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We develop an end-to-end workflow for the training and implementation of co-designed neural networks

(NNs) for efficient field-programmable gate array (FPGA) hardware. Our approach leverages Hessian-aware

quantization of NNs, the Quantized Open Neural Network Exchange intermediate representation, and the

hls4ml tool flow for transpiling NNs into FPGA firmware. This makes efficient NN implementations in hard-

ware accessible to nonexperts in a single open sourced workflow that can be deployed for real-time machine-

learning applications in a wide range of scientific and industrial settings. We demonstrate the workflow in a

particle physics application involving trigger decisions that must operate at the 40-MHz collision rate of the

CERN Large Hadron Collider (LHC). Given the high collision rate, all data processing must be implemented

on FPGA hardware within the strict area and latency requirements. Based on these constraints, we implement

an optimized mixed-precision NN classifier for high-momentum particle jets in simulated LHC proton-proton

collisions.
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1 INTRODUCTION

Machine learning (ML) is pervasive in big data processing, and it is becoming increasingly im-
portant as data rates continue to rise. In particular, ML taking place as close to the data source
as possible, or edge ML, is increasingly important for both scientific and industrial applications,
including applications such as data compression, data volume reduction, and feature extraction
for real-time decision-making [18]. Integrating ML at the edge, however, is challenging because
of area, power, and latency constraints. This is especially the case for deep learning (DL) and
neural network (NN) models. Deployment of NNs for edge applications requires carefully opti-
mized protocols for training as well as finely tuned implementations for inference. This typically
requires efficient computational platforms such as field-programmable gate arrays (FPGAs)

and application-specific integrated circuits (ASICs). Developing a NN algorithm and imple-
menting it in hardware within system and task constraints is a multistep codesign process with a
large decision space. Among other things, this space includes options related to quantization, or us-
ing reduced precision operations. In this article, we present a completely open source, end-to-end
workflow accessible to nonexperts for NN quantization and deployment in FPGAs.

Quantization-aware training (QAT) has been shown to be very successful in scaling down
model sizes for FPGAs [10, 11, 16, 21, 36, 44]. With QAT, large NNs can be quantized to 8 bits
and below, with comparable accuracy to the baseline. Quantized NNs (QNNs) generally have
considerably reduced model sizes and latencies. Hessian-aware quantization (HAWQ) [65] is
a mixed-precision integer-only quantization framework for PyTorch [53] with promising appli-
cations. HAWQ is able to quantize the model to very small bit widths by using mixed-precision
guided by second-order (Hessian) information. In this approach, sensitive layers (determined by
Hessian information) are kept at higher precision and insensitive layers are kept at lower precision.
FPGAs are a natural use case for this: They can benefit from this approach, since mixed-precision
computations are much better supported by FPGAs than other hardware such as GPUs.

While these features make HAWQ an interesting choice for QAT with FPGAs, there does not
currently exist a streamlined process to deploy it onto FPGAs directly. To address this, we intro-
duce additional functionality to HAWQ to export QNNs as Quantized Open Neural Network

Exchange (QONNX) [52] intermediate representations. Then the QONNX representation can be
ingested by hls4ml [24], an open source Python library for NN translation and deployment in FPGA
and ASIC hardware. The hls4ml package is designed to be accessible for both hardware experts
and nonexperts, and it is flexible enough to deploy QNNs with a broad range of quantization bit
widths on different FPGA and ASIC platforms. It is a popular tool for both scientific and industry
edge ML applications [1, 28, 51].

To demonstrate the performance of our end-to-end workflow, we develop a NN for real-time
decision-making in particle physics. The CERN Large Hadron Collider (LHC) is the world’s
largest and most powerful particle accelerator. Particles collide in detectors every 25 ns, produc-
ing tens of terabytes of data. Because of storage capacity and processing limitations, not every
collision event can be recorded. In these experiments, the online trigger system filters data and
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stores only the most “interesting” events for offline analysis. Typically, the trigger system uses
simple signatures of interesting physics, e.g., events with large amounts of deposited energy or
unusual combinations of particles, to decide which events in a detector to keep. There are multiple
stages of the trigger system, and the first stage, referred to as the level-1 trigger (L1T) [2, 60],
processes data at 40 MHz with custom ASICs or FPGAs. Over the past years, the LHC has in-
creased its center of mass collision energy and instantaneous luminosity to allow experiments to
hunt for increasingly rare signals. With the extreme uptake of accumulated data, ML methods are
being explored for various tasks at the L1T [13, 14]. One such task is jet tagging: identifying and
classifying collimated showers of particles from the decay and hadronization of quarks and glu-
ons using jet substructure information [41, 42]. ML methods show great promise over traditional
algorithms in increasing our capability to identify the origins of different jets and discover new
physical interactions [8, 59]. Although we focus on a single application in this article, the poten-
tial scientific use cases for this workflow are numerous and span multiple domains [18]. Even
for LHC trigger applications, there are dozens of potential tasks, ranging from charged particle
tracking [19, 27], anomaly detection [31, 32, 46], calorimeter clustering [37, 55], long-lived particle
identification [6, 15], and Higgs boson identification [43, 49]. In this article, we lay out an optimal
workflow for these and more, depicted in Figure 1.

Within the context of developing a NN for real-time decision making for particle physics appli-
cations, the original contributions of this article are the following:

— We take advantage of the QONNX format to represent QNNs with arbitrary precision and
mixed-precision quantization to extend HAWQ for QONNX intermediate representation sup-
port.

— We perform Hessian-aware quantization on a multilayer perceptron (MLP) model used
in jet tagging benchmarks, and we study in detail the effects of quantization on each layer
for model performance and efficiency.

— We use hls4ml to present optimized resources and latency for FPGA hardware implementa-
tions of NNs trained in HAWQ.

The rest of this article is structured as follows. In Section 2, we introduce the key steps that
comprise the end-to-end codesign workflow for QNNs to be deployed on FPGAs, including an
overview of quantization and HAWQ. We present the task and discuss how NNs are evaluated and
trained in Section 3. Preliminary QAT results with homogeneous quantization and Hessian-based
quantization are presented in Section 4, and our extension to HAWQ is presented in Section 5.
We then cover the firmware implementation of NNs, specifically the resource usage and estimated
latency, in Section 6. In Section 7 we illustrate the complete workflow using a second physics model
intended for the Compact Muon Solenoid (CMS) high-granularity calorimeter. This highlights
the versatility and applicability of the methodology, emphasizing its relevance beyond specific
references. Finally, a summary is presented in Section 8.

