl02g6dScLMjVhCNm78FTcuFHHrP7jzb5y2EbT1wIUz59zL3HuCWHANjvNlLSwuLa+sFtaK6xubW9v2zm5DR4mirE4jEalWQDQTPGR14CBYK1aMyECwZjC8HPvNO6Y0j8JbGMXMk6Qf8h6nBIzk2wcdYPegaXpFNGR++vOMZJxlvl1yys4EeJ64OSmhHDXf/ux0I5pIFgIVROu268TgpUQBp4JlxU6iWUzokPRZ29CQSKa9dHJFho+N0sW9SJkKAU/U3xMpkVqPZGA6JYGBnvXG4n9eO4HehZfyME6AhXT6US8RGCI8jgR3uWIUxMgQQhU3u2I6IIpQMMEVTQju7MnzpHFads/KlZtKqXqUx1FA++gQnSAXnaMqukY1VEcUPaAn9IJerUfr2Xqz3qetC1Y+s4f+wPr4BnIJmb0=</latexit>

Fastomp
<latexit sha1_base64="0ljsUvM0a6/iv76vAYcunqFc7Bs=">AAACBHicbVDLSsNAFJ34rPUVddnNYBVclUSKuiy4cVnRPqANYTKZtEMnD2ZuxBKycOOvuHGhiFs/wp1/47SNoK0HLpw5517m3uMlgiuwrC9jaXlldW29tFHe3Nre2TX39tsqTiVlLRqLWHY9opjgEWsBB8G6iWQk9ATreKPLid+5Y1LxOLqFccKckAwiHnBKQEuuWekDuwdFsxtf5W7284rDJM9ds2rVrCnwIrELUkUFmq752fdjmoYsAiqIUj3bSsDJiAROBcvL/VSxhNARGbCephEJmXKy6RE5PtaKj4NY6ooAT9XfExkJlRqHnu4MCQzVvDcR//N6KQQXTsajJAUW0dlHQSowxHiSCPa5ZBTEWBNCJde7YjokklDQuZV1CPb8yYukfVqzz2r163q1cVTEUUIVdIhOkI3OUQNdoSZqIYoe0BN6Qa/Go/FsvBnvs9Ylo5g5QH9gfHwDqoSZTw==</latexit>

Sdsomp

<latexit sha1_base64="ljvMfhpH6PXzNAVZ3X0sIWOGqdo=">AAACA3icbVDLSsNAFJ34rPUVdaebwSq4KokUdVlw47KifUAbwmQyaYdOHszciCUE3Pgrblwo4tafcOffOG0jaOuBC2fOuZe593iJ4Aos68tYWFxaXlktrZXXNza3ts2d3ZaKU0lZk8Yilh2PKCZ4xJrAQbBOIhkJPcHa3vBy7LfvmFQ8jm5hlDAnJP2IB5wS0JJr7veA3YOi2Y2vcjf7eYUkz12zYlWtCfA8sQtSQQUarvnZ82OahiwCKohSXdtKwMmIBE4Fy8u9VLGE0CHps66mEQmZcrLJDTk+1oqPg1jqigBP1N8TGQmVGoWe7gwJDNSsNxb/87opBBdOxqMkBRbR6UdBKjDEeBwI9rlkFMRIE0Il17tiOiCSUNCxlXUI9uzJ86R1WrXPqrXrWqV+VMRRQgfoEJ0gG52jOrpCDdREFD2gJ/SCXo1H49l4M96nrQtGMbOH/sD4+Aa7CZjH</latexit>

Sdsma

<latexit sha1_base64="gRVEb+v+NAPU5THtTGx0Ca7Ud3Q=">AAAB9HicbVDLSgNBEOz1GeMr6tHLYhQ8hV0J6jHgxWMU84BkCbOzs8mQeawzs8Gw5Du8eFDEqx/jzb9xkuxBEwsaiqpuurvChFFtPO/bWVldW9/YLGwVt3d29/ZLB4dNLVOFSQNLJlU7RJowKkjDUMNIO1EE8ZCRVji8mfqtEVGaSvFgxgkJOOoLGlOMjJWCLg/lU3aPRCT5pFcqexVvBneZ+DkpQ456r/TVjSROOREGM6R1x/cSE2RIGYoZmRS7qSYJwkPUJx1LBeJEB9ns6Il7ZpXIjaWyJYw7U39PZIhrPeah7eTIDPSiNxX/8zqpia+DjIokNUTg+aI4Za6R7jQBN6KKYMPGliCsqL3VxQOkEDY2p6INwV98eZk0Lyr+ZaV6Vy3XTvM4CnAMJ3AOPlxBDW6hDg3A8AjP8Apvzsh5cd6dj3nripPPHMEfOJ8/PA6SUg==</latexit>

Random

<latexit sha1_base64="0XClm3/YR+VG4J7wRKpaWaQD7sM=">AAAB83icbVC7SgNBFL3rM8ZX1NJmMApWYVeCWgZsLCwimAdklzA7mU2GzGOZmRXDkt+wsVDE1p+x82+cPApNPHDhcM69M/eeOOXMWN//9lZW19Y3Ngtbxe2d3b390sFh06hME9ogiivdjrGhnEnasMxy2k41xSLmtBUPbyZ+65Fqw5R8sKOURgL3JUsYwdZJYShi9ZTfYWPUuFsq+xV/CrRMgjkpwxz1bukr7CmSCSot4e6JTuCnNsqxtoxwOi6GmaEpJkPcpx1HJRbURPl05zE6c0oPJUq7khZN1d8TORbGjETsOgW2A7PoTcT/vE5mk+soZzLNLJVk9lGScWQVmgSAekxTYvnIEUw0c7siMsAaE+tiKroQgsWTl0nzohJcVqr31XLtdB5HAY7hBM4hgCuowS3UoQEEUniGV3jzMu/Fe/c+Zq0r3nzmCP7A+/wBgiqR6Q==</latexit>

Lasso

<latexit sha1_base64="aG7KL9GuZDETBeR8xLVuJXgu4kI=">AAAB9HicbVDLSgNBEOz1GeMr6tHLYBQ8hV0J6jGgB48RzAOSJcxOJsmQ2dl1pjcYlnyHFw+KePVjvPk3TpI9aGJBQ1HVTXdXEEth0HW/nZXVtfWNzdxWfntnd2+/cHBYN1GiGa+xSEa6GVDDpVC8hgIlb8aa0zCQvBEMb6Z+Y8S1EZF6wHHM/ZD2legJRtFKfhv5ExqW3lIzmHQKRbfkzkCWiZeRImSodgpf7W7EkpArZJIa0/LcGP2UahRM8km+nRgeUzakfd6yVNGQGz+dHT0hZ1bpkl6kbSkkM/X3REpDY8ZhYDtDigOz6E3F/7xWgr1rPxUqTpArNl/USyTBiEwTIF2hOUM5toQyLeythA2opgxtTnkbgrf48jKpX5S8y1L5vlysnGZx5OAYTuAcPLiCCtxBFWrA4BGe4RXenJHz4rw7H/PWFSebOYI/cD5/AEK8klY=</latexit>
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<latexit sha1_base64="0XClm3/YR+VG4J7wRKpaWaQD7sM=">AAAB83icbVC7SgNBFL3rM8ZX1NJmMApWYVeCWgZsLCwimAdklzA7mU2GzGOZmRXDkt+wsVDE1p+x82+cPApNPHDhcM69M/eeOOXMWN//9lZW19Y3Ngtbxe2d3b390sFh06hME9ogiivdjrGhnEnasMxy2k41xSLmtBUPbyZ+65Fqw5R8sKOURgL3JUsYwdZJYShi9ZTfYWPUuFsq+xV/CrRMgjkpwxz1bukr7CmSCSot4e6JTuCnNsqxtoxwOi6GmaEpJkPcpx1HJRbURPl05zE6c0oPJUq7khZN1d8TORbGjETsOgW2A7PoTcT/vE5mk+soZzLNLJVk9lGScWQVmgSAekxTYvnIEUw0c7siMsAaE+tiKroQgsWTl0nzohJcVqr31XLtdB5HAY7hBM4hgCuowS3UoQEEUniGV3jzMu/Fe/c+Zq0r3nzmCP7A+/wBgiqR6Q==</latexit>

Lasso

<latexit sha1_base64="aG7KL9GuZDETBeR8xLVuJXgu4kI=">AAAB9HicbVDLSgNBEOz1GeMr6tHLYBQ8hV0J6jGgB48RzAOSJcxOJsmQ2dl1pjcYlnyHFw+KePVjvPk3TpI9aGJBQ1HVTXdXEEth0HW/nZXVtfWNzdxWfntnd2+/cHBYN1GiGa+xSEa6GVDDpVC8hgIlb8aa0zCQvBEMb6Z+Y8S1EZF6wHHM/ZD2legJRtFKfhv5ExqW3lIzmHQKRbfkzkCWiZeRImSodgpf7W7EkpArZJIa0/LcGP2UahRM8km+nRgeUzakfd6yVNGQGz+dHT0hZ1bpkl6kbSkkM/X3REpDY8ZhYDtDigOz6E3F/7xWgr1rPxUqTpArNl/USyTBiEwTIF2hOUM5toQyLeythA2opgxtTnkbgrf48jKpX5S8y1L5vlysnGZx5OAYTuAcPLiCCtxBFWrA4BGe4RXenJHz4rw7H/PWFSebOYI/cD5/AEK8klY=</latexit>
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<latexit sha1_base64="WEYTpbYqaDyrYIQCY3iEshSbIAU=">AAACBXicbVDLSsNAFJ34rPUVdamLwSq4KokUdVkQxGUF+4A2hMl02g6dScLMjVhCNm78FTcuFHHrP7jzb5y2EbT1wIUz59zL3HuCWHANjvNlLSwuLa+sFtaK6xubW9v2zm5DR4mirE4jEalWQDQTPGR14CBYK1aMyECwZjC8HPvNO6Y0j8JbGMXMk6Qf8h6nBIzk2wcdYPegaXpFNGR++vOMZJxlvl1yys4EeJ64OSmhHDXf/ux0I5pIFgIVROu268TgpUQBp4JlxU6iWUzokPRZ29CQSKa9dHJFho+N0sW9SJkKAU/U3xMpkVqPZGA6JYGBnvXG4n9eO4HehZfyME6AhXT6US8RGCI8jgR3uWIUxMgQQhU3u2I6IIpQMMEVTQju7MnzpHFads/KlZtKqXqUx1FA++gQnSAXnaMqukY1VEcUPaAn9IJerUfr2Xqz3qetC1Y+s4f+wPr4BnIJmb0=</latexit>

