
ActNN: Reducing Training Memory Footprint
via 2-Bit Activation Compressed Training

Jianfei Chen * 1 Lianmin Zheng * 1 Zhewei Yao 1 Dequan Wang 1

Ion Stoica 1 Michael W. Mahoney 1 Joseph E. Gonzalez 1

Abstract
The increasing size of neural network models has
been critical for improvements in their accuracy,
but device memory is not growing at the same
rate. This creates fundamental challenges for
training neural networks within limited memory
environments. In this work, we propose ActNN,
a memory-efficient training framework that stores
randomly quantized activations for back propaga-
tion. We prove the convergence of ActNN for gen-
eral network architectures, and we characterize
the impact of quantization on the convergence via
an exact expression for the gradient variance. Us-
ing our theory, we propose novel mixed-precision
quantization strategies that exploit the activation’s
heterogeneity across feature dimensions, samples,
and layers. These techniques can be readily ap-
plied to existing dynamic graph frameworks, such
as PyTorch, simply by substituting the layers. We
evaluate ActNN on mainstream computer vision
models for classification, detection, and segmenta-
tion tasks. On all these tasks, ActNN compresses
the activation to 2 bits on average, with negligi-
ble accuracy loss. ActNN reduces the memory
footprint of the activation by 12×, and it enables
training with a 6.6× to 14× larger batch size.
We implement ActNN as a PyTorch library at
https://github.com/ucbrise/actnn.

1. Introduction
Within the last three years, state-of-the-art machine learning
models have become over 4,000 times larger (Devlin et al.,
2018; Fedus et al., 2021). On the other hand, the memory
capacity of GPUs has increased relatively slowly, remaining
on the order of tens of gigabytes. This creates a fundamental

*Equal contribution 1UC Berkeley. Correspondence
to: Jianfei Chen <jianfeic@berkeley.edu>, Lianmin Zheng
<lmzheng@berkeley.edu>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

0 200 400 600 800
Batch Size

0

20

40

60

Tr
ai

ni
ng

T
hr

ou
gh

pu
t

14.0×

L0 L1
L2 L3 L4

L5

DTR
BLPA
swap
ActNN

Figure 1. Batch size vs. training throughput on ResNet-152. Red
cross mark means out-of-memory. The shaded yellow region
denotes the possible batch sizes with full precision training. ActNN
achieves significantly larger maximum batch size over other state-
of-the-art systems and displays a nontrivial trade-off curve.

barrier to the development and training of neural networks.

Activation compressed training (ACT) is a promising ap-
proach to reduce the training memory footprint (Chakrabarti
& Moseley, 2019; Fu et al., 2020). During training, all
layers’ activations need to be kept in the memory for com-
puting the gradients. ACT saves memory by compressing
activations to lower numerical precision via quantization.
It was proposed in BLPA (Chakrabarti & Moseley, 2019),
and it was later extended by TinyScript (Fu et al., 2020)
with non-uniform quantization strategies. These prior works
succeeded in training ResNet-50 with 4-bit activations.

However, applications of ACT are hindered by several draw-
backs. First, the convergence behavior of ACT methods
is not well understood (except for an analysis for multi-
layer perceptrons (Fu et al., 2020), under strong mean-field
assumptions (Yang & Schoenholz, 2017)). Second, prior
works mostly focus on dedicated architectures, e.g., a cus-
tomized version of the pre-activation ResNet (He et al.,
2016b), limiting their generality. Third, existing quantiza-
tion strategies are not specifically designed for ACT, making
their compression ratio suboptimal.

In this work, we propose ActNN, a framework for ACT that
overcomes all the challenges. ActNN stores randomly quan-
tized activations to compute the gradients. Theoretically, we
view the gradient computed by ActNN (“ActNN gradient”)
as a stochastic approximation of the gradient computed with
the full-precision activation (“FP gradient”). We show that
the ActNN gradient is an unbiased estimator of the FP gradi-

https://github.com/ucbrise/actnn


ActNN: Reducing Training Memory Footprint via 2-Bit Activation Compressed Training

ent, and we prove ActNN’s convergence for general model
architectures. This enables one to apply ACT to general
problems with theoretical guarantees.

We characterize the impact of quantization on the conver-
gence via an exact expression for the gradient variance.
Better quantization strategies reduce the gradient variance,
and can achieve satisfactory convergence with fewer bits. In-
spired by the theory, we design novel quantization strategies
to exploit activations’ heterogeneity across feature dimen-
sions, samples, and layers. This includes a per-group quan-
tizer and a fine-grained mixed precision algorithm, which ap-
proximately minimizes the gradient variance under a given
memory budget. ActNN tunes the quantization strategy on-
the-fly. On a wide range of tasks, including image classifi-
cation, semantic segmentation, and object detection, ActNN
compresses activations to 2 bits, with negligible (< 0.5%)
accuracy loss. ActNN even converges and produces reason-
able results with only 1.25-bit activations. This improves
significantly from prior work (Chakrabarti & Moseley, 2019;
Fu et al., 2020), which only converges with 4 bits.

