
ARTICLE

Learning continuous models for continuous physics
Aditi S. Krishnapriyan 1,2✉, Alejandro F. Queiruga3, N. Benjamin Erichson 2,4 & Michael W. Mahoney1,2,4

Dynamical systems that evolve continuously over time are ubiquitous throughout science and

engineering. Machine learning (ML) provides data-driven approaches to model and predict

the dynamics of such systems. A core issue with this approach is that ML models are

typically trained on discrete data, using ML methodologies that are not aware of underlying

continuity properties. This results in models that often do not capture any underlying con-

tinuous dynamics—either of the system of interest, or indeed of any related system. To

address this challenge, we develop a convergence test based on numerical analysis theory.

Our test verifies whether a model has learned a function that accurately approximates an

underlying continuous dynamics. Models that fail this test fail to capture relevant dynamics,

rendering them of limited utility for many scientific prediction tasks; while models that pass

this test enable both better interpolation and better extrapolation in multiple ways. Our

results illustrate how principled numerical analysis methods can be coupled with existing ML

training/testing methodologies to validate models for science and engineering applications.

https://doi.org/10.1038/s42005-023-01433-4 OPEN

1 University of California, Berkeley, Berkeley, CA, USA. 2 Lawrence Berkeley National Laboratory, Berkeley, CA, USA. 3 Google Research, Mountain View, CA,
USA. 4 International Computer Science Institute, Berkeley, CA, USA. ✉email: aditik1@berkeley.edu

COMMUNICATIONS PHYSICS | (2023) 6:319 | https://doi.org/10.1038/s42005-023-01433-4 | www.nature.com/commsphys 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-023-01433-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-023-01433-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-023-01433-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-023-01433-4&domain=pdf
http://orcid.org/0000-0003-3472-6080
http://orcid.org/0000-0003-3472-6080
http://orcid.org/0000-0003-3472-6080
http://orcid.org/0000-0003-3472-6080
http://orcid.org/0000-0003-3472-6080
http://orcid.org/0000-0003-0667-3516
http://orcid.org/0000-0003-0667-3516
http://orcid.org/0000-0003-0667-3516
http://orcid.org/0000-0003-0667-3516
http://orcid.org/0000-0003-0667-3516
mailto:aditik1@berkeley.edu
www.nature.com/commsphys
www.nature.com/commsphys

Dynamical systems—systems whose state varies over time
—describe many chemical, physical, and biological pro-
cesses. Thus, understanding and describing these dyna-

mical systems is important for many scientific and engineering
applications. Dynamical systems can often be described by dif-
ferential equations which evolve continuously in time, meaning
that the domain of the solution spans a continuum1. In such
systems, the gap between any two timesteps can be subdivided
into an infinite number of infinitely smaller timesteps. In practice,
these systems are often identified via a finite set of discrete
observational data, and there is a long history within scientific
computing for dealing with this discrete-to-continuous gap:
experimentally measuring scientific data at sufficiently fine
timescales to resolve approximately-continuous dynamics of
interest; formulating theory within function spaces of sufficient
smoothness to guarantee certain continuity requirements; and
developing numerical algorithms that come with appropriate
stability and convergence guarantees.

Machine learning (ML) techniques have recently been shown
to provide a powerful approach to model and learn from discrete
data, and many scientific fields make extensive use of data-driven
methods for describing2–4, discovering5–7, identifying8, 9,
predicting10–17, and controlling2, 18–21 dynamics. These approa-
ches (see ref. 22 for a survey) include purely data-driven methods
that learn from observational data points23, adding constraints to
ML methods that aim to respect the relevant physics24, and/or
hybrid methods combining classical numerical solvers with (say)
deep learning25, 26.

In many scientific and engineering applications, we observe
measurements that yield a series of discrete data points
x0; x1; x2; ¼ ; xN

� �
, where each point is spaced apart by some

timestep size Δt. There are many techniques from ML and sta-
tistical data analysis to learn data-driven input-output mappings
(G: xn→ xn+1) that can provide an approximation for the next
discrete timestep. One popular class of data-driven input-output
mappings is given by neural networks (NNs). A NN, denoted as
N , can be trained to predict xn+1 from xn by learning model
parameters θ:

xnþ1 ¼ N ðxn; θÞ: ð1Þ
However, when considering continuous dynamical systems,

there are challenges with this approach. Most obviously, this
approach does not learn a continuous function27–30; it simply
learns a function that predicts subsequent discrete time steps.
This is to be expected, as this model is optimized to make (dis-
crete) point estimates, i.e., to predict solutions at specific (dis-
crete) points. For this reason, predicting future states of a
dynamical system with this approach can result in compounding
errors of the dynamics over time19, 31.

A related approach is to assume that the discrete data points
can be modeled and described by a continuous differential
equation of the form,

dxðtÞ
dt

¼ FðxðtÞÞ; ð2Þ

where F is a function that describes the vector field. In some cases,
there is an underlying true F, while in other cases it is simply a
modeling assumption. A challenge is that we cannot derive F
from first-principles in many situations. Instead, we can use a
data-driven approach for modeling F. For instance, an arbitrary
NN architecture N can be used to model the vector field F,

dxðtÞ
dt

¼ N ðxðtÞ; θÞ: ð3Þ

This approach, so-called Neural Ordinary Differential Equations
(ODE-Nets), has been proposed to model temporal systems32–38.

It is often assumed or simply taken for granted that ODE-Nets
and other ML methods for ODEs automatically capture some
continuous dynamics, either of the system that generated the data
or of some related system39–43.

However, due to how ODE-Nets are trained, i.e., to predict
solutions at specific (discrete) points, these models can easily fail
to learn even the simplest continuous dynamical systems44, 45,
even when they accurately fit the temporal discretization (i.e., the
discrete training points and testing points). An ODE-Net that
incorrectly learns a continuous model will simply provide high-
quality discrete time predictions — i.e., it is not a ContinuousNet
but is simply a very good DiscreteNet44.

Such a model will fail to extrapolate to new data points outside
the temporal discretization, and it will fail to interpolate the
solution at timesteps in between the discrete training data. It can
also fail to correctly identify qualitative long-term behavior such
as bifurcations46. As we demonstrate later, this Discrete-versus-
Continuous distinction affects non-NN ML methods as well, even
when they accurately fit the temporal discretization of the data.

Figure 1 illustrates the difference between a model that has
learned to predict discrete data points and a model that has
learned an underlying continuous dynamics. After training a
model at a given discretization Δt, the trained model can be used
to predict trajectories at arbitrary timestep sizes h during infer-
ence. For validation, an error metric Error(h) can be defined over
a holdout trajectory that allows for evaluation with discretizations
that are different than the data spacing. Learning a discrete-only
model (a DiscreteNet) means that only the discrete training
points—and potentially testing points at the same discretization
(i.e., when h= Δt)—are learned. When evaluating using
Error(h= Δt), the model will appear to perform well. The model
may perform well on testing points with a similar discretization,
but it will perform poorly for points sampled with other dis-
cretizations; that is, Error(h ≠ Δt) can be much worse than a
discrete-only testing methodology would determine. This will
even occur when the discretization h→ 0, counter to expecta-
tions. In contrast, learning a meaningfully continuous model
means that the model can converge to a smooth solution as the
discretization h→ 0, or at least that its error will decrease gra-
dually and level off as h→ 0. (This will be true regardless of
whether the learned continuous model corresponds to the true
underlying model, even assuming that such a true model exists
and/or is well-conditioned.) In this case, the model will perform
well for a broader range of temporal discretizations and thus have
a better approximation of the continuous dynamical system.

In this work, we adapt methods from numerical analysis theory
to develop a methodology to verify whether an ML model has
learned a meaningfully continuous function that describes a
dynamical system of interest. Specifically, we introduce a mod-
ified convergence test to verify and validate whether a model has
learned continuous dynamics for a physical system. Our method
allows us to verify that a model approximates a continuous dif-
ferential operator, rather than only learning discrete points at a
given temporal discretization, in the same sense that discrete
algorithms from numerical analysis can be said to approximate
continuous functions. We also introduce the notion of a Con-
tinuousNet to refer to an ODE-Net model that exhibits the
convergence properties that are expected for a continuous time
system:

Definition 1. (ContinuousNet). An ODE-Net,

dxðtÞ
dt

¼ N θðxðtÞÞ; xð0Þ ¼ x0 2 Rn; and t 2 R;

trained with a numerical integration scheme is a ContinuousNet if
it is convergent to a similar error as the error obtained by using

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01433-4

2 COMMUNICATIONS PHYSICS | (2023) 6:319 | https://doi.org/10.1038/s42005-023-01433-4 | www.nature.com/commsphys

www.nature.com/commsphys

the original training time step,

lim
h!0

ErrorðhÞ≲ErrorðΔtÞ: ð4Þ

This convergence criteria is very similar to that of numerical
analysis, whereby convergence is judged as h→ 0, and can be
evaluated with a similar methodology adapted for the ML setting.
The criteria of Eq. (4) represents a heuristic that takes into
account the error from the learning process that can be observed
in the error on the discrete-only validation task, Error(Δt). (Note
that we are not claiming that this method will guarantee that we
have learned the true solution—that would require additional
assumptions, well-known in scientific computing—simply that we
have learned some underlying continuous model of the data.)