Fastomp
<latexit sha1_base64="0ljsUvM0a6/iv76vAYcunqFc7Bs=">AAACBHicbVDLSsNAFJ34rPUVddnNYBVclUSKuiy4cVnRPqANYTKZtEMnD2ZuxBKycOOvuHGhiFs/wp1/47SNoK0HLpw5517m3uMlgiuwrC9jaXlldW29tFHe3Nre2TX39tsqTiVlLRqLWHY9opjgEWsBB8G6iWQk9ATreKPLid+5Y1LxOLqFccKckAwiHnBKQEuuWekDuwdFsxtf5W7284rDJM9ds2rVrCnwIrELUkUFmq752fdjmoYsAiqIUj3bSsDJiAROBcvL/VSxhNARGbCephEJmXKy6RE5PtaKj4NY6ooAT9XfExkJlRqHnu4MCQzVvDcR//N6KQQXTsajJAUW0dlHQSowxHiSCPa5ZBTEWBNCJde7YjokklDQuZV1CPb8yYukfVqzz2r163q1cVTEUUIVdIhOkI3OUQNdoSZqIYoe0BN6Qa/Go/FsvBnvs9Ylo5g5QH9gfHwDqoSZTw==</latexit>

Sdsomp
<latexit sha1_base64="gRVEb+v+NAPU5THtTGx0Ca7Ud3Q=">AAAB9HicbVDLSgNBEOz1GeMr6tHLYhQ8hV0J6jHgxWMU84BkCbOzs8mQeawzs8Gw5Du8eFDEqx/jzb9xkuxBEwsaiqpuurvChFFtPO/bWVldW9/YLGwVt3d29/ZLB4dNLVOFSQNLJlU7RJowKkjDUMNIO1EE8ZCRVji8mfqtEVGaSvFgxgkJOOoLGlOMjJWCLg/lU3aPRCT5pFcqexVvBneZ+DkpQ456r/TVjSROOREGM6R1x/cSE2RIGYoZmRS7qSYJwkPUJx1LBeJEB9ns6Il7ZpXIjaWyJYw7U39PZIhrPeah7eTIDPSiNxX/8zqpia+DjIokNUTg+aI4Za6R7jQBN6KKYMPGliCsqL3VxQOkEDY2p6INwV98eZk0Lyr+ZaV6Vy3XTvM4CnAMJ3AOPlxBDW6hDg3A8AjP8Apvzsh5cd6dj3nripPPHMEfOJ8/PA6SUg==</latexit>
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<latexit sha1_base64="WEYTpbYqaDyrYIQCY3iEshSbIAU=">AAACBXicbVDLSsNAFJ34rPUVdamLwSq4KokUdVkQxGUF+4A2hMl02g6dScLMjVhCNm78FTcuFHHrP7jzb5y2EbT1wIUz59zL3HuCWHANjvNlLSwuLa+sFtaK6xubW9v2zm5DR4mirE4jEalWQDQTPGR14CBYK1aMyECwZjC8HPvNO6Y0j8JbGMXMk6Qf8h6nBIzk2wcdYPegaXpFNGR++vOMZJxlvl1yys4EeJ64OSmhHDXf/ux0I5pIFgIVROu268TgpUQBp4JlxU6iWUzokPRZ29CQSKa9dHJFho+N0sW9SJkKAU/U3xMpkVqPZGA6JYGBnvXG4n9eO4HehZfyME6AhXT6US8RGCI8jgR3uWIUxMgQQhU3u2I6IIpQMMEVTQju7MnzpHFads/KlZtKqXqUx1FA++gQnSAXnaMqukY1VEcUPaAn9IJerUfr2Xqz3qetC1Y+s4f+wPr4BnIJmb0=</latexit>

Fastomp
<latexit sha1_base64="0ljsUvM0a6/iv76vAYcunqFc7Bs=">AAACBHicbVDLSsNAFJ34rPUVddnNYBVclUSKuiy4cVnRPqANYTKZtEMnD2ZuxBKycOOvuHGhiFs/wp1/47SNoK0HLpw5517m3uMlgiuwrC9jaXlldW29tFHe3Nre2TX39tsqTiVlLRqLWHY9opjgEWsBB8G6iWQk9ATreKPLid+5Y1LxOLqFccKckAwiHnBKQEuuWekDuwdFsxtf5W7284rDJM9ds2rVrCnwIrELUkUFmq752fdjmoYsAiqIUj3bSsDJiAROBcvL/VSxhNARGbCephEJmXKy6RE5PtaKj4NY6ooAT9XfExkJlRqHnu4MCQzVvDcR//N6KQQXTsajJAUW0dlHQSowxHiSCPa5ZBTEWBNCJde7YjokklDQuZV1CPb8yYukfVqzz2r163q1cVTEUUIVdIhOkI3OUQNdoSZqIYoe0BN6Qa/Go/FsvBnvs9Ylo5g5QH9gfHwDqoSZTw==</latexit>

Sdsomp
<latexit sha1_base64="gRVEb+v+NAPU5THtTGx0Ca7Ud3Q=">AAAB9HicbVDLSgNBEOz1GeMr6tHLYhQ8hV0J6jHgxWMU84BkCbOzs8mQeawzs8Gw5Du8eFDEqx/jzb9xkuxBEwsaiqpuurvChFFtPO/bWVldW9/YLGwVt3d29/ZLB4dNLVOFSQNLJlU7RJowKkjDUMNIO1EE8ZCRVji8mfqtEVGaSvFgxgkJOOoLGlOMjJWCLg/lU3aPRCT5pFcqexVvBneZ+DkpQ456r/TVjSROOREGM6R1x/cSE2RIGYoZmRS7qSYJwkPUJx1LBeJEB9ns6Il7ZpXIjaWyJYw7U39PZIhrPeah7eTIDPSiNxX/8zqpia+DjIokNUTg+aI4Za6R7jQBN6KKYMPGliCsqL3VxQOkEDY2p6INwV98eZk0Lyr+ZaV6Vy3XTvM4CnAMJ3AOPlxBDW6hDg3A8AjP8Apvzsh5cd6dj3nripPPHMEfOJ8/PA6SUg==</latexit>
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<latexit sha1_base64="WEYTpbYqaDyrYIQCY3iEshSbIAU=">AAACBXicbVDLSsNAFJ34rPUVdamLwSq4KokUdVkQxGUF+4A2hMl02g6dScLMjVhCNm78FTcuFHHrP7jzb5y2EbT1wIUz59zL3HuCWHANjvNlLSwuLa+sFtaK6xubW9v2zm5DR4mirE4jEalWQDQTPGR14CBYK1aMyECwZjC8HPvNO6Y0j8JbGMXMk6Qf8h6nBIzk2wcdYPegaXpFNGR++vOMZJxlvl1yys4EeJ64OSmhHDXf/ux0I5pIFgIVROu268TgpUQBp4JlxU6iWUzokPRZ29CQSKa9dHJFho+N0sW9SJkKAU/U3xMpkVqPZGA6JYGBnvXG4n9eO4HehZfyME6AhXT6US8RGCI8jgR3uWIUxMgQQhU3u2I6IIpQMMEVTQju7MnzpHFads/KlZtKqXqUx1FA++gQnSAXnaMqukY1VEcUPaAn9IJerUfr2Xqz3qetC1Y+s4f+wPr4BnIJmb0=</latexit>

Fastomp
<latexit sha1_base64="0ljsUvM0a6/iv76vAYcunqFc7Bs=">AAACBHicbVDLSsNAFJ34rPUVddnNYBVclUSKuiy4cVnRPqANYTKZtEMnD2ZuxBKycOOvuHGhiFs/wp1/47SNoK0HLpw5517m3uMlgiuwrC9jaXlldW29tFHe3Nre2TX39tsqTiVlLRqLWHY9opjgEWsBB8G6iWQk9ATreKPLid+5Y1LxOLqFccKckAwiHnBKQEuuWekDuwdFsxtf5W7284rDJM9ds2rVrCnwIrELUkUFmq752fdjmoYsAiqIUj3bSsDJiAROBcvL/VSxhNARGbCephEJmXKy6RE5PtaKj4NY6ooAT9XfExkJlRqHnu4MCQzVvDcR//N6KQQXTsajJAUW0dlHQSowxHiSCPa5ZBTEWBNCJde7YjokklDQuZV1CPb8yYukfVqzz2r163q1cVTEUUIVdIhOkI3OUQNdoSZqIYoe0BN6Qa/Go/FsvBnvs9Ylo5g5QH9gfHwDqoSZTw==</latexit>

Sdsomp

<latexit sha1_base64="ljvMfhpH6PXzNAVZ3X0sIWOGqdo=">AAACA3icbVDLSsNAFJ34rPUVdaebwSq4KokUdVlw47KifUAbwmQyaYdOHszciCUE3Pgrblwo4tafcOffOG0jaOuBC2fOuZe593iJ4Aos68tYWFxaXlktrZXXNza3ts2d3ZaKU0lZk8Yilh2PKCZ4xJrAQbBOIhkJPcHa3vBy7LfvmFQ8jm5hlDAnJP2IB5wS0JJr7veA3YOi2Y2vcjf7eYUkz12zYlWtCfA8sQtSQQUarvnZ82OahiwCKohSXdtKwMmIBE4Fy8u9VLGE0CHps66mEQmZcrLJDTk+1oqPg1jqigBP1N8TGQmVGoWe7gwJDNSsNxb/87opBBdOxqMkBRbR6UdBKjDEeBwI9rlkFMRIE0Il17tiOiCSUNCxlXUI9uzJ86R1WrXPqrXrWqV+VMRRQgfoEJ0gG52jOrpCDdREFD2gJ/SCXo1H49l4M96nrQtGMbOH/sD4+Aa7CZjH</latexit>

