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Principal components analysis and, more generally, the Singular
Value Decomposition are fundamental data analysis tools that
express a data matrix in terms of a sequence of orthogonal
or uncorrelated vectors of decreasing importance. Unfortunately,
being linear combinations of up to all the data points, these vec-
tors are notoriously difficult to interpret in terms of the data and
processes generating the data. In this article, we develop CUR
matrix decompositions for improved data analysis. CUR decom-
positions are low-rank matrix decompositions that are explicitly
expressed in terms of a small number of actual columns and/or
actual rows of the data matrix. Because they are constructed from
actual data elements, CUR decompositions are interpretable by
practitioners of the field from which the data are drawn (to the
extent that the original data are). We present an algorithm that
preferentially chooses columns and rows that exhibit high “statis-
tical leverage” and, thus, in a very precise statistical sense, exert
a disproportionately large “influence” on the best low-rank fit of
the data matrix. By selecting columns and rows in this manner, we
obtain improved relative-error and constant-factor approximation
guarantees in worst-case analysis, as opposed to the much coarser
additive-error guarantees of prior work. In addition, since the con-
struction involves computing quantities with a natural and widely
studied statistical interpretation, we can leverage ideas from diag-
nostic regression analysis to employ these matrix decompositions
for exploratory data analysis.

randomized algorithms | singular value decomposition | principal components
analysis | interpretation | statistical leverage

M odern datasets are often represented by large matrices since
an m × n real-valued matrix A provides a natural struc-

ture for encoding information about m objects, each of which is
described by n features. Examples of such objects include docu-
ments, genomes, stocks, hyperspectral images, and web groups.
Examples of the corresponding features are terms, environmental
conditions, temporal resolution, frequency resolution, and indi-
vidual web users. In many cases, an important step in the analysis
of such data is to construct a compressed representation of A
that may be easier to analyze and interpret in light of a corpus
of field-specific knowledge. The most common such representa-
tion is obtained by truncating the Singular Value Decomposition
(SVD) at some number k � min{m, n} terms. For example, Prin-
cipal Components Analysis (PCA) is just this procedure applied
to a suitably normalized data correlation matrix.

Recall the SVD of a general matrix A ∈ R
m×n. Given A,

there exist orthogonal matrices U = [u1u2 . . . um] ∈ R
m×m and

V = [v1v2 . . . vn] ∈ R
n×n, where {ut}m

t=1 ∈ R
m and {vt}n

t=1 ∈ R
n are

such that

UT AV = � = diag(σ1, . . . , σρ),

where � ∈ R
m×n, ρ = min{m, n}, σ1 ≥ σ2 ≥ . . . ≥ σρ ≥ 0, and

diag(·) represents a diagonal matrix with the specified elements
on the diagonal. Equivalently, A = U�V T . The 3 matrices U , V ,
and � constitute the SVD of A (1)—the σi are the singular values
of A and the vectors ui and vi are the ith left and the ith right sin-
gular vectors, respectively—and O(min{mn2, m2n}) time suffices
to compute them.

The SVD is widely used in data analysis, often via methods such
as PCA, in large part because the subspaces spanned by the vectors

(typically obtained after truncating the SVD to some small number
k of terms) provide the best rank-k approximation to the data
matrix A. If k ≤ r = rank(A) and we define Ak = ∑k

t=1 σtutvtT ,
then

‖A − Ak‖2
F = min

X∈Rm×n:rank(X )≤k
‖A − X‖2

F ,

i.e., the distance, as measured by the Frobenius norm ‖·‖F , where
‖A‖2

F = ∑
ij A2

ij, between A and any rank k approximation to A, is
minimized by Ak (1).

Although the truncated SVD is widely used, the vectors ui and vi

themselves may lack any meaning in terms of the field from which
the data are drawn. For example, the eigenvector

[(1/2)age − (1/
√

2)height + (1/2)income],
being one of the significant uncorrelated “factors” or “features”
from a dataset of people’s features, is not particularly informative
or meaningful. This fact should not be surprising. After all, the sin-
gular vectors are mathematical abstractions that can be calculated
for any data matrix. They are not “things” with a “physical” reality.