To illustrate the utility of our approach, we demonstrate how
meaningfully continuous models that pass our convergence test
enable both better interpolation and better extrapolation in
multiple ways. We show that such models can resolve fine-scale
features of the solution, despite being trained only on coarse data,
including data that are irregularly spaced with non-uniform time
intervals; can learn higher resolution solutions through learning
continuous temporal dynamics from flow field snapshots; and can
correctly predict trajectories starting at different initial conditions
on which the model was not trained. We also demonstrate that
our convergence test method is generally applicable to ML
models. In addition, we derive theoretical error bounds for simple
linear ODEs. Our results show promise in bridging between ML
methodologies and scientific computing methodologies, by
respecting both the fundamentals of ML and the fundamentals of
science.

Results and discussion
In this section, we use the convergence test to demonstrate and
identify discrete-overfitting of dynamics models.

We start by showing an example of our convergence test on a
simple harmonic oscillator system. We then illustrate our con-
vergence test on a variety of different scientific systems, demon-
strating that our method can validate whether a trained dynamics
model has learned (some) meaningfully continuous dynamics.
Next, we show that models that pass this test can predict fine-
scale solutions from coarsely spaced data. This includes:

predicting continuous temporal dynamics from flow fields; pre-
dicting trajectories starting at initial conditions on which the
model was not trained; and predicting fine-scale solutions from
coarse, irregularly spaced data. We then show that overfitting to
the temporal discretization affects ML methods more generally
than just with ODE-Nets.

Here, we only consider systems which are non-chaotic, non-
divergent, and that are not extremely stiff, such that they can be
handled by simple explicit Runge-Kutta integrators. More gen-
erally, learning the underlying “true” dynamics would require a
test that involves a more sophisticated coupling of numerical and
ML methodologies. This is not necessarily needed for many sci-
entific ML tasks, including any of the improvements for pre-
dicting fine-scale solutions from coarsely spaced data that we
discuss.

Example convergence method. We demonstrate our convergence
test on a toy example. We sample discrete training data points
from the linear differential equations describing the harmonic
oscillator:

dx
dt

¼ y;
dy
dt

¼ �x: ð5Þ

We show the results in Fig. 2. Two ODE-Nets are trained on this
data. Here, Fig. 2a–c use the forward Euler integration scheme,
while Fig. 2d–f use the RK4 integration scheme. Both the Euler-
Net (Fig. 2a) and RK4-Net (Fig. 2d) use the same linear network
architecture N ðx; θÞ ¼ θx to approximate the ODE. In theory, a
linear model can exactly represent the linear ODE; however, we
will demonstrate that this does not happen. For the example in
Fig. 2, the training data was generated from the analytical solu-
tion, spaced apart by the training timestep Δt= 0.1. To measure
the performance as a continuous model at inference time, we
integrate the model using a range of inference timesteps h. Fig-
ure 2b, e plot the results of the convergence test with the Euler-
Net and the RK4-Net.

For the Euler-Net, the error when h= Δt (the step size is equal
to the temporal spacing in the training data) is very low, but it
increases when h decreases. This is in contrast to the classical
Euler numerical integration scheme, where the error decreases as
h decreases. Thus, these results for Euler-Net do not pass the

Fig. 1 Learning to predict discrete points versus learning continuous dynamics. a A NN model learns from a discrete set of points (red dots) that are
generated by a dynamical system with an underlying continuous trajectory (dashed black line). b After training, the model should be able to predict future
data points that are lying on the same or a different trajectory, including data points that are irregularly sampled. c A model that has only learned to predict
the discrete data points might accurately fit future points on the same trajectory sampled at rate Δt (shown in red), but fail to predict points sampled at
different rates. The blue and green lines evaluated with h <Δt fall off of the underlying continuous trajectory. d A model that has learned an underlying
continuous dynamics can converge to a continuous solution as h→ 0. In this case, the blue and green lines evaluated with h <Δt get closer to the
underlying continuous trajectory.

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01433-4 ARTICLE

COMMUNICATIONS PHYSICS | (2023) 6:319 | https://doi.org/10.1038/s42005-023-01433-4 | www.nature.com/commsphys 3

www.nature.com/commsphys
www.nature.com/commsphys

convergence test. In contrast, for the RK4-Net, the error decreases
as h→ 0, and eventually it approaches and levels off at a fixed
value. Notably, the error does not increase dramatically as it does
with the Euler-Net. In this case, the RK4-Net has learned the right
inductive biases to approximate an underlying continuous
dynamics for the system.

We illustrate this further by showing an example trajectory at a
specific evaluated h. In this case, both trained ODE-Nets are
evaluated at h= 0.01 (a 10 × increase in resolution in comparison
to the training data) up to a final timestep. In Fig. 2c, the Euler-
Net falls off of the true numerical Euler solution. It has clearly not
learned the underlying continuous dynamics. In contrast, in
Fig. 2f, the RK4-Net shows good correspondence with the true
numerical RK4 solution.

Four prototypical dynamical systems. We consider canonical
scientific dynamical systems: the non-linear pendulum, the
Lotka-Volterra equations, the Cartesian pendulum, and the

double gyre fluid flow. The first two systems are non-linear
dynamical systems; the Cartesian pendulum is a stiff dynamical
system (which is difficult to solve with numerical methods
without taking very small timesteps); and the double gyre fluid
flow consists of vorticity fields describing a stream function. We
provide more details about these dynamical systems in Supple-
mentary Note 1: Details about considered dynamical systems. For
each system, we sample data points from either the analytical
solution or the numerical solution. The temporal spacing between
the discrete data points is denoted as Δt, while the step size used
to evaluate a trained ODE-Net is denoted as h.

Training setup. We train an ODE-Net with a numerical integra-
tion scheme (Euler or RK4) for each system. We use simple feed-
forward networks with tanh activation functions. See Supple-
mentary Note 2: Model architecture details for details on the
architecture used. In every example, the exact same network
architecture is used for both the Euler-Net and RK4-Net,

Fig. 2 Illustration of our convergence test with different ODE-Nets. a Schematic of an ODE-Net block, where the next timestep is obtained with the Euler
method. In (b, c), an Euler-Net is trained on discrete data points, spaced apart by some Δt (in this case, Δt= 0.1). b After training at one specific Δt, Euler-
Net is evaluated at many different step sizes, h, both larger and smaller than Δt. The sharp dip at h= 0.1 demonstrates that the model achieves low error
when h = Δt, i.e., it is a good discrete model (DiscreteNet) when the evaluated step size is the same as the Δt in the training data. However, when the
model is evaluated at an h even slightly larger than or smaller than Δt, the error increases sharply; and thus the Euler-Net model does not pass the
convergence test. This is in contrast to numerical integrators, where errors decrease monotonically as h decreases. c We visualize a trajectory where the
Euler-Net is evaluated at a h one order of magnitude lower (h= 0.01) than the trained Δt. The resulting trajectory shows that the Euler-Net is unable to
follow the baseline numerical Euler solution. d Schematic of an ODE-Net block, in which the RK4 numerical integration scheme is used to obtain the next
timestep. As before, the RK4-Net is trained on discrete data points. This time, as (e) shows, the error converges monotonically to a fixed value as h
decreases; and thus the RK4-Net model passes the convergence test, i.e., it is a good continuous model. The reason the RK4-Net error flattens and
converges to a (non-zero but small) fixed value is due to ML-based error sources64. The RK4 numerical integration scheme also converges to a (non-zero
but very small) fixed value this time, due to numerical-based round-off errors66. In (f), the RK4-Net follows behavior similar to the RK4 numerical
integration scheme when evaluated at a low h (h <Δt).