2 BACKGROUND AND RELATED WORK

In this section, we provide an overview of quantization and HAWQ (in Section 2.1), and then we
cover automatic bit-width selection (in Section 2.2) and firmware generation tools (in Section 2.3).

2.1 Quantization

Quantization in NNs refers to reducing the numerical precision used for inputs, weights, and ac-
tivations. In uniform affine quantization, values are quantized to lower precision integers using a
mapping function defined as

q = quantize(r ) = Clip(Round((r/S) − Z ),α , β), (1)
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Fig. 1. An overview of the entire workflow, integrating HAWQ, QONNX, and hls4ml, is designed to facili-
tate a seamless transition from HAWQ to firmware implementations. Each stage is highly configurable; for
instance, HAWQ supports mixed-precision quantization. Similarly, QONNX provides graph transformations
and optimization support, while hls4ml allows control over precision and parallelism.

where r is the floating-point input, S is the scale factor, andZ is the zero point [29]. The Round func-
tion is the round-to-nearest operation clipped/clamped at α and β . Because all quantization bins
are uniformly spaced, this mapping function in Equation (1) is referred to as uniform quantization.
Nonuniform quantization methods whose bin sizes are variable are more difficult to implement in
hardware [45]. Real values can be recovered from the quantized values through dequantization:

r̃ = dequantize(q) = S(q + Z ), (2)

where r̃ −r is known as the quantization error. The scale factor divides a given range of real values
into 2b bins, with

S =
β − α

2b − 1
, (3)

where [α , β] is the clipping range and b is the bit width. Choosing the clipping range is referred to
as calibration. A simple approach is to use the minimum and maximum of the values, i.e., α = rmin

and β = rmax. This is an asymmetric quantization scheme, because the clipping range is not neces-
sarily symmetric with respect to the input, i.e., it could be that −α � β . A symmetric quantization
approach uses a symmetric clipping range of −α = β , such as −α = β = max(|rmax |, |rmin |), and
replaces the zero point with Z = 0.

The latest publication of the Hessian-aware quantization, HAWQv3 [65], introduces a com-
pletely new computational graph with an automatic bit-width selection policy based on it is
previous works [22, 23]. In HAWQv3, which for simplicity we refer to here simply as HAWQ,
quantization follows Equation (1) with additional hardware-inspired restrictions. HAWQ executes
its entire computational graph using only integer multiplication, addition, and bit shifting, without
any floating-point or integer division operations. The clipping range is symmetric for weights
β = 2b − 1 = −α , while activations can be either symmetric or asymmetric. The real-valued scale
factors are pre-calculated by analyzing the range of outputs for different batches and fixed at
inference time, a process called static quantization. HAWQ avoids floating-point operations and
integer divisions by restricting all scale factors to be dyadic numbers (rational numbers of the
form b/2c , where b and c are integers). To illustrate a typical computation, consider a layer with
input h and weight tensorW . In HAWQ, h andW are quantized to Shqh and SW qW , respectively,
where Sh and SW are the real-valued scale factors, and qh and qW are the corresponding quantized
integer values. The output result, denoted by a, can be computed as

a = (SW Sh)(qW ∗ qh), (4)
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where ∗ denotes a low-precision integer matrix multiplication (or convolution). The result is then
quantized to Saqa for the following layer as

qa = Int

(
a

Sa

)
= Int

(
SW Sh

Sa
(qW ∗ qh)

)
, (5)

where Sa is a precalculated scale factor for the output activation. This avoids floating point
operations and integer divisions by implementing Equation (5) with integer multiplication and
bit shifting.

2.2 Automatic Bit Width Selection

Many methods have been proposed to measure the sensitivity to quantization or developed auto-
matic schemas for bit settings. For example, HAQ [63] proposed a reinforcement learning (RL)

method to determine the quantization policy automatically. The method involves an RL agent re-
ceiving direct latency and energy feedback from hardware simulators. Reference [64] formulated
a neural architecture search (NAS) problem with a differentiable NAS to explore the search
space efficiently. Reference [50] proposed periodic functions as regularizers, where regularization
pushes the weights into discrete points that can be encoded as integers. One disadvantage of these
exploration-based methods is that they are often sensitive to hyperparameters or initialization.
More recently, AutoQkeras [16] was proposed as a method to optimize both model area (measured
by the number of logical elements in the FPGA design) and accuracy, given a set of resource con-
straints and accuracy metrics, e.g., energy consumption or bit-size. Different from these previous
methods, HAWQ [23] introduced an automatic way to find the mixed-precision settings based on a
second-order sensitivity metric. In particular, the Hessian (specifically the top Hessian eigenvalue)
can be used to measure the sensitivity. This approach was extended in Reference [22], wherein
the sensitivity metric is computed using the average of all the Hessian eigenvalues. The Hessian
provides valuable information to guide quantization, but it is not restricted to a particular quanti-
zation scheme. In theory, other methods could be applied, such as stochastic binary, power-of-two,
look-up table, small floating-point, or clustering-based quantization.

2.3 Firmware Generation Tools

Although ML methods have shown promising results on edge devices, fitting these algorithms onto
FPGAs is challenging, often very time-consuming, and it requires the expertise of domain experts
and engineers. Several directions aim to solve this issue. One direction, field-programmable deep
neural networks [33] is a framework that takes TensorFlow-described deep neural networks

(DNNs) as input and automatically generates hardware implementations with register trans-

fer level (RTL) and high-level synthesis (HLS) hybrid templates. Another direction, fpgaCon-
vNet [62], specifically targets convolutional NNs (CNNs) and is an end-to-end framework for
the optimized mapping of CNNs on FPGAs. Interestingly, fpgaConvNet proposes a multi-objective
optimization problem to account for the CNN workload, target device, and metrics of interest.