Sdsma

<latexit sha1_base64="gRVEb+v+NAPU5THtTGx0Ca7Ud3Q=">AAAB9HicbVDLSgNBEOz1GeMr6tHLYhQ8hV0J6jHgxWMU84BkCbOzs8mQeawzs8Gw5Du8eFDEqx/jzb9xkuxBEwsaiqpuurvChFFtPO/bWVldW9/YLGwVt3d29/ZLB4dNLVOFSQNLJlU7RJowKkjDUMNIO1EE8ZCRVji8mfqtEVGaSvFgxgkJOOoLGlOMjJWCLg/lU3aPRCT5pFcqexVvBneZ+DkpQ456r/TVjSROOREGM6R1x/cSE2RIGYoZmRS7qSYJwkPUJx1LBeJEB9ns6Il7ZpXIjaWyJYw7U39PZIhrPeah7eTIDPSiNxX/8zqpia+DjIokNUTg+aI4Za6R7jQBN6KKYMPGliCsqL3VxQOkEDY2p6INwV98eZk0Lyr+ZaV6Vy3XTvM4CnAMJ3AOPlxBDW6hDg3A8AjP8Apvzsh5cd6dj3nripPPHMEfOJ8/PA6SUg==</latexit>

Random

<latexit sha1_base64="0XClm3/YR+VG4J7wRKpaWaQD7sM=">AAAB83icbVC7SgNBFL3rM8ZX1NJmMApWYVeCWgZsLCwimAdklzA7mU2GzGOZmRXDkt+wsVDE1p+x82+cPApNPHDhcM69M/eeOOXMWN//9lZW19Y3Ngtbxe2d3b390sFh06hME9ogiivdjrGhnEnasMxy2k41xSLmtBUPbyZ+65Fqw5R8sKOURgL3JUsYwdZJYShi9ZTfYWPUuFsq+xV/CrRMgjkpwxz1bukr7CmSCSot4e6JTuCnNsqxtoxwOi6GmaEpJkPcpx1HJRbURPl05zE6c0oPJUq7khZN1d8TORbGjETsOgW2A7PoTcT/vE5mk+soZzLNLJVk9lGScWQVmgSAekxTYvnIEUw0c7siMsAaE+tiKroQgsWTl0nzohJcVqr31XLtdB5HAY7hBM4hgCuowS3UoQEEUniGV3jzMu/Fe/c+Zq0r3nzmCP7A+/wBgiqR6Q==</latexit>

Lasso

<latexit sha1_base64="aG7KL9GuZDETBeR8xLVuJXgu4kI=">AAAB9HicbVDLSgNBEOz1GeMr6tHLYBQ8hV0J6jGgB48RzAOSJcxOJsmQ2dl1pjcYlnyHFw+KePVjvPk3TpI9aGJBQ1HVTXdXEEth0HW/nZXVtfWNzdxWfntnd2+/cHBYN1GiGa+xSEa6GVDDpVC8hgIlb8aa0zCQvBEMb6Z+Y8S1EZF6wHHM/ZD2legJRtFKfhv5ExqW3lIzmHQKRbfkzkCWiZeRImSodgpf7W7EkpArZJIa0/LcGP2UahRM8km+nRgeUzakfd6yVNGQGz+dHT0hZ1bpkl6kbSkkM/X3REpDY8ZhYDtDigOz6E3F/7xWgr1rPxUqTpArNl/USyTBiEwTIF2hOUM5toQyLeythA2opgxtTnkbgrf48jKpX5S8y1L5vlysnGZx5OAYTuAcPLiCCtxBFWrA4BGe4RXenJHz4rw7H/PWFSebOYI/cD5/AEK8klY=</latexit>
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<latexit sha1_base64="0XClm3/YR+VG4J7wRKpaWaQD7sM=">AAAB83icbVC7SgNBFL3rM8ZX1NJmMApWYVeCWgZsLCwimAdklzA7mU2GzGOZmRXDkt+wsVDE1p+x82+cPApNPHDhcM69M/eeOOXMWN//9lZW19Y3Ngtbxe2d3b390sFh06hME9ogiivdjrGhnEnasMxy2k41xSLmtBUPbyZ+65Fqw5R8sKOURgL3JUsYwdZJYShi9ZTfYWPUuFsq+xV/CrRMgjkpwxz1bukr7CmSCSot4e6JTuCnNsqxtoxwOi6GmaEpJkPcpx1HJRbURPl05zE6c0oPJUq7khZN1d8TORbGjETsOgW2A7PoTcT/vE5mk+soZzLNLJVk9lGScWQVmgSAekxTYvnIEUw0c7siMsAaE+tiKroQgsWTl0nzohJcVqr31XLtdB5HAY7hBM4hgCuowS3UoQEEUniGV3jzMu/Fe/c+Zq0r3nzmCP7A+/wBgiqR6Q==</latexit>

Lasso

<latexit sha1_base64="aG7KL9GuZDETBeR8xLVuJXgu4kI=">AAAB9HicbVDLSgNBEOz1GeMr6tHLYBQ8hV0J6jGgB48RzAOSJcxOJsmQ2dl1pjcYlnyHFw+KePVjvPk3TpI9aGJBQ1HVTXdXEEth0HW/nZXVtfWNzdxWfntnd2+/cHBYN1GiGa+xSEa6GVDDpVC8hgIlb8aa0zCQvBEMb6Z+Y8S1EZF6wHHM/ZD2legJRtFKfhv5ExqW3lIzmHQKRbfkzkCWiZeRImSodgpf7W7EkpArZJIa0/LcGP2UahRM8km+nRgeUzakfd6yVNGQGz+dHT0hZ1bpkl6kbSkkM/X3REpDY8ZhYDtDigOz6E3F/7xWgr1rPxUqTpArNl/USyTBiEwTIF2hOUM5toQyLeythA2opgxtTnkbgrf48jKpX5S8y1L5vlysnGZx5OAYTuAcPLiCCtxBFWrA4BGe4RXenJHz4rw7H/PWFSebOYI/cD5/AEK8klY=</latexit>
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<latexit sha1_base64="WEYTpbYqaDyrYIQCY3iEshSbIAU=">AAACBXicbVDLSsNAFJ34rPUVdamLwSq4KokUdVkQxGUF+4A2hMl02g6dScLMjVhCNm78FTcuFHHrP7jzb5y2EbT1wIUz59zL3HuCWHANjvNlLSwuLa+sFtaK6xubW9v2zm5DR4mirE4jEalWQDQTPGR14CBYK1aMyECwZjC8HPvNO6Y0j8JbGMXMk6Qf8h6nBIzk2wcdYPegaXpFNGR++vOMZJxlvl1yys4EeJ64OSmhHDXf/ux0I5pIFgIVROu268TgpUQBp4JlxU6iWUzokPRZ29CQSKa9dHJFho+N0sW9SJkKAU/U3xMpkVqPZGA6JYGBnvXG4n9eO4HehZfyME6AhXT6US8RGCI8jgR3uWIUxMgQQhU3u2I6IIpQMMEVTQju7MnzpHFads/KlZtKqXqUx1FA++gQnSAXnaMqukY1VEcUPaAn9IJerUfr2Xqz3qetC1Y+s4f+wPr4BnIJmb0=</latexit>

Fastomp
<latexit sha1_base64="0ljsUvM0a6/iv76vAYcunqFc7Bs=">AAACBHicbVDLSsNAFJ34rPUVddnNYBVclUSKuiy4cVnRPqANYTKZtEMnD2ZuxBKycOOvuHGhiFs/wp1/47SNoK0HLpw5517m3uMlgiuwrC9jaXlldW29tFHe3Nre2TX39tsqTiVlLRqLWHY9opjgEWsBB8G6iWQk9ATreKPLid+5Y1LxOLqFccKckAwiHnBKQEuuWekDuwdFsxtf5W7284rDJM9ds2rVrCnwIrELUkUFmq752fdjmoYsAiqIUj3bSsDJiAROBcvL/VSxhNARGbCephEJmXKy6RE5PtaKj4NY6ooAT9XfExkJlRqHnu4MCQzVvDcR//N6KQQXTsajJAUW0dlHQSowxHiSCPa5ZBTEWBNCJde7YjokklDQuZV1CPb8yYukfVqzz2r163q1cVTEUUIVdIhOkI3OUQNdoSZqIYoe0BN6Qa/Go/FsvBnvs9Ylo5g5QH9gfHwDqoSZTw==</latexit>

Sdsomp
<latexit sha1_base64="gRVEb+v+NAPU5THtTGx0Ca7Ud3Q=">AAAB9HicbVDLSgNBEOz1GeMr6tHLYhQ8hV0J6jHgxWMU84BkCbOzs8mQeawzs8Gw5Du8eFDEqx/jzb9xkuxBEwsaiqpuurvChFFtPO/bWVldW9/YLGwVt3d29/ZLB4dNLVOFSQNLJlU7RJowKkjDUMNIO1EE8ZCRVji8mfqtEVGaSvFgxgkJOOoLGlOMjJWCLg/lU3aPRCT5pFcqexVvBneZ+DkpQ456r/TVjSROOREGM6R1x/cSE2RIGYoZmRS7qSYJwkPUJx1LBeJEB9ns6Il7ZpXIjaWyJYw7U39PZIhrPeah7eTIDPSiNxX/8zqpia+DjIokNUTg+aI4Za6R7jQBN6KKYMPGliCsqL3VxQOkEDY2p6INwV98eZk0Lyr+ZaV6Vy3XTvM4CnAMJ3AOPlxBDW6hDg3A8AjP8Apvzsh5cd6dj3nripPPHMEfOJ8/PA6SUg==</latexit>
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Figure 1. Results on the the Synthetic Dataset (mid row), as described in Section 5. For the randomized algorithms, each dot corresponds
to the sample mean of multiple runs, and error bars correspond to the standard deviation. Across datasets, we see that SDSOMP achieves
substantial speedup, while remaining competitive in terms of precision quality of features being selected.
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Figure 2. Experiments on the COMPAS Dataset, as detailed in
Section 5. For the FASTOMP we perform multiple runs and we report
on the sample mean. On this dataset, the variance in accuracy and
outcome fairness is negligible for FASTOMP.

p-system on top of the features. To illustrate scalability on
such a large dataset, we compare speed of feature selection
while satisfying the side constraints (Figure 1(a)) and the
corresponding solution accuracy with respect to time spent
(Figure 1(b)) for selecting upto k = 300 features. We ob-
serve that our algorithm FASTOMP is significantly faster
while maintaining a good quality solution when compared
to the SDSOMP and the Random. In Figure 1(c), we further
observe that the FASTOMP and the SDSOMP achieve similar
solution quality for a given number of features.