Nevertheless, data analysts often fall prey to a temptation for
reification, i.e., for assigning a physical meaning or interpretation
to all large singular components. In certain special cases, e.g., a
dataset consisting of points drawn from a multivariate normal dis-
tribution on the plane, as in Fig. 1A, the principal components may
be interpreted in terms of, e.g., the directions of the axes of the
ellipsoid from which the data are drawn. In most cases, however,
e.g., when the data are drawn from the union of 2 normals as in
Fig. 1B, such reification is not valid. In this and other examples
it would be difficult to interpret these directions meaningfully in
terms of processes generating the data. Although reification is cer-
tainly justified in some cases, such an interpretative claim cannot
arise from the mathematics alone, but instead requires an intimate
knowledge of the field from which the data are drawn (2).

To understand better the reification issues in modern biological
applications, consider a synthetic dataset introduced by Wall et al.
(3) to model oscillatory and exponentially decaying patterns of
gene expression from Cho et al. (4). The data matrix consists of 14
expression level assays (columns of A) and 2,000 genes (rows of A),
corresponding to a 2,000 × 14 matrix A. Genes have 1 of 3 types
of transcriptional response: noise (1,600 genes); noisy sine pat-
tern (200 genes); and noisy exponential pattern (200 genes). Fig.
1 C and D present the “biological” data, i.e., overlays of 5 noisy
sine wave genes and five noisy exponential genes, respectively; Fig.
1E presents first and second singular vectors of the data matrix,
along with the original sine pattern and exponential pattern that
generated the data; and Fig. 1F shows that the data cluster well in
the space spanned by the top 2 singular vectors, which in this case

Author contributions: M.W.M. and P.D. designed research, performed research, con-
tributed new reagents/analytical tools, analyzed data, and wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

J.K. is a guest editor invited by the Editorial Board.
1To whom correspondence should be addressed. E-mail: mmahoney@cs.stanford.edu.

This article contains supporting information online at www.pnas.org/cgi/content/full/
0803205105/DCSupplemental.

© 2009 by The National Academy of Sciences of the USA

www.pnas.org / cgi / doi / 10.1073 / pnas.0803205105 PNAS January 20 , 2009 vol. 106 no. 3 697–702

www.pnas.org/cgi/content/full/0803205105/DCSupplemental
www.pnas.org/cgi/content/full/0803205105/DCSupplemental


Fig. 1. Applying the SVD to data matrices A.
(A) 1,000 points on the plane, corresponding to a
1,000×2 matrix A (and the 2 principal components)
drawn from a multivariate normal distribution. (B)
1,000 points on the plane (and the 2 principal com-
ponents) drawn from a more complex distribution,
in this case the union of 2 multivariate normal dis-
tributions. (C–F) A synthetic dataset considered by
Wall et al. (3) to model oscillatory and exponen-
tially decaying patterns of gene expression from
Cho et al. (4), as described in the text. (C) Over-
lays of 5 noisy sine wave genes. (D) Overlays of 5
noisy exponential genes. (E) The first and second
singular vectors of the data matrix (which account
for 64% of the variance in the data), along with
the original sine pattern and exponential pattern
that generated the data. (F) Projection of the syn-
thetic data on its top 2 singular vectors. Although
the data cluster well in the low-dimensional space,
the top 2 singular vectors are completely artificial
and do not offer insight into the oscillatory and
exponentially decaying patterns that generated
the data.

account for 64% of the variance in the data. Note, though, that the
top 2 singular vectors display both oscillatory and decaying proper-
ties, and thus they are not easily interpretable as “latent factors”
or “fundamental modes” of the original “biological” processes
generating the data.

This is problematic when one is interested in extracting insight
from the output of data analysis algorithms. For example, biol-
ogists are typically more concerned with actual patients than
eigenpatients, and researchers can more easily assay actual genes
than eigengenes. Indeed, after describing the many uses of the
vectors provided by the SVD and PCA in DNA microarray analy-
sis, Kuruvilla et al. (5) bluntly conclude that “While very efficient
basis vectors, the (singular) vectors themselves are completely arti-
ficial and do not correspond to actual (DNA expression) profiles.
. . . Thus, it would be interesting to try to find basis vectors for
all experiment vectors, using actual experiment vectors and not
artificial bases that offer little insight.”