These and other tools indicate a growing desire to deploy more efficient and larger ML models
on edge devices in a faster and more streamlined process. This desire arises in many scientific and
industrial use cases [4, 18]. Particle physics applications are a particularly strong stress test of such
tools. This is due to the extreme requirements in computational latency and data bandwidth, as well
as environmental constraints such as low-power and high-radiation and cryogenic environments.
Furthermore, particle physics practitioners are not necessarily ML experts or hardware experts,
and their applications and systems require open source tools (to the extent possible) and flexible
deployment across different FPGA and ASIC platforms. The hls4ml tool originated from these use
cases and supports multiple architectures and frameworks, such as Keras [12], QKeras [16, 30],
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and PyTorch [53]. Previous work has successfully implemented DL models for FPGAs and ASICs
for particle physics [20]. Currently, it is steadily increasing its scope of supported architectures,
frameworks, hardware optimizations, and target devices, with the support of a growing scientific
community. Another tool, FINN [7, 61] from AMD/Xilinx, aims to solve the problem of bringing
NNs (more specifically, QNNs) to FPGAs by using generated HLS code. Both tools create a stream-
lined process to deploy DL models as efficiently as possible, without requiring large development
effort and time. The two tools are similar in their goals, hls4ml and FINN, although there are differ-
ences in their flows, layer support, and targeted optimizations. Both of them support QONNX, an
open source exchange format, which represents QNNs with arbitrary precision, so that there can
be interoperability between the flows. This is ideal for HAWQ, as it can target multiple hardware-
generating tools. In this work, however, we focus only on hls4ml, which has implementations for
FPGAs and ASICs and optimizations for a wider range of bit widths. Additionally, the emphasis of
this work is on FPGAs. Nevertheless, we note that previous research has used hls4ml to develop
ASIC accelerators for NNs [47, 48]. Consequently, the workflow we present here has the potential
to be applied for ASIC development as well.

3 EXPERIMENTAL SETUP

In this section, we describe the benchmark ML task we explore for particle physics applications.
As discussed above, although there are a much broader set of scientific and industrial applications,
particle physics applications are a particularly good stress test of our end-to-end workflow. The
concept behind the development of particle physics benchmarks is detailed more in Reference [25],
and our jet tagging benchmark is one of the three described there.

3.1 Dataset and Task

We consider a jet classification benchmark of high-pT jets to evaluate performance. Particle jets
are radiation patterns of quarks and gluons produced in high-energy proton-proton collisions at
the LHC. As these jets propagate through detectors like the A Toroidal LHC ApparatuS or CMS,
they leave signals through the various subdetectors, such as the silicon tracker, electromagnetic
or hadron calorimeters, or muon detectors. These signals are then combined using jet reconstruc-
tion algorithms. In the CMS trigger upgrade, jet classifiers must process inputs every 150 ns and
achieve a latency less than 1 μs [13]. These are the real-time constraints for ML algorithms on the
CMS trigger system. We use the benchmark presented in Reference [24] consisting of 54 features
from simulated particle jets produced in proton-proton collisions. Of the 54 high-level features, 16
were chosen based on Table 1 of Reference [24]. The features are a combination of both mass (“di-
mensionful”) and shape (“dimensionless”) observables. The dataset [54] is a collection of 870,000
jets and is divided into two sets: a training set of 630,000 jets and a test set of 240,000 jets. The
dataset underwent preprocessing: All features are standardized by removing the mean and scaling
to obtain unit variance. The task is to discriminate jets as originating from one of five particles: W
bosons, Z bosons, light quarks (q), top quarks (t), or gluons (g). Descriptions of each observable
and particle jet can be found in Reference [17]. Additionally, we measure the accuracy given by
the number of correctly classified jets divided by the total number of classified jets.

3.2 Model and Loss Definition

We implement all models with the architecture presented in Reference [24], an MLP with three
hidden layers of 64, 32, and 32 nodes, respectively. The baseline model is the floating-point imple-
mentation of this MLP, i.e., with no quantization. All hidden layers use ReLU activations, and the
output is a probability vector of the five classes filtered through the softmax activation function.
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We aim to minimize the empirical loss function,

Lc (θ ) =
1

N

N∑
i=1

�(fθ (xi ),yi ) =
1

N

N∑
i=1

�(ŷi ,yi ), (6)

where � is the categorical cross-entropy loss function and N is the number of training samples.
The model, denoted by fθ , maps each input xi ∈ R16 to a prediction ŷi ∈ [0, 1]5, using parameters
θ . Predictions are then compared with ground truth yi to minimize the empirical loss. We train
the NNs with L1 regularization by including an additional penalty term to the loss,

L(θ ) = Lc (θ ) + λ
L∑

j=1

‖Wj ‖1, (7)

where the added penalty term is the elementwise norms of weight matrices, Wi is the “vector-
ized” form of weight matrix for the jth layer, and L is the number of layers in the model. The L1

regularization term is scaled by a tunable hyperparameter λ. Typically, L1 regularization is used
to prevent overfitting, enabling statistical models to generalize better outside the training data. It
is also known to promote sparsity, which is desirable to reduce the number of computations. Sec-
tion 4 discusses the implications of L1 regularization in QNNs concerning performance and other
metrics discussed below.

3.3 Metrics: Bit Operations and Sparsity

Similarly to floating-point operations, bit operations (BOPs) [5] in QNNs are computed to esti-
mate model complexity and the number of operations per inference. BOPs have been shown to
accurately predict the area of hardware accelerators and, in turn, the power usage in processing
elements [40]. This makes BOPs an easy-to-compute metric that is a useful approximation of the
total area of a QNN. The bit operations of a fully connected layer with ba bit input activations and
bW bit weights are computed as

BOPs =mn((1 − fp )babW + ba + bW + log2(n)), (8)

where n andm are the number of input and output features, respectively, and fp is the fraction of
weights pruned (i.e., equal to zero). This definition of BOPs only accounts for zero weight values
within a layer. A more precise definition could compute the sum of all binary 1s in each weight
individually. We do not consider this, as taking advantage of sparsity at this level of granular-
ity requires task-specific architecture considerations that are not completely generalizable. From
Equation (8), the number of BOPs is inversely related to the sparsity fp . Sparse models are desired,
as zero-weight multiplications are optimized out of the firmware implementation by HLS. This is
a highly attractive feature of HLS, and it makes BOPs a noteworthy metric to observe. We measure
the total BOPs of each quantization scheme, as well as its relation to accuracy (see Section 4) and
hardware usage (see Section 6).