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01433-4

4 COMMUNICATIONS PHYSICS | (2023) 6:319 | https://doi.org/10.1038/s42005-023-01433-4 | www.nature.com/commsphys

www.nature.com/commsphys

respectively. We also include additional results for ODE-Nets
trained on training data spaced apart by different Δt as well as an
ODE-Net trained with the Midpoint numerical integration
scheme, in Supplementary Note 3: Additional convergence test
examples using ODE-Nets. For the double gyre fluid flow, we use
a dynamic autoencoder architecture27, 29 to embed the high-
dimensional input of flow field snapshots in some latent space.
Specifically, we replace the linear discrete map in the architecture
proposed by27 with a linear ODE-block. This means that the
model learns to predict the next timestep by integrating forward
in latent space (using an Euler or RK4 numerical integration
scheme) with step size h= Δt. Finally, the decoder translates the
latent space vectors back to the flow field.

Results. The results of our method are shown in Fig. 3. In each
case, the Euler-Net has low error when h= Δt (i.e., evaluated at
the same time spacing as the training data), but it has high error
when evaluated at all other h, in particular smaller values of h.
Thus, it does not pass the convergence test, and it has not learned
a meaningfully continuous dynamics. It is a good discrete model,
appropriate for data drawn from the same temporal discretiza-
tion, but it has overfit to the temporal discretization. In contrast,
the error during inference time of the RK4-Net steadily decreases
when it is evaluated at lower h, eventually converging to a fixed
basal level determined by the model and the noise properties of

the data. It has passed the convergence test, and it can be said to
have learned a meaningfully-continuous model. We include
additional convergence test results in Supplementary Figs. S1, S2,
S3, S4.

Interpolation: predicting fine-scale solutions from coarse
training data. Observational, discrete training data are limited in
that they are measured at specific timesteps. To obtain a solution
for the system in-between these timesteps, one must retake the
data measurements again at finer timesteps. However, selecting a
model that has learned meaningfully continuous dynamics should
guarantee accurate evaluation at smaller timesteps, despite only
training on coarse and/or irregularly spaced temporal data (i.e.,
measurements taken with large timesteps). By learning con-
tinuous dynamics, the trained ODE-Net model can be evaluated
at any point in temporal space, and still yield a low error solution.
In this case, one would not need to recollect training data with
smaller Δt between data points; the learned ODE-Net can be used
instead. Here, we demonstrate that fine-scale evaluation is pos-
sible by learning continuous temporal dynamics from flow fields
for the double gyre flow example.

Results. We consider two models: the Euler-Net which did not
pass the convergence test, and the RK4-Net which did pass the

Fig. 3 Illustration of our convergence test on prototypical dynamical systems.We demonstrate the convergence test on multiple systems: (a) Non-linear
pendulum (b) Lotka-Volterra system (c) Cartesian pendulum (d) Double gyre fluid flow. In each case, for the Euler-Net, the error does not monotonically
decrease: error is low when h=Δt, but high at all other h evaluations. Thus, the Euler-Net does not pass the convergence test. In contrast, the RK4-Net
error does monotonically decrease and converges to a fixed value, when the evaluated h→ 0. The RK4-Net does pass the convergence test.

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01433-4 ARTICLE

COMMUNICATIONS PHYSICS | (2023) 6:319 | https://doi.org/10.1038/s42005-023-01433-4 | www.nature.com/commsphys 5

www.nature.com/commsphys
www.nature.com/commsphys

convergence test (see Fig. 3). In Fig. 4, we show the flow field
snapshots that result from both models being evaluated at dif-
ferent timesteps. The Euler-Net is only able to approximate the
true solution at the training data timestep (in this case, h=
Δt= 0.5). It cannot match the true solution at the other time-
steps, and it gives a poor approximation that does not capture the
flow behavior. In contrast, the RK4-Net has good correspondence
to the true solution even when it is evaluated at timesteps that
were not in the training data. Thus, our convergence test method
has allowed us to choose a model that can recover fine-scale
solutions of the system, while only having access to coarse-scale
measurements during training.

Extrapolation: predicting trajectories for new initial condi-
tions. For a given system, temporal trajectories start at some
initial condition. Measurements are taken for one trajectory at
one initial condition, and then must be taken separately for other
trajectories with different initial conditions. Selecting a model that
has learned a meaningfully continuous dynamics circumvents
this: after training a model on data points sampled from one (or
more) trajectories, the model should be able to extrapolate and
predict accurate solutions for new initial conditions.

Training setup. We look at the non-linear pendulum (described in
Eq. 27 in Supplementary Note 1: Details about considered
dynamical systems). Here, θ is the initial condition representing
the position of the pendulum in time. The phase portrait of this
system (representing the true solution trajectories), showing dθ

dt
against θ, is shown in Fig. 5a. An Euler-Net and an RK4-Net are
trained on trajectories, spaced apart by Δt= 0.1, starting at cer-
tain initial conditions (shown by the black lines in Fig. 5b). We
then pick a test set of a number of different initial conditions that
were not in the training data. The Euler-Net and RK4-Net start at
these test initial conditions and are both evaluated at a finer
h= 0.001, representing a 100 × increase in resolution. Note that
we saw in Fig. 3 that the Euler-Net did not pass the convergence

test (i.e., it had high error when evaluated at h≪ Δt), while the
RK4-Net did pass the test.

Results. The results of predicting trajectories starting at different
test initial conditions are shown in Fig. 5. The Euler-Net is unable
to predict these trajectories and quickly falls off of the phase plot
lines corresponding to the true solution. In contrast, the RK4-Net
is able to predict the trajectories, starting at different test initial
conditions with good correspondence to the true solution. Thus,
we see that it is critical to find a model that passes the con-
vergence test and is able to learn a continuous dynamics to
succeed at this extrapolation task.

Irregularly sampled training data. It is typically the case that
scientific data collection includes measurements that are taken
with some amount of imprecision. For example, the measurement
of interest is not always taken at the exact same Δt every time, due
to issues such as jitter in the measurement device. Measurements
may also be skipped: for example, a measurement is only available
at t= Δt and t= 3Δt because the measurement at t= 2Δt was lost
or skipped. Thus, reconstructing the correct trajectory when the
measurements are non-uniformly spaced is important in
numerous science and engineering problems. Here, we look at an
example of using the convergence test to correctly select a
meaningfully continuous model in the case of the non-linear
pendulum with irregularly spaced temporal data with non-
uniform temporal intervals.

Training setup. An example distribution of irregularly sampled
training data is shown in Fig. 6a. The baseline Δt is 0.05, subject
to jitter and frameskipping errors. An Euler-Net and an RK4-Net
are both trained on these temporal data points, where the values
of Δt are input into the integration schemes. (That is, at every
given measurement, the timestep jitter was also recorded to use in
training.) Both ODE-Nets are then evaluated at a very low h
(approximately 100 × lower than the general distribution of the

Fig. 4 Double gyre fluid flow: reconstructing fine-scale flow fields from coarse training data. The training data for this problem consists of vorticity field
snapshots of the dynamical system taken at Δt= 0.5. In the images above, the red region is rotating in one direction, and the blue region is rotating in the
opposite direction. After training an Euler-Net and an RK4-Net, both models are evaluated at different h (both when h >Δt and h <Δt) at a final timestep.
We show the evaluation results for this final timestep, T, at h= 0.25, h= 0.5=Δt, and h= 0.8. The Euler-Net (which fails the convergence test)
approximates a solution close to the true solution at a timestep in the training data but does poorly at the other timesteps; it does not capture the fluid flow
behavior and gives a grainer solution. The RK4-Net (which passes the convergence test) is able to output solutions that have close correspondence to the
true solution; it successfully interpolates the fine-scale flow fields that are in-between the training data snapshots, resulting in a much higher frame rate
solution.

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01433-4

6 COMMUNICATIONS PHYSICS | (2023) 6:319 | https://doi.org/10.1038/s42005-023-01433-4 | www.nature.com/commsphys

www.nature.com/commsphys

training data points) to generate a time series plot. Note, that we
run the convergence test on both ODE-Nets.

Results. The Euler-Net quickly falls off of the continuous solution
(Fig. 6b). Conversely, the RK4-Net follows the continuous solu-
tion with good accuracy, including at timesteps not in the training
data (Fig. 6c). Thus, it is clear that the RK4-Net has learned a
meaningfully continuous dynamics while the Euler-Net has not.
This is confirmed by RK4-Net passing the convergence test, but
Euler-Net not passing it (Fig. 6d). The dip for Euler-Net appears
at the average Δt in the training data, which is slightly larger than
0.05 due to the measurement noise.

Sparse identification of nonlinear dynamical systems. Here, we
demonstrate that ovefitting to the temporal discretization affects
ML methods (in the context of dynamical systems) more gen-
erally. To illustrate this, we consider the SINDy learning
approach, which is a class of methods for system identification5.