ProPublica COMPAS Dataset. In this section, we re-
produce the experiments by Grgic-Hlaca et al. (2018b)
on the COMPAS dataset. We use regularized logistic re-
gression to predict the recidivism risk and use fairness
constraints given by the feature-apriori accuracy (Grgic-
Hlaca et al., 2018b). These constraints are encoded as
p-system side constraints Iλacc as described in Section

2.2. We report on the outcome fairness of each output
feature set, by estimating the racial bias of the correspond-
ing classifier. Following Grgic-Hlaca et al. (2018b); Klein-
berg et al. (2017); Zafar et al. (2017a), we examine the
false positive (FPR) and false negative (FNR) rates for
whites (w) and non-whites (nw) as outcome fairness =
− |FPRw − FPRnw| − |FNRw − FNRnw|. This measure
of fairness varies between−2 and 0, with−2 corresponding
to maximum unfairness and 0 to maximum fairness.
The results for this set of experiments are displayed in Fig-
ure 2, where we plot the accuracy and outcome fairness as
a function of the parameter λ for the constraints Iλacc. We
compare the solution quality and fairness of the FASTOMP,
against the ISK, and the solution with best possible accu-
racy (optimum). We observe that the FASTOMP achieves
nearly optimal solution. Although the outcome fairness
inevitably decreases for increasing process unfairness, the
FASTOMP maintains a more graceful degradation than the
other algorithms.

6. Ethics Discussion
A major hurdle in further research into fair learning is the
lack of gold standard benchmarks. The COMPAS dataset is
used for empirical evaluations in several studies However,
its use for benchmarking has also been criticized (Bao et al.,
2021b). Furthermore, over-tuning notions of fairness for a
single dataset could be problematic.

Fairness criteria should always take into account the con-
textual grounding of the dataset, and the trained model that
operates within. As such, the mathematical formalism of
fairness as constraints may evolve. We hope that our frame-
work motivates further research into addressing the above
concerns about fairness in an algorithmically scalable way.
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A. Definition of Restricted Strong Concavity and Restricted Smoothness
We study optimization tasks as in the problem (2) under some additional assumptions on l(·), which are often satisfied
in practical applications (see Appendix E). Define an r-sparse subdomain as a set of the form Ωr := {(x,y) ∈ Rn ×
Rn : ∥x∥0 ≤ r, ∥y∥0 ≤ r, ∥x− y∥0 ≤ r}. We now define the notions of Restricted Strong Concavity (RSC) and Restricted
Smoothness (RSM) of a function.
Definition A.1 (RSC, RSM (Negahban et al., 2010)). A function l(·) is said to be restricted strong concave (RSC) with
parameter m and restricted smooth (RSM) with parameter M on a subdomain Ωr iff, for all (x,y) ∈ Ωr it holds that
−m

2 ∥y − x∥2 ≥ l(y)− l(x)− ⟨∇l(x),y − x⟩ ≥ −M
2 ∥y − x∥2.

We say that l is (M,m)-(smooth, restricted concave), if it fulfills the conditions as in Definition A.1 with parameters M and
m. RSC/RSM often hold in practice, we refer the reader to Appendix E for further discussion of these properties.

B. Definition of p-System
In order to give an axiomatic definition of p-systems, we introduce additional terminology. Given a collection of feasible
solutions I over a ground set [n] and a set T ⊆ [n], we denote with I |T , the restricted feasible solution set, as the collection
consisting of all sets S ⊆ T s.t. S ∈ I. We define Cond(T) as the set of all s ∈ [n] \ T such that T ∪ {s} ∈ I. A set T is a
maximal independent set if it holds that Cond(T) = ∅ A base for I is any maximal set T ∈ I.
Definition B.1 (p-Systems (Jenkyns, 1976)). A p-system I over [n] is a collection of subsets of [n] such that: (i) ∅ ∈ I; (ii)
for any two sets S ⊆ T ⊆ [n], if T ∈ I then S ∈ I; (iii) for any set T ⊆ [n] and any bases S,U ∈ I |T it holds |S| ≤ p |U|.

The second defining axiom is commonly referred to as subset-closure or downward-closed property. The rank r of a
p-system I is defined as the maximum cardinality of any feasible solution T ∈ I.

C. Motivating Example
In this section, we motivate our analysis by showing that the adaptive sequencing prototype by (Balkanski et al., 2019) does
not work for feature selection. this example can also be used to show that similar algorithms, such as FAST (Breuer et al.,
2020) do not work for feature selection.
The adaptive sequencing prototype is presented in Algorithm 2. We refer to this algorithm as the ADAPTIVE SEQUENCING.
Starting from the empty set, the ADAPTIVE SEQUENCING generates at every iteration a uniformly random sequence
{a1, . . . , ak} of the elements X not yet discarded. This sequence can be sampled uniformly at random, or using the RNDSEQ
sub-routine described in Appendix H. Afterwards, the ADAPTIVE SEQUENCING filters elements that have a high marginal
contribution, when added to S, and it determines the prefix of {a1, . . . , ak} that is added to the current solution S. This
prefix has the property that there is a large fraction of elements in X with high contribution to the current solution S.

Following and example provided by (Elenberg et al., 2018), we show that the ADAPTIVE SEQUENCING fails on a simple
linear regression task with three features. For a fixed parameter z > 0, consider the following variables:

y = [1, 0, 0]T

x1 = [0, 1, 0]T

x2 = [z,
√

1− z2, 0]T

x3 = [δz, 0,
√

1− δ2z2]T

Note that all variables have unit norm. Our goal is to choose two of the three variables {x1,x2,x3} that best estimate y,
with respect to the R2 objective. To this end, we introduce additional notation. For a given index set S ⊆ [3], we denote
with XS the matrix whose columns consists of the features indexed by S. For instance, for S = {1, 3} it holds

X{1,3} =

 0 δz
1 0

0
√
1− δ2z2

 .

With this notation, we define the objective function for our problem as

f(S) = R2(β(S))−R2(0) = (yTXS)(X
T
S XS)

−1(XT
S y), (3)
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Algorithm 2 ADAPTIVE SEQUENCING

S← ∅, t← maxe∈[n] f(e);
for ∆ iterations do
X← [n];
while X ̸= ∅ do
{a1, a2, . . . , ak} ← RNDSEQ (X,S);
Xi ← {e ∈ X : fS∪{a1,...,ai}(e) ≥ t and S ∪ {a1, . . . , ai, e} ∈ I};
i∗ ← min{i : |Xi| ≤ (1− ε) |X|} S← S ∪ {a1, . . . , ai};
X = Xi∗ ;

end while
t← (1− ε)t;

end for
return S;

with R2(·) the R2 objective evaluated on the model for an input parameter vector β(S). Using this formula, one can easily
see that it holds

f({1}) = 0 f({1, 2}) = 1

f({2}) = z2 f({1, 3}) = δ2z2

f({3}) = δ2z2 f({2, 3}) = (1 + δ)z2 + δ2z4

Clearly, the optimal solution is f({1, 2}). However, on this instance the ADAPTIVE SEQUENCING outputs the solution
S = ∅, attaining an f -value of f(S) = 0. The following lemma holds.

Lemma C.1. Consider the ADAPTIVE SEQUENCING optimizing the function f(S) as in (3), over sets S ⊆ [3] of size at
most |S| ≤ k with k = 2. Then, for any constant ε > 0, the ADAPTIVE SEQUENCING outputs either the solution {1, 3} or
the solution {2, 3} with probability at least 1 − (2/3)ε

−1 log 1/δ. In particular, the expected approximation guarantee of
ADAPTIVE SEQUENCING converges to zero, for δ, z → 0.

Proof. At the beginning of the optimization process, the constant t is set to t = δ2z2 and a sequence {a1, a2}. This sequence
yield {a1} = {3} at least with probability 1/3. If {a1} = {3} sequence is sampled, then the point {3} is added to the
current solution. Otherwise, the value t decreases of a multiplicative factor of (1− ε), and a new sequence is sampled. As
long as t > z2, the ADAPTIVE SEQUENCING can only output a solution that contains the point {3}. Hence, the solution
{1, 2} can only be sampled after t decreases to a value t < z, which requires at least ε−1 log 1/δ iterations of the outer
loop. Hence, the probability of sampling the solution {1, 2} can be upper-bounded by the probability that no sequence
with {a1} = {3} is sampled during the first ε−1 log 1/δ iterations of the outer-loop. This probability can be estimated as
2/3ε

−1 log 1/δ . Hence, the ADAPTIVE SEQUENCING outputs either the solution {1, 3} or the solution {2, 3} with probability
at least 1− (2/3)ε

−1 log 1/δ .

We remark that in this example, the FASTOMP yields a constant-factor approximation guarantee in expected value. In fact,
we can show that our algorithm outputs the optimal solution in one iteration, at least with constant probability. We can
bound the optimal parameters and in Line 4 of Algorithm 1 in a similar fashion as in Proposition E.5, and obtain that m
and M are bounded as m ≥ 1 −

√
1− z2 and M ≤ 1 +

√
1− z2. It follows that the parameter in Line 4 of Algorithm

1 is upper-bounded as t ≤ (1− ε)(1−
√
1− z2)/2 ≤ z2, for δ sufficiently small. Suppose now that at the beginning of

the iteration, a sequence {a1, a2} = {2, 1}. Since t ≤ z2, then the entire sequence is added to the current solution {2, 1}
and the algorithm outputs the optimum. Note that the desired sequence is sampled with probability 1/6. It follows that
the FASTOMP outputs the optimum at least with constant probability. Hence, the FASTOMP maintains a constant-factor
approximation guarantee.
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D. Weak Submodularity
Consider a function l that is restricted smooth and restricted strong concave . It is well known that the corresponding function
f as in (1) has weak diminishing return properties. These diminishing returns property is called weak submodularity, and it
was first introduced by (Das & Kempe, 2011) to study statistical subset selection problems. Functions that exhibit weak
submodularity, i.e., weakly submodular functions, are defined in terms of the submodularity ratio, as follows.
Definition D.1 (Weak submodularity, Definition 2.3 by (Das & Kempe, 2011)). Consider a function f : 2[n] → R≥0. The
submodularity ratio is defined as the largest scalar γ such that∑

j∈S

(f(L ∪ {j})− f(L)) ≥ γ (f(L ∪ S)− f(L)) ,

for all sets L,S ∈ [n] such that L ∩ S ̸= ∅. We say that f is γ- weakly submodular if its submodularity ratio is γ.