These concerns about reification and interpreting linear com-
binations of data elements lie at the heart, conceptually and
historically, of SVD-based data analysis methods. Recall that
Spearman—a social scientist interested in models of human
intelligence—invented factor analysis (2, 6). He computed the first
principal component of a battery of mental tests, much as depicted
in the first singular vector of Fig. 1B, and he invalidly reified it as
an entity, calling it “g” or “general intelligence factor.” Subse-
quent principal components, such as the second singular vector of
Fig. 1B, were reified as so-called “group factors.” This provided
the basis for ranking of individuals on a single intelligence scale,
as well as such dubious social applications of data analysis as the
11+ examinations in Britain and the involuntary sterilization of
imbeciles in Virginia (2, 6). See Gould (2) for an enlightening and
sobering discussion of invalid reification of singular vectors in a
social scientific application of data analysis.

Main Contribution
We formulate and address this problem of constructing low-rank
matrix approximations that depend on actual data elements. As
with the SVD, the decomposition we desire (i) should have prov-
able worst-case optimality and algorithmic properties; (ii) should
have a natural statistical interpretation associated with its con-
struction; and (iii) should perform well in practice. To this end,

we develop and apply CUR matrix decompositions, i.e., low-rank
matrix decompositions that are explicitly expressed in terms of a
small number of actual columns and/or actual rows of the original
data matrix. Given an m × n matrix A, we decompose it as a prod-
uct of 3 matrices, C, U , and R, where C consists of a small number
of actual columns of A, R consists of a small number of actual rows
of A, and U is a small carefully constructed matrix that guarantees
that the product CUR is “close” to A. Of course, the extent to which
A ≈ CUR, and relatedly the extent to which CUR can be used in
place of A or Ak in data analysis tasks, will depend sensitively on
the choice of C and R, as well as on the construction of U .

To develop intuition about how such decompositions might
behave, consider the previous pedagogical examples. In the
dataset consisting of the union of 2 normal distributions, one data
point from each normal distribution (as opposed to a vector sitting
between the axes of the 2 normals) could be chosen. Similarly,
in the synthetic dataset of Wall et al. (3), one could choose one
sinusoid and one exponential function, as opposed to a linear com-
bination of both. Finally, in the applications of Kuruvilla et al. (5),
actual experimental DNA expression profiles, rather than artifi-
cial eigenprofiles, could be chosen. Thus, C and/or R can be used
in place of the eigencolumns and eigenrows, but since they consist
of actual data elements they will be interpretable in terms of the
field from which the data are drawn (to the extent that the original
data points and/or features are interpretable).

Prior CUR Matrix Decompositions
Within the numerical linear algebra community, Stewart devel-
oped the quasi-Gram–Schmidt method and applied it to a matrix
and its transpose to obtain a CUR matrix decomposition (7, 8).
Similarly, Goreinov, Tyrtyshnikov, and Zamarashkin developed
a CUR matrix decomposition (a pseudoskeleton approximation)
and related the choice of columns and rows to a “maximum
uncorrelatedness” concept (9, 10).

Within the theoretical computer science community, much work
has followed that of Frieze, Kannan, and Vempala (11), who ran-
domly sample columns of A according to a probability distribution
that depends on the Euclidean norms of those columns. If the
number of chosen columns is polynomial in k and 1/ε (for some
error parameter ε), then worst-case additive-error guarantees of
the form
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‖A − PCA‖F ≤ ‖A − Ak‖F + ε ‖A‖F [1]

can be obtained, with high probability. Here PCA denotes the
projection of A on the subspace spanned by the columns of C. Sub-
sequently, Drineas, Kannan, and Mahoney (12) constructed an
additive-error CUR matrix decomposition by choosing columns
and rows simultaneously.∗ In 2 passes over the matrix A, they ran-
domly construct a matrix C of columns, a matrix R of rows, and a
matrix U such that

‖A − CUR‖F ≤ ‖A − Ak‖F + ε ‖A‖F , [2]

with high probability.
The additive-error algorithms of refs. 11 and 12 were motivated

by resource-constrained computational environments, e.g., where
the input matrices are extremely large or where only a very small
fraction of the data is actually available, and in those applications
they are appropriate. For example, this additive-error CUR matrix
decomposition has been successfully applied to applications such
as hyperspectral image analysis, recommendation system analysis,
and DNA SNP analysis (13, 14). These additive-error matrix
decompositions are, however, quite coarse in the worse case.
Moreover, the insights provided by their sampling probabilities
into the data are limited—the probabilities are often uniform due
to data preprocessing, or they may correspond, e.g., simply to the
degree of a node if the data matrix is derived from a graph.