The SINDy method uses the following model structure to
represent the dynamics,

dx
dt

¼ ΞϕðxÞ; ð6Þ

where Ξ is a matrix of learnable parameters and ϕ(x) is a set of
non-linear basis functions which correspond to potential terms in
the underlying system. A linear optimizer is used to fit the
parameters Ξ to the data, with a sparsity constraint. The sparsity
constraint identifies the subset of relevant basis elements in ϕ(x)
to reveal an interpretable dynamics model.

In most real applications, the time derivatives, dxn/dt, cannot be
measured directly and instead need to be approximated from the
observations xn. The common approach in SINDy is to use finite
differences to approximate dxn/dt from the data47, 48. (This
treatment of time derivatives, where SINDy differentiates the data,
is in contrast to the ODE-Net method, which integrates the model.)
The finite difference operator FD(xn…) is applied over the dataset as
a pre-processing step. This yields the following set of N discrete
equations, which is optimized for Ξ over all observations n:

FDðxn¼ Þ ¼ ΞϕðxnÞ; ð7Þ
where FD(xn…) is a finite difference approximation using the
region of points around time index n. Using the series of N
equations, Ξ is learned using specialized algorithms designed to
seek sparsity, such as LASSO regularization or sequential threshold
least squares5. (This is again in contrast with the ODE-Net method,
which uses gradient descent nonlinear optimization.) The
discretization order of the finite difference pre-processing is a
hyperparameter of SINDy. The first order accurate finite difference
(here referred to as FD-1) results in a point-wise approximation of,

xnþ1 � xn
Δt

¼ ΞϕðxnÞ: ð8Þ

Note that when rearranged, this is equivalent to the forward Euler
integrator:

xnþ1 ¼ xn þ Δt ΞϕðxnÞ: ð9Þ
Higher-order finite difference stencils can also be used to increase
the accuracy of the time derivative approximation. The second-

Fig. 5 Non-linear pendulum: extrapolation to predict initial condition trajectories on which the model was not trained. a Phase portrait of true solution.
b ODE-Net models are trained on randomly chosen initial conditions (different θ values), which have temporal points spaced apart by Δt= 0.1. Each model
is then evaluated on a different set of initial conditions (not in the training data) at much smaller step sizes (h= 0.001, 100 × higher resolution). c After
evaluation, the Euler-Net quickly falls off of the phase plot lines corresponding to the true solution for the different test trajectories. d The RK4-Net, which
has learned a continuous dynamics, is able to extrapolate to different trajectories (starting at different initial conditions), with good correspondence to the
phase plot lines of the true solution.

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01433-4 ARTICLE

COMMUNICATIONS PHYSICS | (2023) 6:319 | https://doi.org/10.1038/s42005-023-01433-4 | www.nature.com/commsphys 7

www.nature.com/commsphys
www.nature.com/commsphys

order stencil (FD-2) (analogous, but not equivalent, to Midpoint)
can be expressed as

1
2Δt

xnþ1 � xn�1

� � ¼ ΞϕðxnÞ: ð10Þ

and the fourth-order stencil (FD-4) (analogous, but not equivalent,
to RK4) can be expressed as,

1
Δt

� 1
12

xnþ2 þ
2
3
xnþ1 �

2
3
xn�1 þ

1
12

xn�2

� �
¼ ΞϕðxnÞ: ð11Þ

Training Setup. We look at the harmonic oscillator described in
Eq. (5), and the non-linear pendulum (described in Eq. 27
in Supplementary Note 1: Details about considered dynamical
systems). We use the PySINDy implementation47, 48 to train
models on these trajectories. We train three different SINDy
models on the trajectories, altering the finite difference (FD)
approximation order of accuracy: FD-1 is a first-order two-point
stencil (analogous to Euler-Net), FD-2 is a second-order three-
point stencil (analogous to Midpoint-Net), and FD-4 is a fourth-
order five-point stencil (analogous to RK4-Net). The SINDy

model is plugged into the convergence test as F, such that the
same Runge-Kutta integrators are used for trajectory prediction.
For the harmonic oscillator, the training data is spaced apart by
Δt= 0.1, while for the non-linear pendulum, we look at examples
where the training data is spaced apart by Δt= 0.05 and Δt= 0.1.

Results. We run our convergence test on the different SINDy
models. The results of our method are shown in Fig. 7. In each
case, the FD-1 model has low error when h= Δt (i.e., evaluated at
the same time spacing as the training data), but it has high error
when evaluated at all other h, and especially smaller values of h.
Thus, it does not pass the convergence test, and it has not learned
a meaningfully continuous dynamics. The FD-1 model shows a
sharp dip because it is overfit to forward Euler. In this case, the
stencil and integrator correspond to the exact same algebraic
structure. Similar to when the models where trained via ODE-
Nets, we see that FD-1 has overfit to the temporal discretization.
In contrast, the error during the inference time of the FD-4 model
steadily decreases when it is evaluated at lower h, eventually
converging to a fixed basal level. It has passed the convergence
test, and it has learned a meaningfully-continuous model.

Fig. 6 Learning continuous dynamics from irregularly spaced discrete points. a Training data distribution for a scientific problem where temporal data
measurements are taken with some amount of imprecision (e.g., the measurement of interest is not always taken at the exact same Δt) and/or
measurements are skipped (e.g., we only have a measurement at Δt and 3Δt because the measurement at 2Δt failed or was lost). b Different ODE-Nets
are trained on the irregularly spaced data (indicated by green dots), as denoted by the green circles. Then, the trained models are evaluated at a very low h
(where h≪Δt). The RK4-Net (orange) is able to learn a continuous dynamics and follow the continuous solution over time (indicated by the dashed line),
while the Euler-Net (blue) does not. c The RK4-Net (orange) is able to reconstruct the fine-scale, high resolution solution (indicated by dashed line), with
good correspondence to the continuous solution, from the coarse, irregularly spaced training data (indicated by green dots). d The RK4-Net (orange)
passes the convergence test, but the Euler-Net (blue) does not.

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01433-4

8 COMMUNICATIONS PHYSICS | (2023) 6:319 | https://doi.org/10.1038/s42005-023-01433-4 | www.nature.com/commsphys

www.nature.com/commsphys

Conclusion
One of the great challenges in scientific ML is to learn continuous
dynamics for physical systems—either “the” underlying con-
tinuous dynamics, or “a” continuous dynamics that leads to good
predictive results for the spatial/temporal regime of interest for
the ML model—such that the learned ML model can be trusted to
give accurate and reliable results. ML models are trained on
discrete points, and typical ML training/testing methodologies are
not aware of the continuity properties of the underlying problem
from which the data are generated. Here, we have developed a
methodology, and we showed that convergence (an important
criteria used in numerical analysis) can be used for selecting
models that have a strong inductive bias towards learning
meaningfully continuous dynamics. Standard ODE-Net approa-
ches, as well as common SINDy methods, both popular in recent
years within the ML community, often do not pass this con-
vergence test. In contrast, models that pass this convergence test
have favorable properties. For instance, models that learned
underlying continuous dynamics can be evaluated at lower or
higher resolutions. Our results suggest that principled numerical
analysis methods can be coupled with existing ML training/test-
ing methodologies to deliver upon the promise of scientific ML
more generally.

Many more concrete directions are of course raised by our
methodology. One direction has to do with developing analogous
tests to be used for less well-posed dynamical systems. Such
systems are of interest in scientific ML, and such tests will be of
greatest interest when one needs to obtain “the” correct under-
lying continuous solution (e.g., to identify correctly qualitative
long-term behavior46), rather than “a” continuous solution,
which is often sufficient for ML prediction tasks. Another
direction has to do with whether we can develop analogous tests
appropriate for adaptive time-stepping methods, symplectic
integrators, and other commonly used numerical simulation
methods such as those for optimal control problems using NNs
and associated Hamilton-Jacobi partial differential equations49,
50. Work subsequent to the posting of the initial technical report
version of this paper has addressed the continuous-discrete
equivalence question for learning operators51, 52, and likely our
methodology provides a way to operationalize that in practice. A

final direction has to do with whether one can obtain strong
theoretical results, e.g., ML-style generalization bounds, to guide
the use of methods such as these. Recent theoretical and empirical
results suggest that this will be challenging53–57, at least when
using traditional approaches to ML-style generalization bounds.
Our success in combining principled numerical analysis methods
with existing ML methodologies also leads one to wonder whe-
ther we can use a posteriori error bound analysis methods to
develop practically useful a posteriori generalization bounds for
problems such as those we have considered.

Methods
The basic problem of numerical analysis is to solve problems
from continuous mathematics using a discrete computer. The
area has a rich history for describing the consistency and con-
vergence behavior of numerical methods for approximating
continuous functions58, 59. Here, we expand on the methods we
used in Results and Discussion.