There is a well-known connection between weak submodularity and Problem 2. This connection was discovered by (Elenberg
et al., 2018), and it can be formalized as follows.
Theorem D.2 (Theorem 1 by (Elenberg et al., 2018)). Define f as in (1), with a function l that is (m|U|+k,M|U|+k)-(strongly
concave, smooth) on Ω|U|+k, and M̃|U|+1 smooth on Ω|U|+1. Fix a set U ∈ [n], and denote with γU,k the largest scalar such
that ∑

j∈S

(f(L ∪ {j})− f(L)) ≥ γU,k (f(L ∪ S)− f(L)) ,

for all sets L,S ∈ [n] such that L ∩ S ̸= ∅, L ⊆ U, |S| ≤ k. Then, the constant γU,k is lower-bounded as

γ|U|,k ≥
m|U|+k

M̃|U|+1

≥
m|U|+k

M|U|+k
.

E. Restricted Strong Concavity and Smoothness for Feature Selection
Given a set of observations and a parametric family of distributions {p( · ;β) | β ∈ Ω} with Ω ⊆ Rn, we wish to identify
a vector of parameters β maximizing the goodness of fit for these observation, according to a chosen measure l. For
generalized linear models, common measures for feature selection are restricted strong concave and restricted smooth. We
study the log-likelihood and the coefficient of determination, although analogous results hold for other similar statistics
(Qian & Singer, 2019; Das & Kempe, 2011).

Maximizing the log-conditional. Assuming that the response follows a distribution in an exponential family, the log-
conditional can be written as

log p(y | X;β) = h−1(τ)− Z(X,β) + g(y, τ) (4)

with Z the log-partition function, and τ the dispersion parameter. The log-conditional is commonly used for learning.
In the case of the simple linear model, it is possible to derive approximation guarantees in terms of the eigenvalues of
X. Additional assumptions on the random design of X ensure that the log-conditional objective is restricted smooth and
restricted strong concave. We refer the reader to Appendix E.1 for a discussion on these results.

Maximizing the R2 objective. Consider a linear model with a normalized response variable y. The R2 objective is
defined as

R2
X,y(β) := 1− E

[
(y − ⟨X,β⟩)2

]
. (5)

This function is a popular measure for the goodness of fit. The function R2
X,y(β) is restricted strong concave and restricted

smooth, with parameters depending on the properties of the matrix X . A discussion on these results is deferred to Appendix
E.2.

E.1. Restricted Strong Concavity and Smoothness of the Log-Conditional

In this section we discuss results concerning the (M,m)-(smotheness, strong concavity) of the log-conditional for generalized
linear models. Consider a feature matrix X ∈ Rn×d and response variable y. Assuming that the response follows a
distribution in an exponential family, the log-conditional can be written as

log p(y | X;β) = h−1(τ)− Z(X,β) + g(y, τ) (6)
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with Z the log-partition function, and τ the dispersion parameter. We give approximation guarantees for the objective

l(β) = log p(y | X;β)− η∥β∥22, (7)

for some parameter η ≥ 0. We show that the function l is restricted smooth and restricted strong concave under various
assumptions. We start discussing the simplest case of a logistic regression. We then study the general case as in (6), under
the assumption that l has a non-zero regularization term. We then conclude with the general case, i.e., no assumptions on the
regularization term.

Logistic regression. The log-likelihood function for the logistic regression is defined as

l(β(S)) :=
∑
i

yi⟨XS,β⟩ − log
(
1− e⟨XS,β⟩

)
, (8)

with XS the matrix of all features indexed by S and yi the i-th observation, i.e., the i-th coefficient of the response y. For
this class of log-likelihood functions, the following result holds.

Proposition E.1. The log-likelihood function l for the logistic regression as in (8), is (m,M)-(restricted smooth, restricted
strong concave) with parameters

m := min
S

λmin(X
T
S XS) and M := max

S
λmax(X

T
S XS).

Log-conditional with non-zero regularization term. We now study log-conditional functions as in (6), under the
assumption that the corresponding objective l has a regularization term with parameter η > 0. We introduce additional
notation to this end. For any feature set T ⊆ [n], denote with PT an operator that takes as input vectors x ∈ Rn, and
it replaces all indices in [n] \ T of x by 0. For any vector x ∈ Rp, we define xT := PT(x). We consider the following
assumption on the distribution of the features.

Assumption E.2 (Assumption by (Bahmani et al., 2013)). For fixed constants r,R > 0, we make the following assumption
on the feature matrix X ∈ Rn×p. The rows x of X are generated i.i.d., such that the following additional conditions hold.
For any set T ⊆ [p] of size |T| ≤ r,

• ∥xT∥2 ≤ R;

• none of the matrices PTE
[
xxT

]
PT are the zero matrix.

Following this notation, define

ϕmax := max
|T|≤k

λmax(PTCPT) ϕmin := min
|T|≤k

λmax(PTCPT),

with λmax(·) the largest eigenvalue. The following corollary holds.

Proposition E.3 (Corollary 4 by (Elenberg et al., 2018)). Consider a function l as in (7), and suppose that η > 0. Suppose
that Assumption E.2 holds with parameters r,R, and suppose that the number of samples s is lower-bounded as

s >
R(log r + r(1 + log n

k − log δ))

ϕmin(1 + ε) log(1 + ε)− ε
.

Then, with probability at least 1− δ the function l is (m,M)-(smooth, restricted concave), for all β with at most r non-zero
coefficients. The parameters m and M are defined as m = q(1 + ε)ϕmax + η and M = η, with q a constant fulfilling
q ≥ maxi h

−1(τ)Z ′′(β,xi) for h−1(·), Z(·, ·) as in (6).

Log-conditional with no assumptions on the regularization term. We now study log-conditional functions as in (6),
with no additional assumption on the regularization term. For simplicity, we consider functions l as in (6) with η = 0.
However, these results can easily be extended to the general case. The following lemma holds.
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Lemma E.4 (Corollary 2 by (Elenberg et al., 2018)). Denote with r an upper-bound on the sparsity of the feature sets.
Following the notation introduced above, suppose that the feature matrix X consists of samples drawn from a sub-Gaussian
distribution with parameter σ2 and covariance matrix Σ. Then, for η = 0 the function l as in (7) is (M,m)-(smooth,
restricted concave) with parameters

M = αuλmax(Σ)

(
3 +

2nr

s

)
and m = αℓ −

c2σ2

αℓ

k log n

s
,

with high probability, for s > 0 sufficiently large. The constant αℓ depends on (σ2,Σ) and k; the constant αu yields
αu ≥ maxi h

−1(τ)−1Z ′′(β,xi), with h−1(·), Z(·, ·) as in (6).

E.2. Restricted Strong Concavity and Smoothness of the R2 Objective

In this section, we prove guarantees for the R2 objective. To this end, given a feature matrix consisting of n features and k
observations, the R2 objective with regularization can be written as

l(β) = R2
X,y(β) = 1− 1

k
∥(y − ⟨X,β⟩∥22. (9)

The following lemma, similar to Lemma E.1, holds.
Proposition E.5. The R2 objective l for the linear regression as in (9), is (m,M)-(restricted smooth, restricted strong
concave) with parameters

m := min
S

λmin(X
T
S XS) and M := max

S
λmax(X

T
S XS).

This lemma can easily be extended to the case of an R2 objective with regularization term.

F. The Computational Model

We assume access to an oracle that returns∇l(β(T)), for a given input set T. Elenberg et al. (2018) highlight the benefits
of using this oracle model for feature selection, since access to the gradient is available from the inner optimization. In
the case of a linear model, the gradient∇l(β(T)) can be easily estimated for various metrics l expressing the goodness of
fit. For instance, if l is the log-likelihood function, then the gradient can be computed in explicit form. For more complex
models, stochastic lower-bounds of logPβ(S)(x) can be used, and then differentiated (Bamler et al., 2017; Nowozin, 2018).
Similar considerations hold for other metrics, such as the R2 objective (Elenberg et al., 2018). We also assume access to the
independence oracle of the underlying p-system I . The independence oracle takes as input a set T, and it returns as output a
Boolean value, true if T ∈ I and false otherwise. This oracle is often assumed for optimizing functions over p-systems
(Mirzasoleiman et al., 2016; Quinzan et al., 2021). Our method also works assuming access to a rank oracle, or a span
oracle. We refer the reader to (Chekuri & Quanrud, 2019) for a description of these oracle models.

We evaluate performance using the notion of adaptivity. The adaptivity refers to the number of sequential rounds of the
algorithm, wherein polynomial number of parallel queries are made in each round (Balkanski & Singer, 2018). Formally,
given an oracle f , an algorithm is r-adaptive if every query q to the oracle f occurs at a round i ∈ [r] such that q is
independent of the answers f(q′) to all other queries q′ at round i. This notion is closely related to the Parallel Random
Access Machines (PRAM) model, as shown in Appendix G. We evaluate empirical speedup by the adaptivity of the oracle
to evaluate∇l(β(T)). We also evaluate the adaptivity of the independence oracle for the p-system I.

G. Adaptivity and the PRAM Model
Recall that the adaptivity is defined as follows (Balkanski & Singer, 2018).
Definition G.1 (Adaptivity). Given an oracle f , an algorithm is r-adaptive if every query q to the oracle f occurs at a round
i ∈ [r] such that q is independent of the answers f(q′) to all other queries q′ at round i.