Statistical Leverage and Improved Matrix Decompositions
To construct C (similarly R), we will compute an “importance
score” for each column of A, and we will randomly sample a small
number of columns from A by using that score as an importance
sampling probability distribution. This importance score (see Eq. 3
below) depends on the matrix A, and it has a natural interpretation
as capturing the “statistical leverage” or “influence” of a given col-
umn on the best low-rank fit of the data matrix. By preferentially
choosing columns that exert a disproportionately large influence
on the best low-rank fit (as opposed to procedures that sample
columns that have larger Euclidean norm, or empirical variance,
as in prior work), we will ensure that CUR is nearly as good as
Ak at capturing the dominant part of the spectrum of A. In addi-
tion, by choosing “high statistical-leverage” or “highly influential”
columns, we can leverage ideas from diagnostic regression analy-
sis to apply CUR matrix decompositions as a tool for exploratory
data analysis.

To motivate our choice of importance sampling scores, recall
that we can express the jth column of A (denoted by Aj) exactly as

Aj =
r∑

ξ=1

(σξ uξ )vξ

j ,

where r = rank(A) and where vξ

j is the jth coordinate of the ξ th
right singular vector. That is, the jth column of A is a linear com-
bination of all the left singular vectors and singular values, and
the elements of the jth row of V are the coefficients. Thus, we can
approximate Aj as a linear combination of the top k left singular
vectors and corresponding singular values as

Aj ≈
k∑

ξ=1

(σξ uξ )vξ

j .

∗The algorithms of refs. 11 and 12 provide worst-case additive-error guarantees since the
“additional error” in Eqs. 1 and 2 is ε ‖A‖F , which is independent of the “base error” of∥∥A − Ak

∥∥
F . This should be contrasted with a relative-error guarantee of the form Eq. 4,

in which the “additional error” is ε
∥∥A − Ak

∥∥
F , for ε > 0 arbitrarily small, and thus the

total error is bounded by (1 + ε)
∥∥A − Ak

∥∥
F . It should also be contrasted with a constant-

factor guarantee of the form Eq. 5, in which the additional error is γ
∥∥A − Ak

∥∥
F , for some

constant γ .

Since we seek columns of A that are simultaneously correlated
with the span of all top k right singular vectors, we then compute
the normalized statistical leverage scores:

πj = 1
k

k∑

ξ=1

(
vξ

j

)2, [3]

for all j = 1, . . . , n. With this normalization, it is straightforward to
show that πj ≥ 0 and that

∑n
j=1 πj = 1, and thus that these scores

form a probability distribution over the n columns.
Our main algorithm for choosing columns from a matrix—we

will call it COLUMNSELECT—takes as input any m × n matrix A, a
rank parameter k, and an error parameter ε, and then performs
the following steps:

1. Compute v1, . . . , vk (the top k right singular vectors of A)
and the normalized statistical leverage scores of Eq. 3.

2. Keep the jth column of A with probability pj = min{1, cπj},
for all j ∈ {1, . . . , n}, where c = O(k log k/ε2).

3. Return the matrix C consisting of the selected columns
of A.

With this procedure, the matrix C contains c′ columns, where
c′ ≤ c in expectation and where c′ is tightly concentrated around its
expectation. The computation of the column leverage scores uses
the top k right singular vectors of A, and this computation is the
bottleneck in the running time of COLUMNSELECT. It can be per-
formed in time linear in the number of nonzero elements of the
matrix A times a low-degree polynomial in the rank parameter
k (1). We have proven that, with probability at least 99%, this
choice of columns satisfies

‖A − PCA‖F ≤ (1 + ε/2) ‖A − Ak‖F , [4]

where PC denotes a projection matrix onto the column space of
C.† See ref. 15 for the proof of Eq. 4, which depends crucially
on the use of Eq. 3. In some applications, this restricted CUR
decomposition, A ≈ PCA = CX , where X = C+A, is of interest.