Criteria of Classical Numerical Analysis. Given an initial value
x(0)= x0, we can discretize Eq. (2) along the node points tn= nΔt
for n= 0, 1,…,N by evaluating the following integral equation:

xnþ1 ¼ xn þ
Z tnþΔt

tn

FðxðsÞÞ ds; ð12Þ

where xn= x(tn), and Δt is the discrete timestep. Typically, we are
not able to compute an analytic solution for the integral, and thus
we rely on numerical schemes to approximate

R tnþΔt
tn

FðxðsÞÞ ds.
There are many different types of numerical integration

schemes to approximate the integral in Eq. (12). These have
different trade-offs between computational efficiency and accu-
racy. One such scheme, the forward Euler discretization, can be
written as:

xnþ1 ¼ xn þ Δt FðxnÞ: ð13Þ
This is a first-order one-step method, where the global error (the
error over all of the timesteps) is proportional to the step size, i.e.,
OðΔtÞ, meaning that the error gets smaller as Δt decreases. There
are also higher-order integration schemes. One popular higher-

Fig. 7 SINDy method: additional convergence tests. Instead of training from dynamical data with an ODE-Net model, SINDy is used instead to learn a
sparse polynomial basis. The accuracy of the time derivative approximation is altered by using a different order of central finite difference stencils. Here,
FD-1 is the first-order two-point stencil, FD-2 is the second-order three-point stencil, and FD-4 is the fourth-order five-point stencil. In this example, FD-1 is
analogous to Euler-Net, FD-2 is analogous to Midpoint-Net, and FD-4 is analogous to RK4-Net. In (a), the convergence test method is shown on the
harmonic oscillator, where the convergence test is replicated by training via the SINDy method. In (b, c), the convergence test is applied when training on
the non-linear pendulum via the SINDy method. We observe similar results as when training using an ODE-Net: the lower-order approximation (FD-1)
overfits to the Δt in the training data, failing the convergence test; and the higher-order approximation (FD-4) passes the convergence test.

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01433-4 ARTICLE

COMMUNICATIONS PHYSICS | (2023) 6:319 | https://doi.org/10.1038/s42005-023-01433-4 | www.nature.com/commsphys 9

www.nature.com/commsphys
www.nature.com/commsphys

order scheme is the Runge-Kutta 4 (RK4) discretization, which
takes the following form:

i1 ¼ F xn
� �

i2 ¼ F xn þ
Δt
2
� i1

� �

i3 ¼ F xn þ
Δt
2
� i2

� �

i4 ¼ F xn þ Δt � i3
� �

xnþ1 ¼ xn þ
1
6
Δt i1 þ 2i2 þ 2i3 þ i4
� �

:

ð14Þ

Here, the global error is proportional to the step size to the fourth
power, i.e., O(Δt4); and thus as Δt gets smaller, the error gets
smaller much more quickly than with the forward Euler scheme.
In general, the global error can be written as O(Δtp), where p
denotes the order of accuracy.

Classical numerical integration typically starts by assuming
that there exists a true underlying continuous-time system, which
is then replaced by a discrete-time problem whose solution
approximates that of the continuous problem. However, dis-
cretizing the problem introduces an error, and concepts such as
stability, convergence, and consistency can be used to quantify the
error of the discrete solution60–62.

In the following, we describe the error bounds in the traditional
scientific computing context where the system dynamics are
known exactly, in which case the only approximation error comes
from numerical integration in time. We specifically focus on
numerical convergence because this will give us a mechanism to
analyze ML models. However, note that stability and consistency
are also of interest59. Let x(tn) denote the true solution of a
dynamical system of interest; and let �xΔtn denote a numerical
solution after n steps with step size Δt. We use N to denote the
maximum number of time steps such that T= tN=NΔt is the
final time. Decreasing Δt requires increasing N (the number steps
taken to arrive at T), and vice versa. Then, x(T)= x(tN) is the true
solution at the final time, while �xΔtN is the numerical solution at
the final time. Convergence quantifies the global error (the
cumulative error of all iterations) of a numerical algorithm.

Definition 2. (Convergent Numerical Approximation). A
numerical one-step method for solving dxðtÞ

dt ¼ FðxðtÞÞ, with initial
condition x(0)= x0, is said to be convergent if and only if the
error tends to zero as Δt goes to zero:

lim
Δt!0

xðtNÞ � �xΔtN
�� ��

2
¼ 0: ð15Þ

Of course, in numerical practice, the error does not converge to
zero. Instead, it levels off at some base level determined typically
by the level of numerical precision used to describe the data, as
observed in 2e.

The specific metric for quantifying the approximation error
across the sequence is somewhat arbitrary. Moreover, there is the
problem that the numerical method can potentially converge to
the wrong solution63. Thus, to ensure that a numerical method is
not only convergent but also consistent, one can use the mean
error,

lim
Δt!0

1
N

∑
N

n¼0
xðtnÞ � �xΔtn

�� ��
2
¼ 0;

or the maximum error across all N points in time,

lim
Δt!0

max
n¼1;2;¼ ;N

xðtnÞ � �xΔtn
�� ��

2 ¼ 0:

If, as the step size Δt decreases, the largest absolute error between
the numerical solution �xΔtn and the exact solution x(tn) also

decreases, then the numerical approximation converges towards
the solution of the continuous system. In the limit of Δt→ 0, the
numerical solution converges to the exact solution and the error
converges to zero, or to some base level determined by machine
precision and numerical round-off noise.

This convergence criteria is also a test for continuity in the
solution: as Δt→ 0, the time interval between adjacent numerical
solutions (e.g., at tn, xn, and at tn+1, xn+1) also decreases towards
zero. Thus, the numerical solution collapses onto a continuous
solution as Δt→ 0.

Validation of a new integration method involves multiple
stages. Consistency, convergence, and stability can be theoreti-
cally proven for a rather small class of ODEs (typically only linear
ODEs). Thus, the method will be evaluated empirically with a real
implementation on a problem of interest. In practice, a
convergence test is used, where the numerical integration scheme
is used to predict trajectories for a range of Δt and compared to
an analytical solution or to an overrefined solution. The errors are
verified to approach zero at the correct rate, at least until they
flatten out at some base level. The combination of theoretical
proof of consistency, stability, and convergence on simple systems
such as linear ODEs, combined with the emprical demonstration
of convergence on ODEs of interest, is typically viewed as
sufficient to vet the method. Emprirical convergence tests are a
standard integration test method for scientific programs, e.g., they
are regularly run to automatically catch bugs.

A convergence test for ODE-nets. We now describe a con-
vergence test, based on the discussed convergence criteria, to
validate properties of an ODE-Net solution. The fact that ODE-
Nets are embedded in a numerical integration scheme enables us
to use convergence analysis methods that are well-known for
studying classical numerical analysis problems. To start, we know
that the numerical integrator itself will be convergent if it is given
the true f, but we do not know if the ODE-Net will be convergent
when an approximate ML model N is used to approximate f. The
convergence test is used to determine whether an ODE-Net has
learned a meaningfully continuous model for the underlying
problem of interest.

Suppose that we are given an ODE-NetN that is trained with a
numerical integration scheme (such as Euler or RK4) from tn to tn
+1 with stepsize Δt:

�xnþ1 ¼ODESolve ½N ðxn; θÞ; start ¼ tn; end ¼ tnþ1;

step ¼ Δt; scheme�: ð16Þ

Following Definition 2, we compute the global error of the ODE-
Net N as it approaches some fixed value b as the time step h goes
to zero:

lim
h!0

xN � �xhN
�� ��

2
¼ b: ð17Þ

Here too, in the ML setting, the error does not necessarily
converge to zero. This is analogous to the classical numerical
analysis setting, where the numerical analysis test typically
converges to a non-zero value determined by the numerical
round-off error (e.g., see the floor in Fig. 2e). Unlike in the
classical numerical analysis setting, even in the absence of
numerical errors the b of an ML model will be greater than zero.
For an ODE-Net, the numerical value of b depends on the model
architecture, integration method, the optimizer, and the noise
properties of the data64. The value of b will elucidate the
convergence properties of the trained ODE-Net.