The notion of adaptivity is closely related to other models such as Parallel Random Access Machines (PRAM). The PRAM
model consists of a set of processors, that communicate via a single shared memory and a memory access unit. The
adaptivity extend to PRAM via the notion of depth. The depth is the number of parallel steps in an algorithm or the longest
chain of dependencies. We remark that the PRAM model assumes that the input is loaded in memory, whereas the adaptive
complexity model only assumes access to an oracle function.
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Algorithm 3 RNDSEQ (X,S)

A← ∅;
while X ̸= ∅ do

Let {x1, . . . , xn} be a permutation of X chosen uniformly at random;
j∗ ← max{j : S ∪ A ∪ {x1, . . . , xi}i≤j ∈ I};
A← A ∪ {x1, . . . , xj∗};
X← {e ∈ X \ (S ∪ A) : S ∪ A ∪ e ∈ I};

end while
return A;

H. The RNDSEQ Sub-Routine
The RNDSEQ sub-routine is presented in Algorithm 3. This algorithm correspond to Algorithm A by (Karp et al., 1988).
This algorithm solves the problem of sampling a maximum independent set of I uniformly at random. To our knowledge,
no other algorithm is known for this problem, with better adaptivity than Algorithm 3. Given as input a ground set X, a
current solution S, and a p-system I, this algorithm finds a random set A such that S ∪ A is a maximum independent set for
I. This algorithm iteratively shuffles the set X, and then it identifies the longest prefix of this sequence that can be added to
S, without violating side constraints. This prefix is then added to A. This algorithm terminates when S∪A ∈ I is a maximal
independent set.

This algorithm uses parallel calls to the independence oracle of I. In fact, the evaluations for the feasibility of prefixes of
A can be preformed in parallel. Hence, with this algorithm the adaptivity of the independence oracle corresponds to the
number of iterations until convergence. It is well-known that this algorithm converges after expected O (

√
r) iterations,

with r the rank of I (see Theorem 6 by (Karp et al., 1988)). This implies that the adaptivity of the independence oracle is
O (
√
r). Although it is not known if this upper-bound on the adaptivity is tight, it is known that there is no algorithm that

finds a maximum independent set of I with less then Ω̃(n1/3) rounds (see Theorem 7 by (Karp et al., 1988)).

I. Parameter Tuning for Algorithm 1
If l is the log-likelihood of a linear model, or the R2 objective of a linear model with normalized response variable, then m
and M can be estimated in terms of the design of the feature matrix (see Appendix E.1-E.2). These estimates need not be
tight, and certifying bounds for m and M is NP-hard (Bandeira et al., 2013). In general, the constant m/M in Line 4 of
Algorithm 1 requires tuning by making multiple runs of the algorithm. We remark that other known parallel algorithms for
feature selection also require estimates of these parameters (Qian & Singer, 2019).

Parallel algorithms that estimate the rank are known for several p-systems. For instance, the rank of a graphic matroid can be
estimated with parallel algorithms that compute spanning trees. Furthermore, parallel rank oracles are known for matroids
that can be represented as independent sets of vectors in a given field (Borodin et al., 1982; Chistov, 1985; Ibarra et al.,
1980; Mulmuley, 1987). These algorithms can also be used to estimate the rank of more complex constraints, such as the
intersection of matroids or p-matchoids.

J. Proof of Theorem 4.1
We prove Theorem 4.1. The proof of this theorem is based on a few lemmas and propositions, which we discuss in Appendix
J.1 before proving Theorem 4.1. On a high level, the proof of Theorem 4.1 is split into two separate cases. First we prove
that Theorem 4.1 holds when Algorithm 1 terminates after ε−1 iterations of the outer While-loop of Algorithm 1. Then, we
prove Theorem 4.1 under the assumption that Algorithm 1 finds a solution of size k. The first part of the proof is discussed
in Appendix J.3 (see Theorem J.8), and the second case is discussed in Appendix J.2 (see Theorem J.5).

J.1. Preliminary Results

Our analysis is based on a few preliminary result, which we discuss in this section.

Theorem J.1. Suppose the l is (M ,m)-(smooth, strongly concave) on Ω2k. Then, for each subsets S,T ⊆ [p] of size at most
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k it holds
2M

∑
j∈T

fS(j) ≥ ∥∇l(β(S))T∥22 ≥ 2m
∑
j∈T

fS(j).

Proof. We start proving the first inequality. Fix a point j ∈ T. Then, for any scalar α it holds

fS(j) = l(β(S∪{j}))− l(β(S)) ≥ l(β(S) + αej)− l(β(S)) (maximality of β(S∪{j}))

≥ ⟨∇l(β(S)), αej⟩ −
M

2
α2, (restricted smoothness) (10)

By substituting α = 1
M ⟨∇l(β

(S)), ej⟩ in (10), we get

2M
∑
j∈T

fS(j) ≥
∑
j∈T

〈
∇l(β(S)), ej

〉2
= ∥∇l(β(S))T∥22,

and the first inequality follows. To conclude the proof, note that it holds

fS(j) = l(β(S∪{j}))− l(β(S))

≤ ⟨∇l(β(S)),β(S∪{j}) − β(S)⟩ − m

2
∥β(S∪{j}) − β(S)∥22 (restricted strong concavity)

≤ max
v : v(S∪{j})=0

⟨∇l(β(S)),v − β(S)⟩ − m

2
∥v − β(S)∥22. (maximality of v) (11)

By setting v = β(S) + 1
m ⟨∇l(β

(S)), ej⟩ in (11) we get

∥∇l(β(S))S∗∥22
2m

≥ l(β(S∪{j}))− l(β(S)) = fS(j).

By taking the sum over all j ∈ T and rearranging we get

∥∇l(β(S))T∥22 =
∑
j∈T

∥∇l(β(S))S∗∥22
2m

≥
∑
j∈T

fS(j),

and the claim follows.

In our analysis, we also use the following well-known result.

Theorem J.2 (Theorem 1 by (Elenberg et al., 2018)). Suppose the l is (M ,m)-(smooth, strongly concave) on Ω2k. Then, for
each subsets S,T ⊆ [p] of size at most k it holds

2MfS(T) ≥ ∥∇l(β(S))T∥22 ≥ 2mfS(T).

By combining Theorem J.1 with Theorem J.2, we get the following corollary.

Corollary J.3. Suppose the l is (M ,m)-(smooth, strongly concave) on Ω2k. Then, for each subsets S,T ⊆ [p] of size at
most k it holds

M

m
fS(T) ≥

∑
j∈T

fS(j) ≥
m

M
fS(T).

We also make use of the following technical proposition.

Proposition J.4 (Proposition 2.2. by (Nemhauser et al., 1978)). Let {x1, . . . , xm} and {y1, . . . , ym} be two sequences of
non-negative real numbers. Suppose that it holds

∑
j xj ≤ 1 for all j ∈ [m]. Then,

m∑
j=1

yj ≥
m∑
j=1

xjyj .
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J.2. If Algorithm 1 Outputs a Maximum Independent Set

We now prove Theorem 4.1, assuming that Algorithm 1 outputs a solution S of maximum size, before performing ε−1

iterations of the outer While-loop of Algorithm 1. Formally, we prove the following theorem.

Theorem J.5. Define the function f as in (1), with a log-likelihood function that is (M,m)-(smooth, strongly concave) on
Ω2r. Suppose that Algorithm 1 outputs a solution S∗ such that Cond(S∗) = ∅. Then,

E [ f(S∗) ]

OPT
≥ 1

1 + p

(
1− exp

{
−(1− ε)2

m3

M3

})
,

for all 0 < ε < 1. Furthermore, in the specific case when I is r-sparsity constraint over [n], then,

E [ f(S∗) ]

OPT
≥ 1− exp

{
−(1− ε)2

m2

M2

}
.

The proof of Theorem J.5 is based on the following two additional lemma.

Lemma J.6. At any point during the optimization process it holds

(1− ε)−1 rM

m
t ≥ 2m (OPT− f(S)) ,

with S the current solution.

Proof. Denote with S̄ a solution of size at most
∣∣S̄∣∣ ≤ r maximizing f(S ∪ S̄), and let T ⊆ [n] be a set maximizing

∥∇l(β(S))T∥22, such that |T| ≤ r and S ∪ {s} ∈ I for all s ∈ T. Note that it holds

(1− ε)−1 rM

m
t =

r

|T|
∥∇l(β(S))T∥22 ≥ ∥∇l(β

(S))T∥22, (12)

where the first inequality follows by the definition of t, and the second one follows since |T| ≤ r. We first prove the claim
when t is updated at the beginning of each iteration of the outer While-loop of Algorithm 1. It holds

l(β(S∪S̄))− l(β(S))

≤ ⟨∇l(β(S)),β(S∪S̄) − β(S)⟩ − m

2
∥β(S∪S̄) − β(S)∥22 (restricted strong concavity)

≤ max
v : v(S∪S̄)̸=0

⟨∇l(β(S)),v − β(S)⟩ − m

2
∥v − β(S)∥22. (maximality of v) (13)

By setting v = 1
mβ(S) +∇l(β(S))S̄ in the inequality above we get

f(OPT)− f(S) = l(β(S∪S̄))− l(β(S)) (maximality of S̄ and monotonicity)

≤ ∥∇l(β
(S))S̄∥22

2m
(substituting v in (13))

≤ ∥∇l(β
(S))T∥22

2m
. (maximality of T) (14)

The claim follows by combining (14) and (12). Suppose now that the current solution S is updated to S′ during the inner
While-loop of Algorithm 1. Then, f(S) ≥ f(S′) due to monotonicity, and the claim holds.