We implement our method as a library based on PyTorch.
The library consists of a collection of activation compressed
layers. Memory saving training can be achieved with sim-
ply layer substitution, e.g., replace torch.nn.Conv2d
with actnn.Conv2d. The library also provides several
optimization levels to exploit the trade-off between memory
saving and training speed. In practice, ActNN reduces the
activation memory by 12×, enabling training with a 6.6×
to 14× larger batch size on the same GPU. We compare
ActNN with existing systems, where ActNN achieves a
much larger batch size (Fig. 1). ActNN also enables training
larger models without additional computational resources.
With a fixed amount of memory, ActNN scales the training
of ResNet to 6.4× deeper, or 3.7× wider, or 3.1× higher
resolution.

To summarize, our contributions are in three folds:
1. A general convergence theory for ACT;
2. An heterogeneity-aware quantization strategy that

achieves 2-bit compression;
3. An efficient implementation of activation compressed

layers in PyTorch.

2. Related Works
Quantized Training (QT) Quantization-aware train-
ing (Zhou et al., 2016; Choi et al., 2018; Zhang et al., 2018;
Jacob et al., 2018; Dong et al., 2019) or fully-quantized train-
ing (Micikevicius et al., 2018; Wang et al., 2018b; Chen
et al., 2020a; Sun et al., 2020) aim to reduce the computa-
tional cost with quantization at the inference or training time.
As a side effect, the training memory footprint can also be
reduced. However, QT is a more challenging task to solve,

as computational kernels must directly support quantized
tensors. In contrast, ACT only considers the storage, and it
can utilize more flexible quantization strategies for better
compression. Furthermore, QT and ACT are complemen-
tary. One can utilize QT to accelerate the training, and apply
ACT to further reduce the memory footprint.

Model / Gradient Compression Model compression (Han
et al., 2016) and gradient compression (Lin et al., 2018)
compress the weight and gradient to reduce the storage
and communication overhead. However, activations have
different properties with the weight and gradient, e.g., it has
a “sample” axis. Moreover, ACT is more sensitive to the
compression speed, as activations need to be compressed
on-the-fly, and they are typically much larger than weights
and gradients. ActNN’s compression strategy is designed
specifically for these unique properties.

Memory-Efficient Training Systems Gradient checkpoint-
ing (Chen et al., 2016; Jain et al., 2019; Shah et al., 2020;
Kirisame et al., 2020) trades computation for memory by
dropping some of the activations in the forward pass and
recomputing them in the backward pass. Swapping (Meng
et al., 2017; Huang et al., 2020; Wang et al., 2018a; Peng
et al., 2020; Ren et al., 2021) utilizes the huge amount of
available CPU memory by swapping tensors between CPU
and GPU. Model-parallel training (Shoeybi et al., 2019; Lep-
ikhin et al., 2020; Wang et al., 2019) partitions the model
across GPUs, so each GPU only stores a fraction of layers.
All these methods save memory by storing fewer tensors in
GPU. In contrast, ActNN compresses saved tensors, and is
complementary to these approaches.

3. Formulation and Theory
In this section, we present a mathematical formulation of
ActNN. Then, we establish its convergence by viewing it
as a special case of stochastic gradient descent (SGD). The
proofs of all theorems as well as a table of notations can be
found in Appendix A.

3.1. Problem Formulation

Consider training an L-layer neural network on a dataset
D. In each training iteration, we sample a minibatch (X,Y)

from the dataset. Given the input H(0) = X, the l-th layer
of the network is defined in a general form

H(l) = F(l)
(
H(l−1); Θ(l)

)
, (1)

where H(l) is a N ×D(l)-dimensional feature map, N is the
batch size, D(l) is the number of features, and Θ(l) is a vec-
tor of parameters. Given the minibatch loss L = l(H(L),Y),
we compute the gradient ∇Θ(l)L, and update the parameter
with SGD (Bottou, 2010). Since the gradient is always taken
with the loss L, we simply denote the activation / parameter
gradient as ∇H(l) and ∇Θ(l) . To compute the gradient, the



ActNN: Reducing Training Memory Footprint via 2-Bit Activation Compressed Training

F(1) F(2) · · · F(L) L G(L) · · · G(2) G(1)

Θ(1) Θ(2) Θ(L) ∇̂
Θ(L) ∇̂

Θ(2) ∇̂
Θ(1)

H(0) H(1) H(2) H(L−1) H(L) ∇
H(L) ∇̂

H(L−1) ∇̂
H(2) ∇̂

H(1)

Ĉ
(1)Ĉ

(2)

Ĉ
(L)

Full-Precision Tensor

Compressed Tensor

Compressor

Decompressor

Active Memory

Figure 2. ActNN’s computational graph. Nodes: operations; Edges: tensors. Edges that intersect with the dashed box are kept in memory.

back-propagation can be expressed as

∇H(l−1) ,∇Θ(l) = G(l)
(
∇H(l) ,C(H(l−1),Θ(l))

)
, (2)

where C(·) is the context, i.e., the information that needs to
be kept in memory for back propagation. Essentially, the
function G(l) (·) takes the gradient of the output ∇H(l) and
the context, and computes the gradient of the input. We
refer this approach as full-precision (FP) training, and ∇H(l)

and ∇Θ(l) as the FP gradient. As a special case, consider a
linear layer H(l) = H(l−1)Θ(l) and its gradient

∇H(l−1) = ∇H(l)Θ
(l)>, ∇Θ(l) = H(l−1)>∇H(l) . (3)

In this case, we have C(H(l−1),Θ(l)) = (H(l−1),Θ(l)).