4 QUANTIZATION-AWARE TRAINING

In this section, we discuss the training procedure for homogeneous and mixed-precision quantiza-
tion. We start in Section 4.1 with a discussion of single bitwidth quantization, which is also referred
to as homogeneous quantization. Then, in Section 4.2, we discuss mixed-precision quantization,
including how it can greatly improve classification performance, as well as its downsides. In par-
ticular, in Section 4.2.2, we cover a method to select automatically the bit width of each layer in a
NN using second-order Hessian information, as well as a method obtained by imposing hardware
constraints in the bit-width selection process.
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Table 1. Classification Performance with Homogeneous Quantization

Precision Baseline (%) L1 (%) BN (%) L1+BN (%)

Weights Inputs

INT12 INT12 76.9 75.2 77.2 76.5
INT8 INT8 76.6 76.4 76.9 76.9
INT6 INT6 73.6 73.7 74.5 74.4
INT4 INT4 62.5 63.2 63.5 63.4

FP-32 FP-32 76.5 76.8 76.9 76.8

All weights, activations, and inputs are quantized with the same precision. Models are

trained with and without L1 regularization and BN. At INT8 and above, the accuracy is

restored to baseline; but at INT6 and below, the accuracy is worse than baseline.

4.1 Homogeneous Quantization

Quantizing all layers with the same bit width is simple, but it can cause a significant loss in per-
formance. In Table 1, we present the accuracy for different bit settings from INT12 to INT4 with
homogeneous quantization using HAWQ. As expected, we see a significant performance degrada-
tion as we quantize below INT8 (and especially below INT6). To combat this, we employed two
regularization techniques during training: L1 regularization and batch normalization (BN) [38].
BN provides a more stable distribution of activations throughout training by normalizing the ac-
tivations and producing a smoother loss landscape [57]. Although using BN raises performance
on all quantization schemes, it fails to recover baseline accuracy for INT6 and INT4 quantiza-
tion. Likewise, while L1 regularization leads to some improvement, it falls short of restoring to its
original baseline. Consequently, homogeneously quantizing a model with one bitwidth setting is
insufficient for quantization below 8-bit precision.

In addition to employing regularization techniques, we can increase the input quantization bit
width. In HAWQ, inputs are quantized before proceeding to the first layer, ensuring all operations
are integer only. A possible failure point is quantization error introduced in the inputs for low
bitwidths where key features needed to classify jets may be lost. We decouple the precision of the
inputs from that of the weights and activations and increase it to INT16. Figure 2 shows results
for 8-bit weights and below, with different bit widths for the activations. We find the following: (1)
increasing the activation bit width significantly improves the classification performance of INT4
and INT6 weights; (2) similar improvements are obtained for INT16 quantized inputs, although
this comes at the cost of increased hardware resource usage; and (3) L1 and BN (applied alone or
together) are insufficient for recovering the accuracy to baseline levels. For this study, BN is less
desirable, as the batch statistics parameters are implemented with floating-point values, thereby
increasing the latency and memory footprint. One option is to quantize these values or (even more
promisingly) apply BN folding. The idea is to remove BN by using its parameters to update the
fully connected (or convolution) layer’s weights and biases for inference efficiency. However, after
implementing BN folding using the procedure outlined in Reference [65], we found little to no
effect on model performance. As mentioned above, L1 serves as a regularization term to promote
model generalization and mitigate overfitting without introducing additional parameters and la-
tency overhead. As an additional advantage, it produces sparse weight matrices, which decreases
the number of bit operations in hardware implementations. Therefore, in later sections, we con-
tinue to use L1 during training for mixed-precision quantization and baseline. Figure 2 suggests
model performance can greatly benefit from more fine-grained quantization settings.

However, manually adjusting all these quantization settings can be time-consuming and subopti-
mal. An optimized bit-setting scheme is needed to simultaneously minimize the loss and hardware
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Fig. 2. Model performance using homogeneous quantization. The precision of weights is indicated after “w”
and activations after “a.” The test accuracy of a FP-32 NN serves as a reference point. Models are trained with
L1 regularization and BN. We can see (1) 16-bit input improves the model performance of all bit settings, (2)
larger activation bit widths improve accuracy, and (3) L1 and BN (applied alone or together) show no positive
impact on performance.

usage. In the next subsection, we explore mixed-precision quantization. We fix the input bit width
to INT16. This could be further optimized, but this choice makes direct comparison with other
work easier [16, 24, 25, 34].

4.2 Mixed-precision Quantization

4.2.1 Brute-force Search. Mixed-precision quantization aims to improve performance by keep-
ing certain layers at a higher precision than others. The basic problem with going beyond homo-
geneous quantization is that—when implemented naively—the search space for determining the
bit setting is exponential to the number of layers. Our model architecture’s MLP search space is
significantly smaller than deep CNNs such as ResNet-50 [35], because our MLP only has three
hidden layers. However, assuming we have 5-bit width options, finding the mixed-precision set-
ting for our MLP classifier, with 4 fully connected layer weights and activations, has a search
space of ((2)(4))5 = 32, 768 combinations. It is impractical, especially for applications that need
frequently retrained models or that need DNNs, to search this space exhaustively. Several methods
have been proposed to address this problem of manually searching for the optimal bit configura-
tion [9, 22, 58, 63, 64]. We use Reference [22], which is based on the Hessian information, and we
observe the relative position of Hessian-based solutions within the brute-force search space.

4.2.2 Hessian-aware Quantization. As discussed in the Section 4.1, performance greatly bene-
fited from higher precision in activations suggesting certain layers are more sensitive to quan-
tization than others. We use the work first proposed in HAWQv2 [22] to determine the relative
sensitivity of each layer for the baseline 32-bit floating point implementation of the model. The
sensitivity metric is computed using the Hutchinson algorithm,

Tr(H ) ≈ 1

k

k∑
i=1

z
ᵀ
i Hzi = TrEst(H ), (9)

where H ∈ Rd×d is the Hessian matrix of second-order partial derivatives of the loss function with
respect to all d model parameters, z ∈ Rd is a random vector whose component is independent and
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Fig. 3. Average Hessian trace of each fully connected (Fc) layer in the MLP. The Hessian is used as a sensitiv-
ity metric to quantization, where layers are ranked based on their trace. The first two layers are significantly
larger than the others, signifying they are more prone to error at lower bit widths. The average Hessian traces
are used to assign each layer a bit setting, i.e., layers with higher traces are assigned larger precision.