In other applications, one wants such a CUR matrix decom-
position in terms of both columns and rows simultaneously. Our
main algorithm computing a CUR matrix decomposition—we will
call it ALGORITHMCUR—is illustrated in supporting information
(SI) Appendix, Fig. S0. This algorithm takes as input any m × n
matrix A, a rank parameter k, and an error parameter ε, and then
it performs the following steps:

1. Run COLUMNSELECT on A with c = O(k log k/ε2) to
choose columns of A and construct the matrix C.

2. Run COLUMNSELECT on AT with r = O(k log k/ε2) to
choose rows of A (columns of AT ) and construct the matrix
R.

3. Define the matrix U as U = C+AR+, where X+ denotes a
Moore–Penrose generalized inverse of the matrix X (17).

As with our algorithm for selecting columns, the running time
of ALGORITHMCUR is dominated by computation of the column
and row leverage scores. For this choice of C, U , and R, we will
prove that

‖A − CUR‖F ≤ (2 + ε) ‖A − Ak‖F , [5]

†The randomness and failure probability in COLUMNSELECT and ALGORITHMCUR are over the
choices made by the algorithm and not over the input data matrix. The quality of approx-
imation bound Eq. 4 holds for any input matrix A, regardless of how A is constructed; its
proof relies on matrix perturbation theory (15, 16). The arbitrarily chosen failure prob-
ability can be set to any δ > 0 by repeating the algorithm O(log(1/δ)) times and taking
the best of the results.

Mahoney and Drineas PNAS January 20 , 2009 vol. 106 no. 3 699

http://www.pnas.org/cgi/data/full/0803205105/DCSupplemental/Appendix_PDF
http://www.pnas.org/cgi/data/full/0803205105/DCSupplemental/Appendix_PDF
http://www.pnas.org/cgi/data/full/0803205105/DCSupplemental/DCSupplemental_PDF#nameddest=SF0


Fig. 2. Application of ALGORITHMCUR to Inter-
net term-document data. The matrix consists
of 139 documents from TechTC on 2 top-
ics: US:Indiana:Evansville (id:10567) and
US:Florida (id:11346). (A) A projection of the
documents on the 2D space spanned by the top 2
eigenterms. (B) A projection of the documents on
the best 2D approximation to the space spanned
by the 5 actual terms with the highest statistical
leverage scores of Eq. 3. (C) The statistical leverage
scores of the 15,170 terms, with the top 5 terms
highlighted. (D) The information gain statistic of
the 15,170 terms, with the top 5 terms highlighted.

with probability at least 98%.‡ First, since U = C+AR+, it
immediately follows that

‖A − CUR‖F = ∥∥A − CC+AR+R
∥∥

F .

Adding and subtracting CC+A and applying the triangle inequality
for the Frobenius norm, we get

‖A − CUR‖F ≤ ∥∥A − CC+A
∥∥

F + ∥∥CC+A − CC+AR+R
∥∥

F

≤ ∥∥A − CC+A
∥∥

F + ∥∥A − AR+R
∥∥

F [6]

= ‖A − PCA‖F + ‖A − APR‖F .

Inequality (6) follows since CC+ is a projection matrix and thus
does not increase the Frobenius norm, and the last equality follows
since PC = CC+ and similarly PR = R+R. Since ALGORITHMCUR
chooses columns and rows by calling COLUMNSELECT on A and
AT , respectively, Eq. 5 follows by 2 applications of Eq. 4. Note
that r = c for ALGORITHMCUR, and also that the failure probabil-
ity for ALGORITHMCUR is at most twice the failure probability of
COLUMNSELECT, since the latter algorithm may fail when applied
to columns or when applied to rows, independently.

Although one might like to fix a rank parameter k and
choose k columns and/or rows deterministically according to some
criterion—e.g., such as to define a parallelepiped of maximal vol-
ume over all

(n
k

)
such parallelepipeds, or to span a subspace that

“captures” a maximal amount of variance from A over all
(n

k

)
such

subspaces—most such criteria would lead to intractable combina-
torial optimization problems (9, 10, 18). Thus, ALGORITHMCUR
takes advantage of oversampling (choosing slightly more than k
columns) and randomness as computational resources to obtain
its strong provable approximation guarantees.