Computing an error metric in the ML setting requires additional
consideration because we do not necessarily have access to the
underlying exact solution at arbitrary points in time. Instead, we are
restricted to the information that is provided by a given validation

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01433-4

10 COMMUNICATIONS PHYSICS | (2023) 6:319 | https://doi.org/10.1038/s42005-023-01433-4 | www.nature.com/commsphys

www.nature.com/commsphys

set of discrete data points T ¼ x0; x1; x2; ¼ ; xN
� �

, where each
point is spaced apart by the Δt between observations. A naive
metric to compute the global error in this setting is simply to
consider the 2-norm between the end point of the validation
trajectory and the predicted value:

ErrorðhÞ ¼ xN � �xhN
�� ��

2
: ð18Þ

However, this metric is susceptible to noise and edge cases.
Computing the error over all points T is difficult using (19) because
the inferred trajectory has a different number of points than the
validation trajectory. To mitigate this issue, we suggest to compute
the global error on a subset of points S from the validation/test
trajectories, which is a set of indexes into the original dataset T ; e.g.,
S ¼ 0; 9; 18¼f g for every 9 points spaced by 9Δt. This allows for
inferring the trajectory of h computing the error over the subset as
follows:

ErrorðhÞ ¼ 1
jSj ∑n2S xn � �xhk

�� ��
2
; ð19Þ

where k is the index into the inferred trajectory corresponding to
the index into the validation trajectory n such that �xkk is the point
that lines up at the same time as xn. Note that we can only use
certain timesteps h during inference because the solution points
must align perfectly with those in the subset trajectory.

Given this setup, we use the term ContinuousNet to refer to an
ODE-Net model that also exhibits these convergence properties,
as per Definition 1. To evaluate this property, we can apply the
same convergence test procedure used in traditional numerical
analysis and scientific computing, but with the modifications
necessary for it work on training data. Further, it is necessary to
apply a weaker heuristic to judge convergence because there will
be residual optimization error at Error(Δt), as per Eq. (4). The
procedure is as follows.

Given the learned ODE-Net, we first infer a validation/test
trajectory on the original stepsize Δt and evaluate the global error,
Error(Δt). This is the standard procedure for evaluating a discrete
model, and this error value informs its accuracy at inferring
discrete points in a sequence. Then, to further evaluate whether
the model is convergent and continuous, we consider a range of h
values which are both smaller and larger than the step size Δt
used during training. For example, if the ODE-Net was trained on
Δt= 0.1, we evaluate the ODE-Net on the validation/test
trajectory for h∈ [10−3, . . , 101]. Specifically, for a given set of
inference timesteps {h1, h2,…, hp}, our proposed convergence test
iterates over the elements hi, and executes the following two steps:

1. Evaluate the pre-trained ODE-Net using Eq. (16) on the
time interval [t0, tT], using step size hi.

2. Calculate the error between the ODE-Net solution �xhin and
points in the test data, Error(hi).

Algorithms 1 and 2 in Supplementary Note 4: Algorithm for
the Convergence Test summarize this procedure. As with many
other numerical convergence tests, our proposed algorithm is
subject to a heuristic threshold. In practice, we observe that the
difference between a model that passes our test condition and one
that does not is pronounced. A non-continuous model results in
an error that is orders of magnitude larger, as compared to a
continuous model, when h is taken smaller than Δt of the training
data. In other words, our convergence test performs a form of
model selection by selecting for models that learn inductive biases
towards meaningfully continuous dynamics. In the following, we
will demonstrate why convergence is an important consideration
for ML model selection. We also discuss the two other criterion of
classical numerical analysis, consistency and stability, in Supple-
mentary Note 4: Algorithm for the Convergence Test.

In practice, we can also evaluate our convergence test with
different starting points x0 and the respective final time step, xN,
and then average the error across the different runs. We highly
recommend this to ensure that the same behavior occurs
irrespective of start and end point.

Error analysis in an idealized learning setting. We provide a
theoretical framework for the convergence test, analyzing the
discretization error of one-step numerical integration schemes in
an idealized setting. For additional details, see Supplementary
Note 5: Theoretical Derivations. Specifically, we consider the
problem of learning the simple scalar linear ODE,

dxðtÞ
dt

¼ λ xðtÞ; ð20Þ

where λ 2 R denotes a scalar parameter, and x 2 R denotes the
state at a given point in time. It is well known that the function
x(t)= eλtx0 is a solution of this system, given the initial condition
xðtÞ ¼ x0 2 R65. In the following, we assume a similar setting as
before: we are given a set of discrete data points D ¼
x0; x1; x2; ¼ ; xN

� �
produced by the linear system and spaced

by Δt. Our aim is to learn a scalar ODE-Net model,

dxðtÞ
dt

¼ wxðtÞ; ð21Þ

parameterized by the learnable weight parameter w. Following the
ODE-Net process, we discretize the model with a numerical
integration scheme and then optimize the squared error loss,

min
w

∑
x2D

xnþ1 �ODESolve wxn; step ¼ Δt;scheme
	
� �2

: ð22Þ

We assume that the data are noise-free and can therefore be
represented by its analytical solution, xn+1= eλΔtxn. When the
loss is optimized, the time-discretization step introduces its own
unique source of error into the learning process, one that is
independent of noise, numerical error, or optimization error. The
error stems from the fact that any one-step consistent numerical
integration scheme, when applied to a linear ODE, will result in a
truncated Taylor series expansion with p terms, where p is the
accuracy order of the scheme59. Thus, the ML model cannot
recover the exact parameters of the underlying ODE. The fol-
lowing lemma makes this issue explicit.

Lemma 1. In absence of any other optimization errors, a scalar
ODE-Net can at best obtain a weight parameter w by minimizing
Eq. (22) that, for certain timesteps and integrators, satisfies the
following polynomial equation,

9p; Δt; w s:t: ∑
p

i¼0

Δti

i!
wi ¼ eλΔt : ð23Þ

The proof is given in Supplementary Note 6: Optimization of w
does not learn λ. For finite Δt, this equation clearly satisfies w ≠ λ
if p≪∞. There are situations where this equation can be solved
for values of w that will set the loss in Eq. (22) to zero for all
possible data points xn. In the limit as Δt→ 0, there is always a
solution at w= λ for any p. Moreover, for practical settings there
is at least one root when p is odd for any Δt; when p= 2 (RK2)
and Δt ≤ logð2Þ=jλj; or when p= 4 (RK4) and Δt < 1.307/∣λ∣. This
equation can be used to find analytical expressions for w for
simple integrators; see Supplementary Note 7: Example evalua-
tions of the analytical equations.

From this result, we can characterize the difference between the
ML model and the target ODE. In addition, in practice, it is
(almost always) only possible to learn a perturbed version, ~w, of w
due to noise, limited numerical precision, and optimization
errors. Let ε denote an additive perturbation away from the the

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01433-4 ARTICLE

COMMUNICATIONS PHYSICS | (2023) 6:319 | https://doi.org/10.1038/s42005-023-01433-4 | www.nature.com/commsphys 11

www.nature.com/commsphys
www.nature.com/commsphys

optimum of the minimization problem for an observed model
due to these sources of errors, ~w ¼ wþ ε. The following theorem
bounds the error between the ML and ODE model, due to the
overfitting of Eq. (23) in presence of additive error sources.

Theorem 1. If an optimal weight parameter can be found by Eq.
(23), the approximation error introduced by scalar ODE-Net is
bounded by ∣w− λ∣ ≤ c Δtp, where c is a constant proportional to
the Lipschitz continuity constants of λx and wx. In the presence
of additive numerical error ε, the bound is,

j~w� λj≤ jw� λj þ jεj≤ cΔtp þ jεj: ð24Þ

The proof is given in Supplementary Note 8: Approximation
errors introduced by scalar ODE-Nets. This bound shows that the
user needs to increase the order of accuracy of the training
scheme p in order to reduce the error between the learned
parameter and the true ODE parameter.

In practice, we can only measure Error(h) using a set of data
points. Using the above results, we can analyze the expected
behavior of the convergence test by bounding the global error
using Eq. (24). Figure 8 plots the global error bound given
concrete values of λ, Δt, and ε. As can be seen, the theoretically
derived global error for the scalar ODE exhibits the same
behavior as the empirical applications of the convergence test. We
can use the global error to further derive expected bounds on the
the key points of the convergence test.

Corollary 1. When a scalar ODE-Net is evaluated with the
timestep that was used for training, the leading term of the global
error is proportional to the optimization error ε for a k∝ T∣x0∣:

ErrorðΔtÞ ¼ kjεj þOðΔtjwjjεj þ Δtjεj2Þ: ð25Þ

The proof is given in Supplementary Note 9: Observable
quantities and the convergence test. The cΔtp error term in Eq.
(24) between w and λ is cancelled out, and the observed value is
smaller than j~w� λj. Therefore, the global error only observes the
difference between w and ~w, resulting from the model optimiza-
tion error. Note that this value can become very small as the
optimization error decreases. By applying the convergence test,
we are able to extract an estimate of j~w� λj, as given in the
following.