identically distributed sampled Rademacher distribution, and k is the number of Hutchinson steps
used for trace estimation. Figure 3 shows the average Hessian trace (our sensitivity metric) of each
layer in the baseline model, with logarithmic scaling. The first two layers are the most sensitive,
with the first layer more sensitive than the second by a factor of 7. Thus, the first two layers in
the network must have a larger bit-width setting, while the last two layers can be quantized more
aggressively. While the Hessian traces provides a sensitivity metric, this does not directly translate
to a bit configuration. Instead, Reference [22] assigns the bit width of each layer i by checking the
corresponding Ω term, defined as

Ω =
L∑

i=1

Ωi =

L∑
i=1

Tr(Hi )‖Q(Wi ) −Wi ‖2
2 , (10)

where Q is the quantization function, ‖Q(Wi ) −Wi ‖2
2 is the squared L2 norm of the quantization

perturbation, and Tr is the average Hessian trace. We apply the same technique as Reference [22],
where the amount of second-order perturbation, Ω, is calculated for a given set of quantization
schemes, and the minimal Ω is chosen. This procedure is fully automated without any manual
intervention.

We follow the procedure outlined in HAWQ [65] to constrain Equation (10) by the total BOPs. We
formulate an integer linear programming (ILP) optimization problem, where the objective is to
minimize Ωi while satisfying the constraints. Linear programming solvers are a well-established
method for optimization, and recent applications have been applied in memory management for
deep learning [39]. In our case, we set up an ILP problem to automatically determine the bit settings
of our classifiers for various BOPs limits, and we compare these solutions with the brute-force and
homogeneous quantization methods.

4.2.3 QAT Results. With the information provided in Figure 2, we apply all possible bit settings
based on the initial implementation in homogeneous quantization. We explore the weight bit width
bW = {4, 5, 6, 7, 8}, and we set the activation bit width ba = bW + 3 to prevent saturation and
further reduce the search space. All models are trained for 100 epochs, with L1 regularization, and
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Fig. 4. Brute-force search quantization using weight bit widths bw = {4, 5, 6, 7, 8}. Each data point is color-
coded based on the bit width of the first fully connected layer. It is importance in quantization coincides
with the observed clusters, with higher performing models using larger bit widths. Solutions based on ILP
are presented. All ILP solutions make tradeoffs based on the quantization error and bit width and typically
are among the lowest BOPs in their respective cluster.

all models use quantized inputs with INT16. Figure 4 presents the model accuracy against BOPs
for all combinations of weight bits bW . Data points are color coded based on the bit precision
of the first layer. Several data points indicate a complete or nearly complete recovery to baseline
accuracy (76.853%). The majority of points can be clustered based on the bit width of the first layer,
since the model accuracy generally increases as the first layer’s bit width increases. We can also
see in Figure 4 that the bit width of the first fully connected layer greatly impacts the final model
performance. Among the top 100 best-performing models, 66 had the first dense layer as INT8, and
33 had INT7 weights. This coincides with the average Hessian traces shown in Figure 3, showing
the first layer is the most sensitive layer to quantization, by a factor of 7×, compared to the second
most sensitive layer. Among the top models, we observed the frequency of 7-bit and 8-bit in later
layers decrease significantly. The bit width of the later layers has fewer effects on the classification
than the first two layers.

The ILP solutions to Equation (10) are also shown. The solutions are obtained with respect to
four different BOPs constraints, from 250 k to 400 k in steps of 50 k. As expected, as the BOPs
constraint increases, the selected precision of the first two layers increases. Hence, we begin to
see more ILP solutions closer to the 8-bit cluster. The ILP solutions also tend to be positioned
toward the lower end of BOPs in their local cluster. With brute-force search quantization and the
ILP solutions shown side by side, the advantages of using the Hessian information become clearer.
Although an optimal solution is not guaranteed, the Hessian method provides a stable and reliable
solution to mixed-precision quantization. This is ideal for deep learning models that need to be
quantized to meet the resource constraints and inference times of the LHC 40-MHz collision rate.

5 CONVERSION INTO QONNX

5.1 Intermediate Representations

To increase interoperability and hardware accessibility, the Open Neural Network Exchange

(ONNX) format was established to set open standards for describing the computational graph of
ML algorithms [3]. ONNX defines a common and wide set of operators enabling developers and
researchers greater freedom and choice between frameworks, tools, compilers, and hardware ac-
celerators. Currently, ONNX offers some support for quantized operators, including QuantLinear,
QLinearConv, and QLinearMatMul. However, ONNX falls short in representing arbitrary preci-
sion and ultra-low quantization, below 8-bit precision. To overcome these issues, recent work [52]
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introduced quantize-clip-dequantize (QCDQ) using existing ONNX operators and a novel ex-
tension with new operators, called QONNX, to represent QNNs. QONNX introduces three new
custom operators: Quant, Bipolar, and Trunc. The custom operators enable uniform quantization
and abstract finer details, making the intermediate representation graph flexible and at a higher
level of abstraction than QCDQ.

For these reasons, we represent HAWQ NNs in the QONNX format, leveraging HAWQ’s ultra-
low precision and QONNX’s abstraction to target two FPGA synthesizing tools, hls4ml and
FINN [7, 61].1 We also include the ONNX format in our model exporter for representing QNNs. In
the next subsections, we describe the setup, export procedure, and validation steps to represent
HAWQ NNs in the QONNX and QCDQ intermediate representations.

5.2 Model Translation

In PyTorch, exporting to ONNX works via tracing. This is the process of capturing all the oper-
ations invoked during the forward pass on some input. PyTorch provides the means for tracing
through the torch.jit API. Tracing a model will return an executable that is optimized using the
PyTorch just-in-time compiler. The executable contains the structure of the model and original
parameters. Tracing will not record any control flow like if-statements and loops. The returned
executable will always run the same traced graph on any input, which may not be ideal for func-
tions or modules that are expected to run different sets of operations depending on the input and
model state. The executable is then used to build the ONNX graph by translating operations and
parameters within the executable to standard ONNX operators. In general, all PyTorch models are
translated to ONNX using this process, and we extend this existing system to build support for
QONNX operators in HAWQ.