Note that the quantities in Eq. 3 are, up to scaling, equal to the
diagonal elements of the so-called “hat matrix,” i.e., the projec-
tion matrix onto the span of the top k right singular vectors of A
(19, 20). As such, they have a natural statistical interpretation as
a “leverage score” or “influence score” associated with each of
the data points (19–21). In particular, πj quantifies the amount of
leverage or influence exerted by the jth column of A on its opti-
mal low-rank approximation. Furthermore, these quantities have
been widely used for outlier identification in diagnostic regression
analysis (22, 23). Thus, using these scores to select columns not
only is crucial for our improved worst-case bounds but also aids
in exploratory data analysis.

‡This can be improved to 1 + ε by using a somewhat more complicated algorithm (15).

Diagnostic Data Analysis Applications
Implementation of ALGORITHMCUR is straightforward. We have
applied this algorithm to data analysis problems in several appli-
cation domains: Internet term-document data analysis (see Fig. 2
and SI Appendix, Figs. S2–S5); genetics (see Fig. 3); and social
science (see SI Appendix, Fig. S1). In practice, we typically only
need to sample a number of columns and/or rows that is a small
constant, e.g., between 2 and 4, times the input rank parameter
k. In addition, not only can we perform common data analysis
tasks (such as clustering and classification) for which the basis
provided by truncating the SVD is often used, but we can also
use the normalized leverage scores to explore the data and iden-
tify whether there are any disproportionately “important” data
elements. (Note that since CUR decompositions are low-rank
approximations that use information in the top k singular sub-
spaces, their domain of applicability is not expected to be broader
than that of the SVD.)

Internet term-document data are a common application of
SVD-based techniques, often via latent semantic analysis (24, 25).
The Open Directory Project (ODP) (26) is a multilingual open
content directory of World Wide Web links. TechTC (Technion
Repository of Text Categorization Datasets) is a publicly avail-
able benchmark set of term-document matrices from ODP with
varying categorization difficulty (27) (Table 1). Each matrix of the
TechTC dataset encodes information from ≈150 documents from
2 different ODP categories. To illustrate our method, we focused
on 4 datasets such that the documents clustered well into 2 classes
when projected in a low-dimensional space spanned by the top few
left singular vectors.§ (See Table 1 for a description of the data
and also Fig. 2 and SI Appendix, Figs. S3–S5.)

For example, consider the collection of 139 documents (each
described with respect to 15,170 terms) on 2 topics: US:Florida
(id:11346) and US:Indiana:Evansville (id:10567). The first
topic has 71 documents, and the second has 68; the topics names
are descriptive; and the sparsity of the associated document-term
matrix is 2.1%. Projecting the documents on the top 2 eigen-
terms and then running k-means clustering on the projected data
leads to a clustering which has a Pearson correlation coefficient
of 0.85 with the (provided) ground truth, is illustrated in Fig. 2A.

§As is common with term-document data, the TechTC matrices are very sparse, and they
are not numerically low-rank. For example, the top 2.5% and 5% of the nonzero singular
values of these matrices capture (on average) 5.5% and 12.5% of the Frobenius norm,
respectively. For data sets in which a low-dimensional space provided by the SVD failed to
capture the category separation, CUR matrix decompositions performed correspondingly
poorly.
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Fig. 3. Application of ALGORITHMCUR to can-
cer microarray data: gene expression patterns of
patients with soft tissue tumors analyzed with
cDNA microarrays. (A) Raster plot of the data. (B)
Statistical leverage scores for each gene. Red stars
indicate the 12 genes with the highest leverage
scores, and the red dashed line indicates the uni-
form leverage scores. (C) Information gain for each
gene, with the highest scoring genes marked. (D)
A projection of the 31 patients in the subspace
spanned by the top 3 eigengenes of the full data
matrix. (E) Raster plot of the 31 patients with
respect to the top 12 genes from B. A (+) sign in
front of the name of a gene indicates that this gene
was also selected by the (supervised) information
gain metric. (F) A 3D plot of the 31 patients in the
span of the genes of E.

This class separation implies that the documents are semantically
well-represented by low-rank approximation via the SVD, even
though they are not numerically low rank. The singular vectors,
however, are dense; they contain negative entries; and they are
not easily interpretable in terms of natural languages or the ODP
hierarchy.