Lemma J.7. At any given time step, suppose that the current solution S is updated to S ∪ {a1, . . . , aj∗}, and define
Sj = S ∪ {a1, . . . , aj} for all j ∈ [j∗]. Then it holds

E
[
fSj−1

(Sj)
]
≥ (1− ε)2

m2

rM2
(OPT− E [ f(Sj−1) ]) .
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Proof. Fix all random decisions of Algorithm 1 until the point aj is added to the current solution. Define the sets
XI
j := {e ∈ X \ {a1, . . . , aj−1} : {a1, . . . , aj−1} ∪ {a} ∈ I}. Then, it holds

Eaj

[
fSj−1

(aj)
]
≥ 1

2M
Eaj

[
⟨∇l(β(Sj−1)), eaj

⟩2
]

(Theorem J.1)

≥ 1

2M
Paj

(⟨∇l(β(Sj−1)), eaj
⟩2 ≥ t)t (Markov’s inequality) (15)

By design of the RNDSEQ subroutine, each point aj is sampled uniformly at random from the set XI
j , i.e. aj ∼ U(XI

j ).
Hence, it holds Paj (⟨∇l(β

(Sj−1)), eaj ⟩2 ≥ t) = |Xj−1| /
∣∣XI

j

∣∣. Combining this observation with (15) we get

Eaj

[
fSj−1

(aj)
]
≥ 1

2M

|Xj−1|∣∣XI
j

∣∣ t, (by the sub-sampling procedure)

≥ 1

2M

|Xj−1|
|X|

t, (since XI
j ⊆ X)

≥ (1− ε)
1

2M
t (since |Xj−1| ≥ (1− ε) |X|)

≥ (1− ε)2
m2

rM2
(OPT− f(Sj−1)) , (by Lemma J.6)

The claim follows by taking the expectation on both sides.

Using this lemma, we can now prove Theorem J.5.

Proof of Theorem J.5. Denote with {a1, . . . , aj} the first j points added to the solution S∗, sorted in the order that they
were added to it, and define the constant c := (1− ε)2m2/rM2. Using an induction argument on j, we prove that it holds

E [ f({a1, . . . , aj}) ]
OPT

≥
(
1− (1− c)j

)
. (16)

The base case with j = 0 holds, due to the non-negativity of the function f . For the inductive case, we have that it holds

E [ f({a1, . . . , aj}) ] ≥ E [ f({a1, . . . , aj−1}) ] + c (OPT− f({a1, . . . , aj−1})) (Lemma J.7)

≥ (1− c)
(
1− (1− c)j−1

)
OPT+ cOPT (by induction)

≥
(
1− (1− c)j

)
OPT,

and (16) holds. It follows that for j = |S∗| we have

E [ f(S∗) ]

OPT
≥ 1− (1− c)|S| ≥ 1− exp

{
−|S

∗|
k

c

}
.

In the case of a r-sparsity constraint we have that |S∗| = r, and the claim follows. In the case of a p-system constraint, we
have that |S∗| ≥ pr, hence

E [ f(S∗) ]

OPT
≥ 1− exp

{
−(1− ε)2p

m2

M2

}
≥ 1

1 + p

(
1− exp

{
−(1− ε)2

m3

M3

})
,

and the claim also holds.

J.3. If Algorithm 1 Terminates after ε−1 Iterations

We now prove Theorem 4.1, assuming that the FASTOMP terminates after ε−1 iterations of the outer While-loop of Algorithm
1. Specifically, we prove the following theorem.
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Theorem J.8. Define the function f as in (1), with a log-likelihood function that is (M,m)-(smooth, strongly concave) on
Ω2r. Suppose that Algorithm 1 terminates after ε−1 iterations of the outer-While loop. Then,

E [ f(S∗) ]

OPT
≥ 1

1 + p

(
1− exp

{
−(1− ε)2

m3

M3

})
,

for all 0 < ε < 1. Furthermore, in the specific case when I is r-sparsity constraint over [n], then,

E [ f(S∗) ]

OPT
≥ 1− exp

{
−(1− ε)2

m2

M2

}
.

In order to prove this theorem, we introduce additional notation. We denote with Si the current solution at the beginning
of the i-th iteration of the outer While-loop of Algorithm 1. Furthermore, denote with S̄ ⊆ T \ Si a feasible set, such that
f(S̄ ∪ Si) = OPT, and denote with aj the j-th element added to the solution S. The proof of this theorem is based on the
following lemma.

Lemma J.9. It holds
M

m
fSi(Si+1) +

∑
e∈S̄\Cond(Si)

εfSi(e) ≥ ε
m

M
fSi(S̄).

Proof. Fix all random decision of Algorithm 1, up to the (i+ 1)-th iteration of the outer While-loop of Algorithm 1. Let
T ⊆ [n] be a set maximizing ∥∇l(β(Si))T∥22, such that |T| ≤ r and T ⊆ I . Due to the assumption on the stopping criterion,
it holds X = ∅ at the end of iteration i. This means that each point j ∈ (T \ Si) ∩ Cond(Si) was discarded at some point
during the previous iteration. Denote with Uj the current solution when j was discarded. Then, it holds

(1− ε)
2m

r

∑
e∈T

fSi
(e) ≥ (1− ε)

m

rM
∥∇l(β(Si))T∥22 = t (17)

where the first inequality follows by Theorem J.1, and the second one follows by the definition of t. Since the point j was
discarded and since j ∈ Cond(Si), then it must hold t ≥ ⟨∇l(β(Uj)

j ), ej⟩2. Note also that by the RSC/RSM properties of
the function l it holds ⟨∇l(β(Uj)), ej⟩2 ≥ ⟨∇l(β(Si+1)), ej⟩2 (Elenberg et al., 2018). Combining these observations with
(17) we get

(1− ε)
2m

r

∑
e∈T

fSi(e) ≥ ⟨∇l(β
(Si+1)), ej⟩2 ≥ 2mfSi+1(j). (18)

By taking the sum over all points j ∈ (T \ Si) ∩ Cond(Si) and rearranging, we get

(1− ε)
∑
e∈T

fSi
(e) ≥ (1− ε)

|(T \ Si) ∩ Cond(Si)|
r

∑
e∈T

fSi
(e) (by definition of r)

≥
∑

j∈(T\Si)∩Cond(Si)

f̄Si+1(j) (it follows from (18)) (19)

By rearranging (19) we get∑
e∈Si+1

fSi
(e) ≥

∑
e∈(T\Si)∩Cond(Si)

εfSi
(e)

≥
∑

e∈S̄∩Cond(Si)

εfSi
(e) (by the definition of S)

≥
∑
e∈S̄

εfSi
(e)−

∑
e∈S̄\Cond(Si)

εfSi
(e) (by linearity) (20)
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Hence, it holds

M

m
fSi

(Si+1) ≥
∑

e∈Si+1

fSi
(e) (Corollary J.3)

≥
∑
e∈S̄

εfSi
(e)−

∑
e∈S̄\Cond(Si)

εfSi
(e) (it follows from (20))

≥ ε
m

M
fSi

(S̄)−
∑

e∈S̄\Cond(Si)

εfSi
(e). (Corollary J.3)

The claim follows by rearranging.

In order to continue with the proof, we also use the following lemma.

Lemma J.10. It holds

pf(Si) ≥ (1− ε)
m2

M2

∑
e∈S̄\Cond(Si)

fSi
(e).

Proof. Fix an index j ≤ |Si|, and fix all random decisions of Algorithm 1 until the point aj is added to the current solution.
For each element aj , define the set Dj := (S̄ ∩ Cond({a1, . . . , aj−1})) \ (S̄ ∩ Cond({a1, . . . , aj})). Note that these sets
consist of all points in S̄ that yield a feasible solution when added to {a1, . . . , aj−1}, but that violate side constraints when
added to {a1, . . . , aj}. Note also that it holds D1 ∪ · · · ∪ Dj = S̄ \ Cond({a1, . . . , aj}). Furthermore, define the sets

XI
j := {e ∈ X \ {a1, . . . , aj−1} : {a1, . . . , aj−1} ∪ {a} ∈ I}.

Then, it holds

Eaj

[
f{a1,...,aj−1}(aj)

]
≥ 1

2M
Eaj

[
⟨∇l(β({a1,...,aj−1})), eaj

⟩2
]

(by Lemma J.1)

≥ 1

2M
Paj

(⟨∇l(β({a1,...,aj−1})), eaj
⟩2 ≥ t)t (by Markov) (21)

Note that the RNDSEQ subroutine samples points aj uniformly at random aj ∼ U(XI
j ). Hence,

Paj (⟨∇l(β
(Sj−1)), eaj ⟩2 ≥ t) =

|Xj−1|∣∣XI
j

∣∣ ≥ |Xj−1|
|X|

, (22)

where the last inequality holds, since XI
j ⊆ X. Combining this observation with (21) we get

Eaj

[
f{a1,...,aj−1}(aj)

]
≥ 1

2M

|Xj |
|X|

t (it follows by (22))

≥ 1− ε

2M
t (|Xj−1| ≥ (1− ε) |X|)

=
1− ε

2M2

m

|T|
∥∇l(β({a1,...,aj−1}))T∥22 (by the definition of t)

≥ 1− ε

2M2

m

|Dj |
∥∇l(β({a1,...,aj−1}))Dj

∥22, (T is maximal)

By taking the expected value on both sides in the chain of inequalities above, we get∑
j≤|Si|

|Dj |Eaj

[
f̄{a1,...,aj−1}(aj)

]
≥ (1− ε)

m

2M2

∑
j≤|Si|

E
[
∥∇l(β(Si))Dj∥22

]
. (23)

In order to continue with the proof, we give an upper-bound on the size of the sum
∑

j |Dj |. To this end, note that the set Si
is a maximum independent set over the ground set

Si ∪
(
D1 ∪ · · · ∪ D|Si|

)
= Si ∪

(
S̄ \ Cond(Si)

)
.
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In fact, the set Si is independent by definition, and that any point s ∈
(
S̄ \ Cond(Si)

)
\ Si yields Si ∪ {s} /∈ I . Hence Si is

a maximum independent set as claimed. Note also that D1 ∪ · · · ∪ D|Si| ⊆ S̄ is an independent set, due to the subset-closure
of I. Since I is a p-system, then it holds

|D1|+ · · ·+
∣∣D|Si|

∣∣ = ∣∣D1 ∪ · · · ∪ D|Si|
∣∣ ≤ p |Si| . (24)

Hence, it holds

p
∑

j≤|Si|

Eaj

[
f{a1,...,aj−1}(aj)

]
≥
∑

j≤|Si|

|Dj |Eaj

[
f{a1,...,aj−1}(aj)

]
(it follows by (24))

≥ (1− ε)
m

2M2

∑
j≤|Si|

E
[
∥∇l(β(Si))Dj

∥22
]

(it follows by (23))

≥ (1− ε)
m2

M2

∑
e∈D1∪···∪D|Si|

fSi(e) (by Theorem J.1).