The layers in HAWQ and operators in QONNX both require extra steps to support tracing and
export. For each quantized layer in HAWQ, we implement a corresponding “export” layer. These
dedicated export layers implement the forward pass and specify the equivalent QONNX opera-
tors based on the original layer parameters. This is accomplished by registering symbolic functions

via torch.onnx.register_custom_op_symbolic. These symbolic functions decompose HAWQ
layer operations into a series of QONNX nodes. Because we are using custom QONNX nodes,
we also must register them via the torch.onnx API. Together, these preliminary steps define the
HAWQ-to-QONNX translation. During the export process, the exporter looks for a registered sym-
bolic function for each visited operator. If a given model contains quantized HAWQ or standard
PyTorch layers, then it can be traced and finally translated to standard ONNX and QONNX oper-
ators. Because tracing records computations, the input can be random as long as the dimensions
and data type are correct. The model exported with ONNX and QONNX operators is shown in
Figure 5(a). With these additions, our exporter can perform the following:

(1) export models containing HAWQ layers to QONNX, with custom operators to handle a wide
range of bit widths while keeping the graph at a higher level of abstraction; and

(2) export models containing HAWQ layers to standard ONNX with INT8 and UINT8 restric-
tions.

5.3 Post-Export

5.3.1 Optimization. To create firmware using hls4ml or FINN, the QONNX graph is expected
to be normalized, i.e., to undergo several optimization steps. The QONNX software utilities [52]

1The main focus in exporting QNNs is the QONNX intermediate format. However, the QONNX software toolkit enables

conversion to QCDQ format. This allows HAWQ to target hls4ml and FINN, and indirectly all other ONNX inference

accelerators and frameworks.
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Fig. 5. The QONNX graph in its three stages after exporting. (a) The first layers of the model including the
quantized fully connected layer before any optimizations. (b) The first layers of the model after post-clean-
up operations: constant folding, shape inference, tensor, and node renaming. (c) The final optimization step:
node merging across ReLU activations. All QNNs implemented in HAWQ can be exported to an QONNX or
ONNX intermediate representation and undergo transformations as described in each stage.

provide these transformations, as shown in Figure 5(b), where shape inference and constant folding
are applied to the graph. Figure 5(c) shows the last optimization step; we merge scaling factors
across ReLU activation functions. For reasons related to the underlying implementation of HAWQ,
there are two scaling operations before and after specific layers. For a detailed explanation of
these scaling factors, see Section 2.1. To reduce the number of operations needed in firmware we
combine the scaling factors in cases where the ReLU function is used. This cannot always be done,
and it is dependent on the activation function used.

5.3.2 Graph Evaluation. Afterexporting, we evaluate the model using the QONNX software
package [52], confirming a successful translation of our model from HAWQ to QONNX. While the
main focus has been MLPs, exporting is not limited to this one architecture. All HAWQ layers now
support QONNX export via the implemented symbolic functions. Moreover, with the QONNX soft-
ware package, it is easy to transform, optimize, evaluate, and validate the exported HAWQ models.

6 HARDWARE GENERATION

In this section, we explain where HAWQ fits within the hls4ml hardware generation workflow. The
total resources used, BOPs, and classification performance for different bit-width configurations
are shown and discussed.

6.1 hls4ml Ingestion

The hls4ml workflow automatically performs the translation of the architecture, weights, and bi-
ases of NNs, layer by layer, into code that can be synthesized to RTL with HLS tools. The first
part of this workflow entails training a NN for a task as usual with PyTorch, Keras, QKeras, or
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HAWQ. For HAWQ, a QONNX graph must be exported from the model, but this step can (option-
ally) be performed for all the frameworks (and, eventually, this will be the preferred flow). Next,
hls4ml translates the QONNX graph into an HLS project that can subsequently be synthesized and
implemented on an FPGA or ASIC in the final step of the workflow.

The LHC imposes various constraints on both software and hardware, and these constraints
must adapt as experiments evolve. Therefore, it is crucial to minimize the hardware footprint to
maintain flexibility for future modifications. All results presented are synthesized for a Xilinx Kin-
tex Ultrascale FPGA with part number xcu250-figd2104-2L-e. We report the usage of different
resources: digital signal processor units (DSPs), flip-flops (FFs), and look-up tables (LUTs).
We do not report the block RAM (BRAM), a dense memory resource, usage, because its only
use in the design is by the softmax activation, whose numerical precision is the same for all quan-
tization schemes. The softmax layer implemented in HLS uses tables to store the results of the
exponential function. The precomputed values, stored in BRAM on an FPGA, remove this compu-
tation during inference. Only the “bare” firmware design needed to implement the NN is built with
RTL synthesis using Vivado 2020.1. All NNs are maximally parallelized. In hls4ml, parallelization
is configured with a “reuse factor” that sets the number of times a multiplier is used to compute
the layer output. A fully parallel design corresponds to a reuse factor of one. All resource usage
metrics are based on this “bare” implementation after RTL synthesis, and all designs use a clock
frequency of 200 MHz, which is a standard FPGA clock rate commonly used in LHC experiments.

6.2 Synthesis Results

The LHC imposes various constraints on both software and hardware, and these constraints must
adapt as experiments evolve. Therefore, it is crucial to minimize the hardware footprint to main-
tain flexibility for future modifications. Figure 6 shows the resource usage versus the accuracy
of the implemented designs. The quantization bit-width settings were chosen at random. Higher-
performing models use more resources. This is expected, as the top 100 performing models use
larger bit widths for the first layer, which is the largest layer in the model. As such, we expect to
see more resources as accuracy increases. LUTs have the most linear relationship with accuracy,
whereas FFs and DSPs also increase with accuracy. The relationship between BOPs and resources,
presented in Figure 7, also shows a linear relationship between LUTs and BOPs, which scale with
the bit width and weight matrix dimensions. The number of LUTs used depends on the bit width,
because, at low bit widths, addition and multiplication are implemented with LUTs. However, DSPs
are used at larger bit widths, because they become much more efficient. DSPs offer custom datap-
aths that efficiently implement a series of arithmetic operations, including multiplication, addition,
multiply-accumulate (MAC), and work-level logical operations. DSP datapaths are less flexible
than programmable logic, but they are more efficient at multiplying and MAC operations. This is
shown in Figure 7 as DSP usage increases dramatically at points with larger BOPs. Switching from
LUTs to DSPs depends on the target device and Vivado HLS internal biases toward DSPs for certain
bit widths. The shift toward DSPs occurs with 11 or wider bits in Vivado 2020.1, with multiplica-
tions lower than this limit implemented using LUTs. The result of these operations is stored in FFs,
displaying a steady increase with fewer variations than that seen in DSPs. The number of FFs up to
250k BOPs rise at a constant pace, with deviations beginning to appear thereafter. The inconsisten-
cies between the number of FFs for neighboring BOPs suggest that there is a weaker correlation
between the two. The deviations arise from the precision needed for intermediate accumulations
and the total FFs needed will vary network to network.