Not only does a CUR matrix decomposition capture the Frobe-
nius norm of the matrix (data not shown), but it can be used to
cluster the documents. Fig. 2B shows the 139 documents projected
on the best rank 2 approximation to the subspace spanned by
the top five “highest-leverage” terms. (Two was chosen as the
dimensionality of the low-dimensional space since the documents
belong to one of 2 categories—the slowly decaying spectrum
provides no guidance in this case. Five was chosen as the number
of selected columns based on an analysis of the leverage scores,
as described below, and other choices yielded worse results.) In
this case, the class separation is quite pronounced—the Pearson
correlation coefficient is 0.94, which is improved since CUR pro-
vides a low-dimensional space that respects the sparsity in the
data. Of course, the data are much more axis-aligned in this low-
dimensional space, largely because this space is the span of a small
number of actual/interpretable terms, each of which is extremely
sparse.

As an example of how we can leverage ideas from diagnos-
tic regression analysis to explore the data, consider Fig. 2C,

which shows the statistical leverage scores of all 15,170 terms.
The leverage scores of the top 5 terms—florida (.099482), evans-
ville (.042291), south (.026892), miami (.016890), and information
(.011792), as seen in Table 1, are orders of magnitude larger than
the uniform leverage scores, equal to 1/n, where n = 15,170 here.
This, coupled with the obvious relevance of these terms to the task
at hand, suggests that these 5 terms are particularly important or
influential in this low-dimensional clustering/classification prob-
lem. Further evidence supporting this intuition follows from Fig.
2D, which shows the information gain (IG) statistic for each of
the 15,170 terms, again with the top 5 terms highlighted. (Recall
that the IG for the ith term is defined as IGi = |fi,1 − fi,2|, where
fi,1 is the frequency of the ith term within the documents of the
first category, and fi,2 is the frequency of the ith term within the
documents of the second category. In particular, note that it is a
supervised metric, i.e., the topic of each document is known prior
to computing it.)

The truncated SVD has also been applied to gene expression
data (3, 5, 28, 29) in systems biology applications (where one wants
to understand the relationship between actual genes) and in clin-
ical applications (where one wants to classify tissue samples from
actual patients with and without a disease). See Fig. 3A for a
raster plot of a typical such dataset (30), consisting of m = 31
patients with 3 different cancer types [gastrointestinal stromal
tumor (GIST), leiomyosarcoma (LEIO), and synovial sarcoma

Table 1. Four TechTC matrices that cluster well into the correct 2 topics by using k-means in the best low-dimensional space

Categories (numeric ID, description) no. docs × no. terms k PCC 1/(no. terms) High-leverage terms

10567, US: Indiana: Evansville 139 × 15170 2 .85 .000066 florida (.099482), evansville (.042291),
11346, US: Florida south (.026892), miami (.016890),

information (.011792)
11346, US: Florida 125 × 14392 2 .97 .000069 florida (.097158), nanaimo (.085653),
22294, Canada: British Columbia: Nanaimo south (.026414), miami (.014415),

contact (.007828)
20186, US: Texas: Dallas 130 × 12708 2 .90 .000079 dallas (.079332), nanaimo (.071752),
22294, Canada: British Columbia: Nanaimo information (.007878), texas (.007788),

contact (.007616)
22294, Canada: British Columbia: Nanaimo 127 × 10012 2 .88 .000100 nanaimo (.055424), taiwan (.019860),
25575, Asia: Taiwan: Business and Economy megahome (.004304), contact (.004113),

distiller (.003906)

The first 3 columns indicate the 2 topics of the documents in each matrix and its dimensions (each topic has a numeric ID, as well as a short description). The fourth column indicates
our choice for the number k of significant principal components in the data. The fifth column indicates the Pearson correlation coefficient (PCC) between the ground truth and the 2
clusters returned by applying k-means clustering on the projected data. The sixth column indicates the uniform leverage scores for each term, i.e., each term is assigned the same score.
The last column indicates the 5 terms with the highest leverage scores for each matrix, as well as their corresponding scores in parentheses. (Notice that the scores are many orders of
magnitude larger than the uniform score.)
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(SARC)] with respect to n = 5520 genes.¶ For this data set, the
top 2 eigengenes/eigenpatients capture 37% of the variance of
the matrix, and reliable clustering can be performed in the low-
dimensional space provided by the truncated SVD, as illustrated
in Fig. 3D. That is, there is clear separation between the 3 different
cancer types, and running k-means on the projected data perfectly
separates the 3 different classes of patients.