The claim follows since D1 ∪ · · · ∪ D|Si| = S̄ \ Cond(Si).

We now have all necessary tools to prove Theorem J.8.

Proof of Theorem J.8. We first prove the claim, assuming that I is a general p-system. In this case, by combining Lemma
J.9 with Lemma J.10 it holds

M

m
E [ fSi(Si+1) ] + εp

M2

m2
E [ f(Si) ] ≥ ε(1− ε)

m

M
E
[
fSi(S̄)

]
. (25)

To continue, define the constant c = (1− ε)m3/M3. We prove by induction on i that it holds

(1 + εip)E [ f(Si) ] ≥ (1− (1− εc)i)OPT. (26)

The base case with S0 = ∅ trivially follows, since the function f is non-negative. For the inductive case, suppose that the
claim holds for E [ f(Si−1) ]. Then,

(1 + εip)E [ f(Si) ]

≥ E [ f(Si) ] + εipE [ f(Si−1) ] (by monotonicity)

≥ E [ f(Si−1) ] + εcE
[
fSi

(S̄)
]
+ ε(i− 1)pE [ f(Si−1) ] (it follows by (25))

≥ (1− εc)E [ f(Si−1) ] + εcOPT+ ε(i− 1)pE [ f(Si−1) ] (by monotonicity)

≥ (1− εc)(1− (1− εc)i−1)OPT+ εcOPT (by induction)

≥ (1− (1− εc)i)OPT.

Hence, (26) holds. It follows that

E [ f(S∗) ] = E
[
f(S⌊1/ε⌋)

]
(by the stopping criterion)

≥ 1

1 + ε ⌊1/ε⌋ p

(
1−

(
1− ε(1− ε)

m3

M3

)⌊1/ε⌋)
OPT (it follows by (26))

≥ 1

1 + p

(
1− exp

{
−(1− ε)

m3

M3

})
OPT,

as claimed.

We conclude by proving the claim in the special case that I is a r-sparsity constraint. Since the algorithm terminates before
a solution of size r is found, we have that Cond(Si) = [n] \ Si for all iterations i. Hence, D1 ∪ · · · ∪Di = ∅ and Lemma J.9
yields

E [ fSi
(Si+1) ] ≥ ε

m2

M2
E [ fSi

(S∗) ] .

With this inequality, we can use an inductive argument similar to the proof for the general case, and obtain an improved
lower-bound on the solution quality.
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K. Proof of Theorem 4.2
We conclude by giving upper-bounds on the run time and adaptivity for Algorithm 1. Recall that the notion of adaptivity is
given in Definition G.1.

In order to prove Theorem 4.2, we use the following well-known estimate on the number of adaptive rounds of the RNDSEQ
sub-routine (see Appendix H).

Theorem K.1 (Theorem 6 by (Karp et al., 1988)). Algorithm H terminates after expected O (
√
r) steps, with r the rank of

the independent system I.

Note that this theorem implies that the number of adaptive rounds of the independence oracle for Algorithm H is O (
√
r) in

expected value. In fact, in each step of Algorithm H, queries to the independence oracle can be performed in parallel. Using
this result, we can now prove Theorem 4.2.

Proof of Theorem 4.2. We first give upper-bounds for the oracle function that accesses∇l(·). To this end, observe that there
are two While-loops in Algorithm 1. The outer while-loop terminates after at most ε−1 iteration. The inner While-loop
terminates after O

(
ε−1 log n

)
iterations, since at each iteration the size of X decreases at least of a multiplicative factor

of 1 − ε. Hence, the rounds of calls to the oracle function is O
(
ε−2 log n

)
. Furthermore, at each iteration of the inner

While-loop, at most r parallel calls to∇l(·) are preformed. It follows that the total number of oracle calls is O
(
ε−2r log n

)
.

We now estimate the number of adaptive rounds and run time for the calls to the independence oracle. To this end, note
that is oracle is called by the RNDSEQ sub-routine,and it is also evaluated nr times in parallel during the inner While-loop
of Algorithm 1. From Theorem K.1 it follows that the number of adaptive rounds is O

(
ε−2
√
r log n

)
, and that the total

number of calls to the oracle function is O
(
ε−2nr log n

)
as claimed.

L. Benchmarks2

In this section, we describe the benchmark algorithms we use for comparison against the proposed framework. Our goal
in empirical evaluation is to illustrate the accuracy vs speedup tradeoff that follows from our computational model of
adaptive sampling based matching pursuit under constraints. The main purpose of using a technique like adaptive sampling
is to obtain speedups by reducing the number of oracle evaluations compared to their non-adaptive counterparts, with
some admissible loss in accuracy (Balkanski et al., 2019). Indeed, there are many other feature selection algorithms.
We choose feature selection benchmarks that help us illustrate the said speedup obtained when using our method while
ensuring graceful degradation in accuracy in simulated and real-world use-cases. These algorithms include popular selection
methods (Kalimeris et al., 2019; Krause & Cevher, 2010; Elenberg et al., 2018; Grgic-Hlaca et al., 2018b). Other popular
algorithms for feature selection include the Maximum Relevance Minimum Redundancy (mRMR) (Zhao et al., 2019; Ding
& Peng, 2005) and the Conditional Mutual Information Maximisation (CMIM) filters (Torkkola, 2003) among others. These
algorithms iteratively adds features by maximizing suitable objectives, such as scores based on the F-statistic, or Mutual
Information gain. However, these algorithms for general p-system side constraints require Ω(r) sequential calls to the
independence oracle for a solution size of r. Thus, such methods are impractical and will be trivially too slow compared to
our method. We consider the following algorithms to compare against:

SDSMA: Starting from the empty set, this algorithm adds feasible points to the current solution in a greedy fashion (Krause
& Cevher, 2010; Elenberg et al., 2018). This algorithm uses oracle access to the function f as in (1).

SDSOMP: Starting from the empty set, this algorithm iteratively adds a feature s to the current solution S if it maximizes
the dot product ⟨∇l(β(S)), es⟩ (Krause & Cevher, 2010; Elenberg et al., 2018).

DASH: This algorithm follows a computationally similar model, and achieves strong approximation guarantees on the subset
selection problem, under the RSC/RSM assumption (Qian & Singer, 2019). It also uses oracle access to the function f but
can only handle r-sparsity constraints.

ISK: This algorithm is the iterated submodular-cost knapsack algorithm proposed by Iyer & Bilmes (2013). It was used
by Grgic-Hlaca et al. (2018b) to perform feature selection on the ProPublica COMPAS dataset. The ISK can only handle
r-sparsity constraints, and it has no known guarantees for the problem (2).

2We parallelize all algorithms for fair comparison.
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Lasso: We also compare against the popular Lasso regression. Tuning Lasso to obtain a solution of a desired size is hard
(Mairal & Yu, 2012). In our experiments, we vary the parameter manually and benchmark against the resulting solution size.

Random: This simple algorithm outputs a maximum independent set of I chosen uniformly at random. We use the RNDSEQ
sub-routine to generate this set (see Appendix H).

M. Feature selection on Non-volatile Memory (NVM)
The emergence of CPU-attached persistent memory technology, such as Intel’s Optane Non-Volatile Memory (NVM), has
opened opportunities for running large datasets on a single server. A single server may have up to 6TB of NVM, that can be
accessed through the memory bus. The use of NVM compared to DRAM is beneficial for two reasons. First, due to its large
capacity, it is suitable to handle large datasets. Secondly, as NVM is non-volatile, it can easily support fault-tolerance and
recovery of the computation when a server crashes. Furthermore, even though NVM latency is slightly slower than DRAM,
it has much better latency than SSD of orders of magnitude.

For running our Python code on NVM, we used MCAS (Waddington et al., 2021b;a) (Memory Centric Active Storage),
which is an advanced client-server in-memory object store designed from the ground up to leverage persistent memory.
MCAS supports “pushdown” operations on the client-side which are termed Active Data Objects (ADO), and has a Python
plugin that allows zero-copy for Numpy data access. Our benchmark for evaluating feature selection with persistent memory
is done by integrating the algorithms to MCAS as an ADO using the above mentioned Python plugin. We use an Intel Xeon
Gold 6248 server with 80 CPUs at 2.50GHz. The server is equipped with 384GB DDR4 DRAM and 1512GB Optane DC.

By experimenting with the same datasets as in Section 5 with the SDSOMP and FASTOMP, we observed no significant
variation in run time compared to our DRAM implementation. This is due to the fact that the time required to copy data from
NVM to DRAM is negligible, in comparison with the compute time of training phases. However, when performing tasks on
the DRAM that use more memory than the DRAM capacity, we might observe a significant decrease in the performance.
For this reason, in future work we intend to investigate the trade-off between training time on different media (NVM versus
DRAM and SSD) of tasks that use more memory than the DRAM capacity.

N. The ProPublica COMPAS Dataset
The ProPublica COMPAS dataset was constructed in 2016, using data of defendants from Broward County, FL, who had
been arrested in 2013 or 2014 and assessed with the COMPAS risk screening system. ProPublica then collected data on
future arrests for these defendants through the end of March 2016, in order to study how the COMPAS score predicted
recidivism (Angwin et al., 2016). Based on its analysis, ProPublica concluded that the COMPAS risk score was racially
biased (Berk et al., 2021).

The ProPublica COMPAS data has become one of the key bench-marking datasets for testing algorithmic fairness definitions
and procedures (Corbett-Davies et al., 2017; Chouldechova, 2017; Corbett-Davies et al., 2017; Cowgill & Tucker, 2019;
Rudin et al., 2018; Zafar et al., 2017b;c). However, (Bao et al., 2021a) notes that there are inaccuracies in the COMPAS
dataset. For instance, COMPAS race categories lack Native Hawaiian or Other Pacific Islander, and it redefines Hispanic as
race instead of ethnicity.

This dataset consists of the following features: “number of prior criminal offenses”, “arrest charge description”, “charge
degree”, “number of juvenile felony offenses”, “juvenile misdemeanor offenses”, “other juvenile offenses”, “age”, “sex”
and “race” of the defendant. The dataset also contains information on whether the defendant recidivated or not.