Corollary 2. In the limit of decreasing the timestep size during
inference, the global error approaches a constant factor (b) based
on the bound in Eq. (24). It approaches at a rate of hq, where q is
the accuracy order of the ODE integration scheme used at
inference time:

lim
h!0

ErrorðhÞ ¼ j~w� λj þOðhqÞ≤ kjεj þ kcΔtp þOðhqÞ: ð26Þ
The proof is given in Supplementary Note 9: Observable

quantities and the convergence test. Given these bounds, we can
see how using Eq. (4) as a threshold yields (b− Error(Δt))∝ cΔtp.
Therefore, the comparison between b and Error(Δt) allows for the
quantitative estimation for the magnitude of the term cΔtp, which
describes the error that is induced by the numerical discretization
scheme used for training.

In summary, our analysis shows that there are two types of
errors in the process of learning the dynamics of a linear scalar
ODE using ODE-Nets. These errors can be measured using the
data by evaluating Error(Δt) and limh!0ErrorðhÞ. This illustrates
the power of our proposed convergence criterion Eq. (4).
Moreover, even if ε is small, it is required to increase the order
of accuracy of the training scheme in order to further decrease the
error between ~w and λ.

Data availability
The source code for the data generation will be made available at https://github.com/
a1k12/learning-continuous-physics-.

Code availability
The code will be made available at https://github.com/a1k12/learning-continuous-
physics-.

Received: 18 July 2022; Accepted: 16 October 2023;

References
1. Robinson, R. C. An introduction to dynamical systems: continuous and discrete,

vol. 19 (American Mathematical Soc., 2012).

Fig. 8 Illustration of our convergence test for linear ODEs. The analytically derived global error estimate, Error(h), using the ideally learned linear ODE.
Our results replicate the empirically performed convergence tests. a All methods achieve zero global error at h=Δt, but converge to finite values as h→ 0.
b We introduce the ε error parameter. idpoint and RK4 achieve a finite error of comparable magnitudes at h=Δt. Overfitting is not observed for RK4 with
ε= 105 because the ∣λ−w∣ error is less significant than ∣ε∣.

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01433-4

12 COMMUNICATIONS PHYSICS | (2023) 6:319 | https://doi.org/10.1038/s42005-023-01433-4 | www.nature.com/commsphys

https://github.com/a1k12/learning-continuous-physics-
https://github.com/a1k12/learning-continuous-physics-
https://github.com/a1k12/learning-continuous-physics-
https://github.com/a1k12/learning-continuous-physics-
www.nature.com/commsphys

2. Brunton, S. L. & Kutz, J. N.Data-driven science and engineering: Machine
learning, dynamical systems, and control (Cambridge University Press, 2019).

3. Calinon, S., Li, Z., Alizadeh, T., Tsagarakis, N. G. & Caldwell, D. G. Statistical
dynamical systems for skills acquisition in humanoids. In 2012 12th IEEE-RAS
International Conference on Humanoid Robots (Humanoids 2012), 323–329
(IEEE, 2012).

4. Peters, J. R. Machine learning of motor skills for robotics (University of
Southern California, 2007).

5. Brunton, S. L., Proctor, J. L. & Kutz, J. N. Discovering governing equations
from data by sparse identification of nonlinear dynamical systems. Proc. Natl
Acad. Sci. 113, 3932–3937 (2016).

6. Raissi, M., Perdikaris, P. & Karniadakis, G. E. Multistep neural networks for
data-driven discovery of nonlinear dynamical systems. arXiv preprint
arXiv:1801.01236 (2018).

7. Keller, R. T. & Du, Q. Discovery of dynamics using linear multistep methods.
SIAM J. Numer. Anal. 59, 429–455 (2021).

8. Rudy, S., Alla, A., Brunton, S. L. & Kutz, J. N. Data-driven identification of
parametric partial differential equations. SIAM J. Appl. Dynamical Syst. 18,
643–660 (2019).

9. Jin, P., Zhang, Z., Zhu, A., Tang, Y. & Karniadakis, G. E. SympNets: Intrinsic
structure-preserving symplectic networks for identifying hamiltonian systems.
Neural Netw. 132, 166–179 (2020).

10. Lutter, M., Ritter, C. & Peters, J. Deep Lagrangian Networks: Using physics as
model prior for deep learning. International Conference on Learning
Representations (2019).

11. Chen, Z., Zhang, J., Arjovsky, M. & Bottou, L. Symplectic recurrent neural
networks. International Conference on Learning Representations (2019).

12. Erichson, N. B., Azencot, O., Queiruga, A., Hodgkinson, L. & Mahoney, M. W.
Lipschitz recurrent neural networks. International Conference on Learning
Representations (2020).

13. Rusch, T. K., Mishra, S., Erichson, N. B. & Mahoney, M. W. Long expressive
memory for sequence modeling. arXiv preprint arXiv:2110.04744 (2021).

14. Wang, R., Maddix, D., Faloutsos, C., Wang, Y. & Yu, R. Bridging physics-
based and data-driven modeling for learning dynamical systems. In Learning
for Dynamics and Control, 385–398 (PMLR, 2021).

15. Lim, S. H., Erichson, N. B., Hodgkinson, L. & Mahoney, M. W. Noisy
recurrent neural networks. Adv. Neural Inform. Processing Sys. 34, 5124–5137
(2021).

16. Jiahao, T. Z., Hsieh, M. A. & Forgoston, E. Knowledge-based learning of
nonlinear dynamics and chaos. Chaos: Interdiscip. J. Nonlinear Sci. 31, 111101
(2021).

17. Négiar, G., Mahoney, M. W. & Krishnapriyan, A. Learning differentiable
solvers for systems with hard constraints. In The Eleventh International
Conference on Learning Representations https://openreview.net/forum?id=
vdv6CmGksr0 (2023).

18. Morton, J., Witherden, F. D. & Kochenderfer, M. J. Deep variational Koopman
models: Inferring Koopman observations for uncertainty-aware dynamics
modeling and control. arXiv preprint arXiv:1902.09742 (2019).

19. Lambert, N., Amos, B., Yadan, O. & Calandra, R. Objective mismatch in
model-based reinforcement learning. In Proceedings of the 2nd Conference on
Learning for Dynamics and Control, vol. 120 of Proc. Machine Learn. Res.
761–770 (PMLR, 2020).

20. Li, Y., He, H., Wu, J., Katabi, D. & Torralba, A. Learning compositional
Koopman operators for model-based control. In International Conference on
Learning Representations. https://openreview.net/forum?id=H1ldzA4tPr (2020).

21. Bachnas, A., Tóth, R., Ludlage, J. & Mesbah, A. A review on data-driven linear
parameter-varying modeling approaches: A high-purity distillation column
case study. J. Process Control 24, 272–285 (2014).

22. Karniadakis, G. E. et al. Physics-informed machine learning. Nat. Rev. Phys. 3,
422–440 (2021).

23. Manojlović, I. et al. Applications of Koopman mode analysis to neural
networks. arXiv preprint arXiv:2006.11765 (2020).

24. Krishnapriyan, A., Gholami, A., Zhe, S., Kirby, R. & Mahoney, M. W.
Characterizing possible failure modes in physics-informed neural networks.
Adv. Neural Inform. Process. Sys. 34 (2021).

25. Bar-Sinai, Y., Hoyer, S., Hickey, J. & Brenner, M. P. Learning data-driven
discretizations for partial differential equations. Proc. Natl Acad. Sci. 116,
15344–15349 (2019).

26. Pestourie, R., Mroueh, Y., Rackauckas, C., Das, P. & Johnson, S. G. Physics-
enhanced deep surrogates for PDEs. arXiv preprint arXiv:2111.05841 (2021).

27. Erichson, N. B., Muehlebach, M. & Mahoney, M. W. Physics-informed
autoencoders for Lyapunov-stable fluid flow prediction. arXiv preprint
arXiv:1905.10866 (2019).

28. Otto, S. E. & Rowley, C. W. Linearly recurrent autoencoder networks for
learning dynamics. SIAM J. Appl. Dynamical Syst. 18, 558–593 (2019).

29. Azencot, O., Erichson, N. B., Lin, V. & Mahoney, M. W. Forecasting
sequential data using consistent Koopman autoencoders. International
Conference on Machine Learning 475–485 (2020).

30. Dubois, P., Gomez, T., Planckaert, L. & Perret, L. Data-driven predictions of
the Lorenz system. Phys. D: Nonlinear Phenom. 408, 132495 (2020).

31. Asadi, K., Misra, D., Kim, S. & Littman, M. L. Combating the compounding-
error problem with a multi-step model. arXiv preprint arXiv:1905.13320 (2019).