Fig. 3B shows the statistical leverage scores of the 5,520 genes,
with red stars indicating the top 12 genes whose leverage score is
well above the average uniform leverage score of approximately
0.18 · 10−3. (Here, 12 was chosen by trial-and-error, and applying
the IG metric to select the 12 genes that are most differentiating
between the 3 cancer types leads to selecting 8 of these 12 high-
leverage genes.) Again, the leverage scores are quite nonuniform;
random sampling according to the probabilities of Eq. 3 easily
recovers the highest scoring genes; and these genes are the most
interesting and useful data points for the application of interest.
Fig. 3E illustrates a raster plot of those 12 genes—notice that we
select genes that are overexpressed for the gastrointestinal stromal
tumor and the synovial sarcoma. The fact that our leverage scores
pick these highly influential genes explains why the 3 different
cancer types are reliably separated in the space spanned by these
12 genes, as demonstrated by Fig. 3F. That is, running k-means
by using only these 12 genes leads to a perfect clustering of the 31
patients to their respective cancer types since these actual genes
exert a disproportionately large influence on the best low-rank fit
of the data matrix (presumably in part for reasons implicit in the
data preparation).

Finally, and crucially for medical interpretation of this analy-
sis in clinical settings, some of the selected genes are well-known
to have expression patterns that correlate with various cancers,
and thus they can be further studied in the lab. Most notably,
PRKCQ has been associated with gastrointestinal stromal tumors;

¶The original data contained 46 patients from 6 different cancer types; here, we con-
sider a subset of 31 patients with 1 of 3 cancer types. Linear dimensionality reduction
techniques such as SVD could accurately separate patients suffering from gastrointesti-
nal stromal tumor, leiomyosarcoma, and synovial sarcoma. Including patients suffering
from the remaining 3 cancer types (liposarcoma, malignant fibrous histiocytoma, and
schwannoma) led to several inaccurate classifications, even using all 5,520 genes. This
is consistent with the finding that hierarchical clustering in all 5,520 genes resulted in
5 (instead of 6) clusters, with several incorrect assignments (30). To illustrate the use of
low-rank CUR matrix decompositions, we focused on the subset of the data that were
amenable to analysis with the truncated SVD. Similar, but noisier, results are obtained on
the full dataset.

PRAME has been known to confer growth or survival advantages in
human cancers;BCHE has been associated with colorectal carcino-
mas and colonic adenocarcinomas; and SFRP1 and CRABP1 have
been associated with a wide range of cancers. There is no need for
the reification of the artificial singular directions that offer little
insight into the underlying biology (5).

From the perspective of diagnostic regression analysis, the
extreme nonuniformity in “importance” of individual data ele-
ments is quite surprising. In those applications, one is taught to
be wary of data points with leverage greater than 2 or 3 times
the average value (20), investigating them to see whether they are
errors or outliers. Moreover, there is no a priori reason that the
nonuniformity in this statistic should correlate with nonuniformity
in a supervised metric like information gain. In our experience,
however, this nonuniformity is not uncommon. (It is, of course,
far from ubiquitous. For example, Congressional roll call data
(31, 32) are much more homogeneous; if k = 2 and n is the number
of representatives, the highest leverage score for any representa-
tive is only 1.38k/n.) Most often, this phenomenon arises in cases
where SVD-based methods are used for computational conve-
nience, rather than because the statistical assumptions underlying
its use are satisfied by the data. This suggests the use of these
“leverage scores” more generally in modern massive dataset analy-
sis. Intuitively, conditioned on being reliable, more “outlier-like”
data points may be the most important and informative.

Conclusion
Although the SVD per se cannot be blamed for its misapplication,
the desire for interpretability in data analysis is sufficiently strong
so as to argue for interpretable low-rank matrix decompositions.
Even when an immediate application of the truncated SVD is not
appropriate, the low-rank matrix approximation thereby obtained
is a fundamental building block of some of the most widely used
data analysis methods, including PCA, multidimensional scaling,
factor analysis, and many of the recently developed techniques
to extract nonlinear structure from data. Thus, although here we
have focused on the use of CUR matrix decompositions for the
improved interpretability of SVD-based data analysis methods,
we expect that their promise is much more general.
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