The baseline (BL) model is synthesized after adjusting the weights without any fine-tuning.
In hls4ml, parameters and computations are performed using fixed-point arithmetic, and each
layer in the model can be quantized after training by specifying a reduced precision. Fixed-point
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Fig. 6. Resource usage for a subset of brute-force quantization (BFQ) using weight bit widths bW =

{4, 5, 6, 7, 8}. LUT, FF, and DSP usage versus accuracy are shown, with quantization schemes that perform
better among the highest resource users. All solutions to the ILP problem from BOPs constraint are presented.
Extra logical elements are needed to maintain accuracy while considerable reduction in all metrics can be
achieved with a 1–2% drop in accuracy.

Fig. 7. Resource usage for a subset of QNNs in a brute-force attempt to an optimal mixed-precision quantiza-
tion scheme. LUT, FF, and DSP usage versus BOPs are shown, with LUTs having the most linear relationship
to BOPs. This relationship weakens with larger bit widths, as DSPs can implement MAC operations more
efficiently. In all designs, FFs are the only type of memory utilized in fully connected layers, and the total
used can drastically vary for neighboring BOPs, implying a weaker relationship between the two.

data types model the data with I integer bits (including the sign) and F fractional bits, denoted
ap_fixed<W,I>, where W = I + F. The BL model uses ap_fixed<16,6> for all parameters and
computations and is fully unrolled, i.e., maximally parallelized, as in previous results. We compare
the BL logical synthesis results with the homogeneous and a Hessian-aware quantization model.
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From Table 1, homogeneous quantization begins to decline below INT8, and we use this quantiza-
tion scheme to compare to BL. Of the multiple Hessian-aware solutions, we choose the solution
given by the lowest BOPs constraint, i.e., the quantization scheme is 4, 4, 5, and 4 bits for the first,
second, third, and final output layers, respectively. Table 2 shows the synthesis results for three
models: BL, INT8 homogeneous quantization, and the Hessian-aware solution. With INT8 homo-
geneous quantization, there is a significant reduction in DSPs compared to the BL model, which
is further reduced with mixed Hessian-aware quantization. We expect that as bit width increases,
more MAC operations will be implemented in DSPs, which offer a much more efficient implemen-
tation than LUTs and FFs. Interestingly, there is only a minor decrease of FFs with INT8 from BL,
compared to the other resources, but this is mostly attributed to INT16 inputs and INT8 activa-
tions. Larger inputs with INT8 weights require a greater amount of FFs to store and accumulate
computations, but their utilization drastically decreases with lower weight bit widths. The MLP
with a Hessian-aware quantization scheme uses 42.2% fewer LUTs, 36.3% fewer FFs, and 95.7%
fewer DSPs, compared to BL. As precision is reduced, the number of LUTs needed to compute out-
puts decreases. Most computations with lower precision can be implemented with LUTs; hence
they have the strongest correlation with BOPs. However, this observed relationship weakens as
the bit width increases and DSPs are used instead. The sudden uptick in LUTs and FFs is an out-
lier that originates from the softmax activation. As mentioned previously, the softmax activation
stores precomputed outputs and the sudden surge comes from lookup tables created to store all
values with large bit widths. Table 2 also includes the automatic mixed-precision solution from
AutoQKeras [16], denoted QB, a QNN optimized by minimizing the size of the model in bits. The
QB solution reduces all resource metrics by a substantial amount by employing below binary and
ternary quantization, and activations are 4-bits. The advantages are also seen in latency while ac-
curacy only drops by a tolerable ∼4%. However, the most significant improvement is the reduction
in DSP usage compared to INT8. While the parameters have a width of 8 bits, activations require
a higher level of precision. As a result, DSPs remain essential. In contrast to QB, the majority of
parameters are limited to the values {−1, 0, 1}, where performing multiplications becomes signif-
icantly more straightforward using LUTs. In this study binary and ternary quantization was not
explored as in AutoQKeras, but the total gains by leveraging mixed-precision are clearly shown.

The latency for these models, as estimated by Vivado HLS, is also shown in Table 2. Previous
work demonstrated that the hardware implementation for this particular task aligns closely with
the estimates provided by Vivado HLS [24]. Latency estimates are based on the specified clock, the
loop transformations’ analysis, and the design’s parallelization. Pipelining and dataflow choices
can greatly change actual throughput. However, the latency for the quantized models is about 30 ns
longer than for BL. This can primarily be attributed to the additional scaling operations of the in-
termediate accumulations needed for lower precision quantities. Although the additional compu-
tation creates additional latency, the resources needed for these scaling layers are rather modest,
approximately 1–3% relative to the rest of the design. So, there is a latency–resource tradeoff for
the lower-precision computations. However, for the task at hand, the large reduction in resources
is worth the increase in latency. The softmax activation is the other significant contributor to la-
tency, with an estimated 10-ns runtime for all three quantized models presented in Table 2. As
stated above, BRAMs are used for storing the precomputed outputs and the latency arises mainly
from reading memory. Removing the softmax activation function from the implemented design is
usually possible, especially if only the top-k classes are needed for further computation.

7 WORKFLOW WITH ADDITIONAL PHYSICS BENCHMARK

In addition to the jet tagging classifier, we demonstrate the end-to-end workflow on a second
physics model planned for the high-granularity calorimeter in CMS [26] to show the generality
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Table 2. Resource Usage of the Jet-tagging Model with Different Quantization
Schemes Is Reported

Model Acc. (%) Latency (ns) Resources BOPs

LUTs FFs DSPs

Basline 76.85 65 60,272 15,116 3,602 4,652,832
INT8 76.45 95 54,888 14,210 671 281,277

Hessian 75.78 90 34,842 9,622 154 182,260
QB 72.79 60 16,144 4,172 5 122,680

Baseline (no quantization) achieves the highest accuracy with the most resources. The same

bit-width quantization with INT8 reduces DSP and LUT usage, and Hessian-aware

quantization significantly reduces all resource metrics. The mixed-precision model, QB,

minimizing the total bits from AutoQKeras is shown. Both automatic solutions remove a

considerable number of DSPs and LUTs needed for computations, and FFs to store

intermediate accumulations. The Hessian is based on the ILP solution from the lowest BOPs

constraint.