32. Chen, R. T. Q., Rubanova, Y., Bettencourt, J. & Duvenaud, D. K. Neural
ordinary differential equations. Adv. Neural Inf. Process. Syst. 31 (2018).

33. Ruthotto, L. & Haber, E. Deep neural networks motivated by partial
differential equations. J. Math. Imaging Vis. 62, 352–364 (2020).

34. Queiruga, A., Erichson, N. B., Hodgkinson, L. & Mahoney, M. W. Stateful
ODE-Nets using basis function expansions. Adv. Neural Inf. Process. Syst. 34,
21770–21781 (2021).

35. Massaroli, S., Poli, M., Park, J., Yamashita, A. & Asama, H. Dissecting neural
ODEs. Adv. Neural Inf. Process. Syst. 33, 3952–3963 (2020).

36. Zhang, T. et al. ANODEV2: A coupled neural ODE framework. Adv. Neural
Inf. Process. Syst. 32, 5151–5161 (2019).

37. Weinan, E. A proposal on machine learning via dynamical systems. Commun.
Math. Stat. 5, 1–11 (2017).

38. Rubanova, Y., Chen, R. T. & Duvenaud, D. K. Latent ordinary differential
equations for irregularly-sampled time series. Adv. Neural Inf. Process. Syst.
32, 5320–5330 (2019).

39. Greydanus, S. J., Dzumba, M. & Yosinski, J. Hamiltonian neural networks.
Adv. Neural Inf. Process. Syst. 32 (2019).

40. Du, J., Futoma, J. & Doshi-Velez, F. Model-based reinforcement learning for
semi-markov decision processes with neural ODEs. Adv. Neural Inf. Process.
Syst. 33, 19805–19816 (2020).

41. Greydanus, S., Lee, S. & Fern, A. Piecewise-constant neural ODEs. arXiv
preprint arXiv:2106.06621 (2021).

42. Chen, R. T., Amos, B. & Nickel, M. Learning neural event functions for
ordinary differential equations. International Conference on Learning
Representations (2021).

43. Jia, J. & Benson, A. R. Neural jump stochastic differential equations. Adv.
Neural Inf. Process. Syst. 32, 9847–9858 (2019).

44. Queiruga, A. F., Erichson, N. B., Taylor, D. & Mahoney, M. W. Continuous-
in-depth neural networks. arXiv preprint arXiv:2008.02389 (2020).

45. Ott, K., Katiyar, P., Hennig, P. & Tiemann, M. ResNet after all: Neural ODEs
and their numerical solution. International Conference on Learning
Representations (2021).

46. Rico-Martinez, R., Krischer, K., Kevrekidis, I. G., Kube, M. C. & Hudson, J. L.
Discrete- vs. continuous-time nonlinear signal processing of Cu
electrodissolution data. Chem. Eng. Commun. 118, 25–48 (1992).

47. de Silva, B. et al. Pysindy: A python package for the sparse identification of
nonlinear dynamical systems from data. J. Open Source Softw. 5, 2104 (2020).

48. Kaptanoglu, A. A. et al. Pysindy: A comprehensive python package for robust
sparse system identification. J. Open Source Softw. 7, 3994 (2022).

49. Nakamura-Zimmerer, T., Gong, Q. & Kang, W. QRnet: Optimal regulator
design with LQR-augmented neural networks. IEEE Control Syst. Lett. 5,
1303–1308 (2021).

50. Darbon, J., Langlois, G. P. & Meng, T. Overcoming the curse of dimensionality
for some Hamilton-Jacobi partial differential equations via neural network
architectures. Res. Math. Sci. 7, 1–50 (2020).

51. Bartolucci, F. et al. Are neural operators really neural operators? frame theory
meets operator learning. Tech. Rep. Preprint: arXiv:2305.19913 (2023).

52. Raonic, B. et al. Convolutional neural operators for robust and accurate
learning of PDEs. Tech. Rep. Preprint: arXiv:2302.01178 (2023).

53. Martin, C. H. & Mahoney, M. W. Traditional and heavy-tailed self
regularization in neural network models. In Proceedings of the 36th
International Conference on Machine Learning, 4284–4293 (2019).

54. Martin, C. H. & Mahoney, M. W. Heavy-tailed Universality predicts trends in
test accuracies for very large pre-trained deep neural networks. In Proceedings
of the 20th SIAM International Conference on Data Mining (2020).

55. Martin, C. H., Peng, T. S. & Mahoney, M. W. Predicting trends in the quality
of state-of-the-art neural networks without access to training or testing data.
Nat. Commun. 12, 1–13 (2021).

56. Martin, C. H. & Mahoney, M. W. Post-mortem on a deep learning contest: a
simpson’s paradox and the complementary roles of scale metrics versus shape
metrics. arXiv preprint arXiv:2106.00734 (2021).

57. Hodgkinson, L., Simsekli, U., Khanna, R. & Mahoney, M. W. Generalization
bounds using lower tail exponents in stochastic optimizers. International
Conference on Machine Learning (2022).

58. Moin, P.Fundamentals of engineering numerical analysis (Cambridge
University Press, 2010).

59. LeVeque, R. J. & Leveque, R. J.Numerical methods for conservation laws, vol.
132 (Springer, 1992).

60. Dahlquist, G. Convergence and stability in the numerical integration of
ordinary differential equations. Mathematica Scandinavica 33–53 (1956).

61. Arnold, D. N. Stability, consistency, and convergence of numerical
discretizations. Encyclopedia of Applied and Computational Mathematics
1358–1364 (2015).

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01433-4 ARTICLE

COMMUNICATIONS PHYSICS | (2023) 6:319 | https://doi.org/10.1038/s42005-023-01433-4 | www.nature.com/commsphys 13

https://openreview.net/forum?id=vdv6CmGksr0
https://openreview.net/forum?id=vdv6CmGksr0
https://openreview.net/forum?id=H1ldzA4tPr
www.nature.com/commsphys
www.nature.com/commsphys

62. Kirby, R. M. & Silva, C. T. The need for verifiable visualization. IEEE
Computer Graph. Appl. 28, 78–83 (2008).

63. Thompson, D. B. Numerical methods 101-convergence of numerical models.
USGS Staff–Published Research 115 (1992).

64. Bottou, L. & Bousquet, O. The tradeoffs of large scale learning. Adv. Neural
Inf. Process. Syst. 20 (2008).

65. Hirsch, M. W., Smale, S. & Devaney, R. L. Differential equations, dynamical
systems, and an introduction to chaos (Academic press, 2012).

66. Chaitin-Chatelin, F. & Frayssé, V. Lectures on finite precision computations
(SIAM, 1996).

Acknowledgements
We would like to thank Annan Yu and Krishna Harsha Reddy Kothapalli for valuable
discussions and feedback. Moreover, we would like to thank all the reviewers for their
helpful and constructive feedback. A.S.K. was supported by Laboratory Directed Research
and Development (LDRD) funding under Contract Number DE-AC02-05CH11231 at
LBNL and the Alvarez Fellowship in the Computational Research Division at LBNL.
M.W.M. would like to acknowledge the DOE, NSF, and ONR for providing partial
support of this work. N.B.E. would like to acknowledge support from NSF (DMS-
2319621), DOE (AC02-05CH11231), and NERSC (DE-AC02-05CH11231). Our con-
clusions do not necessarily reflect the position or the policy of our sponsors, and no
official endorsement should be inferred.

Author contributions
A.S.K. and A.F.Q. contributed equally. A.S.K., A.F.Q., N.B.E., and M.W.M. all con-
tributed to the manuscript discussion.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s42005-023-01433-4.

Correspondence and requests for materials should be addressed to Aditi S.
Krishnapriyan.

Peer review information Communications Physics thanks Ljupco Todorovski and the
other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

This is a U.S. Government work and not under copyright protection in the US; foreign
copyright protection may apply 2023

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01433-4

14 COMMUNICATIONS PHYSICS | (2023) 6:319 | https://doi.org/10.1038/s42005-023-01433-4 | www.nature.com/commsphys

https://doi.org/10.1038/s42005-023-01433-4
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsphys

	Learning continuous models for continuous physics
	Results and discussion
	Example convergence�method
	Four prototypical dynamical systems
	Training�setup
	Results
	Interpolation: predicting fine-scale solutions from coarse training�data
	Results
	Extrapolation: predicting trajectories for new initial conditions
	Training�setup
	Results
	Irregularly sampled training�data
	Training�setup
	Results
	Sparse identification of nonlinear dynamical systems
	Training�Setup
	Results

	Conclusion
	Methods
	Criteria of Classical Numerical Analysis
	A convergence test for ODE-nets
	Error analysis in an idealized learning setting

	Data availability
	References
	Code availability
	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information