of the methodology. The ECON-T Autoencoder (ECON-AE) is a lossy data compression model
aimed at reducing bandwidth needs while preserving critical information of the detector energy
profile [20]. The NN architecture utilizes convolutional layers (Conv) to extract spatial features
from image data, and fully connected (FC) layers. The training dataset is generated through sim-
ulated top-quark-pair events featuring 200 simultaneous collisions per bunch crossing within the
CMS software framework. This dataset serves as a pragmatic surrogate, encapsulating typical en-
ergy patterns encountered in the high-granularity endcap calorimeter sensors. The performance
of the autoencoder is evaluated based on how accurately it reproduces the original image after
encoding and decoding. The Earth mover’s distance (EMD) [56] is used to measure the differ-
ence between the raw and decoded data, where EMD quantifies the rearrangement cost of energy
fractions when physically relocated. The EMD loss is not directly used in the algorithm training
due to its computational complexity, a modified mean-squared-error loss function is employed,
incorporating cell-to-cell distances, as an approximation of EMD, resulting in improved autoen-
coder performance as used in Reference [20]. Although ECON-AE is composed of encoder and
decoder sections with the encoder ultimately targeting an ASIC responsible for compression and
the decoder for an FPGA; we demonstrate our flow for comparison for an encoder FPGA imple-
mentation.

In Figure 8, the average Hessian Trace signifies greater importance to the first and final layers.
Among these layers, the Conv and ConvTranspose layers emerge as particularly pivotal, playing
a crucial role in both feature extraction and reconstruction processes. Such a high trace implies
that small variations or perturbations in the input have a substantial impact on the loss function.
We apply these traces to Equation (10) and set an ILP solver with various BOP limits as before.
Table 3 shows the EMD, estimated latency, and final resource usage after place and route. The
planned ECON-AE uses an ASIC design, here we use the same xcu250-figd2104-2L-e as before
to simplify the workflow, again using the bare firmware design needed for the NN.

We train and compare three model scenarios for comparison (baseline, INT8, and Hessian),
which are presented in Table 3. All resource and latency results are based on the encoder only. The
baseline model is trained with FP32 weights then quantized to ap_fixed<16,6> for FPGA imple-
mentation. As seen in the jet tagging model, DSPs have the most noticeable impact on the firmware
design, requiring a substantially smaller amount (75% and 82% for INT8 and Hessian, respectively)
compared to the baseline. There is a shift to more logic cells for lower precision computations while
retaining its EMD performance. Quantization can be seen as a regularizer preventing overfitting
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Fig. 8. The average Hessian trace of
each layer is presented for the ECON-
AE model. Encoder (E) and decoder
(D) layers are also specified. As seen
before, the first layer is the most “sen-
sitive” to quantization with sharper
minima and gradually declines.

Table 3. Performance Metrics for ECON-AE Model at Baseline,
INT8, and Hessian Quantization are Reported

Model EMD Latency (ns) Resources BOPs

LUTs FFs DSPs
Baseline 1.29 95 48,107 27,147 1,696 732,375,268

INT8 1.15 100 73,078 36,690 408 79,421,668
Hessian 1.24 95 43,942 27,561 208 34,300,132

DSPs have the most noticeable impact on the firmware design, requiring

75% and 82% fewer resources for INT8 and Hessian, respectively. When

comparing EMD, there’s a 10% reduction with INT8 quantization, but this

effect is less in lower precision Hessian models.

with INT8 models with a 10% EMD reduction; however, this effect is less in the lower precision
Hessian but still comparable to the baseline EMD. The Hessian model is quantized to 4 and 8 bits for
the Conv and FC layers, respectively. When comparing the INT8 and Hessian models, the impact
is that less overall resources, LUTs and FFs, are required for the Conv and FC layers, and slightly
more are required for scaling, which ultimately results in less resources for the Hessian case. The
ECON-AE encoder is considerably smaller, consisting of only two layers, with larger activations
requiring more FFs for registers and LUTs for scaling. Ultimately, the primary tradeoffs are latency
and resource usage type, but careful considerations should be taken to the training procedure.

8 SUMMARY

The possible applications of HAWQ on edge devices and its automatic bit-setting procedure make
it a valuable technique for physics research. In this article, we contributed to the HAWQ library by
introducing an extension to convert NNs to ONNX and QONNX intermediate formats. Bridging
HAWQ with firmware synthesis tools that ingest these formats makes it easier to deploy NNs to
edge devices, enabling many potential use cases in science. While we emphasize FPGAs in the end-
to-end workflow, the same procedural framework can equally applies to ASICs. Future studies tar-
geting ASICs can do so with the HAWQ framework. As an initial case study, we employed a NN to
classify jets at the LHC in a challenging benchmark task. We show that the Hessian-aware solution
to a mixed precision quantization scheme provides a reliable solution. We then used our new ex-
porter in HAWQ to translate multiple MLPs optimized with various bit settings into their QONNX
IR. The models were successfully translated from HAWQ to a firmware implementation, and we
have observed resource usage compared to total BOPs and accuracy. Furthermore, we compared
the resource utilization for multiple different bit settings with the automatic bit selection process
in Reference [22]; and we compared the Hessian-aware model with a homogeneous bit configu-
ration and baseline. The Hessian-aware solution significantly reduced all resource metrics (LUTs,
FFs, and DSPs), with the most significant improvements in DSPs and LUTs, using 95.7% and 42.2%
fewer DSPs and LUTs compared to baseline, respectively. However, there are ways to enhance
both total latency and hardware utilization with an emphasis on scaling factors. These scaling
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factors, which are not quantized, may need 16+ bits for an accurate implementation, thereby con-
tributing to the hardware cost. It is important to recognize scaling factors as dyadic, i.e., they can
be efficiently implemented with integer multiplication and bit shifting. Additionally, scaling may
be merged with the ReLU function as one hardware module. Currently, hls4ml cannot recognize
scaling factors as dyadic and is left for future work. Finally we show the end-to-end workflow for
a different physics task, on-detector data encoding, that includes convolutional layer types. The
same workflow is compared against post-training quantization and uniform quantization-aware
training, and we similarly find a reduction in resources using the automated Hessian approach.
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