3.2. Activation Compressed Training

The context, in particular the activation, dominants the mem-
ory overhead for training neural networks on many tasks.
To address this, instead of saving the full-precision context,
ActNN saves a compressed version Ĉ(H(l−1),Θ(l)). In prin-
ciple, any compression algorithm, either lossy or lossless,
can be used here. In this paper, however, we solely focus on
compressing by quantizing the context to lower numerical
precision, since its overhead is relatively small. In this way,
the compressed context Ĉ is a lower precision version of
the context C. With the compressed context, we define the
activation-compressed (AC) gradient as:

∇̂H(l−1) , ∇̂Θ(l) = G(l)
(
∇̂H(l) , Ĉ(H(l−1),Θ(l))

)
, (4)

where ∇̂H(L) = ∇H(L) . ActNN uses the AC gradient to
update parameters. See Fig. 2 for an illustration. Notice that,
FP training and ActNN share the same forward propagation
Eq. (1), so their behavior is identical at inference time.

3.3. Convergence Theory

Now we study the convergence of ActNN. Assume that Ĉ is
quantized randomly, such that Ĉ can be viewed as a stochas-
tic estimator of C. In this way, both FP and ActNN can be
considered as SGD algorithms, with different stochastic gra-
dients. Formally, let Θt = {Θ(l)}Ll=1 be a flattened vector
of parameters at the t-th iteration, and ∇Θt = {∇

Θ
(l)
t
}Ll=1 /

∇̂Θt = {∇̂
Θ

(l)
t
}Ll=1 be the corresponding FP / AC gradient,

defined as Eq. (2) / Eq. (4). Furthermore, let LD(Θ) be the
batch loss on the entire dataset. Then, both ∇Θ and ∇̂Θ

are stochastic estimators of the batch gradient ∇ΘLD(Θ).
The stochasticity of the FP gradient ∇Θ comes solely from
random sampling of the minibatch, which we assume to be
unbiased, i.e., E [∇Θ] = ∇ΘLD(Θ). On the other hand, the
stochasticity of the AC gradient ∇̂Θ further comes from the
random quantization of the context. The question is whether
the AC gradient can be made unbiased as well, and for this,
the answer is positive.
Theorem 1. (Unbiased Gradient) There exists random
quantization strategies for Ĉ, such that

E
[
∇̂Θ

]
= ∇ΘLD(Θ).

Intuitively, according to the chain rule, the back-propagation
Eq. (2) can be rewritten as

∇
H

(l−1)
ij

=
∑
kl

∂H
(l)
kl

∂H
(l−1)
ij

∇
H

(l)
kl

,∇
Θ

(l)
i

=
∑
kl

∂H
(l)
kl

∂Θ
(l)
i

∇
H

(l)
kl

. (5)

Take Ĉ(H(l−1),Θ(l)) = Q({∂H(l)
kl
/∂H(l−1)

ij , ∂H(l)
kl
/∂Θ

(l)
i }) ,

where Q(·) is an unbiased quantizer. As Eq. (5) is just
a linear operation, we can show that ∇̂H(l−1) and ∇̂Θ(l)

are unbiased as long as Ĉ(H(l−1),Θ(l)) and ∇̂H(l) are unbi-
ased, which can be proven by induction. The linear layer
∇̂Θ(l) = Q(H(l−1))>∇̂H(l) is especially simple, where we
can just use Q(H(l−1)) as the compressed context. Gen-
eral layers are more complicated as directly storing the
Jacobian matrices {∂H(l)

kl
/∂H(l−1)

ij , ∂H(l)
kl
/∂Θ

(l)
i } might be pro-

hibitive. However, we show in Appendix B that for most
frequently used layers, including convolution, pointwise,
normalization, and up/down sampling, can be approximated
in an unbiased way with a practical cost.

Given an unbiased gradient, we now establish the conver-
gence of ActNN. Assume the SGD iteration takes the form
Θt+1 ← Θt − α∇̂Θt , starting from an initial model Θ1, and

A1. The loss LD(Θ) is continuous differentiable and
∇LD(Θ) is β-Lipschitz continuous.
A2. LD(Θ) is bounded below by Linf .
A3. There exists σ2 > 0, such that ∀Θ, Var

[
∇̂Θ

]
≤ σ2,

where for any vector x, Var [x] := E ‖x‖2 − ‖E [x]‖2.

The following convergence theorem is a standard result for
SGD, taken from Theorem 4.8 in Bottou et al. (2018).
Theorem 2. (Convergence) If A1-A3 holds, and 0 < α ≤ 1

β ,
take the number of iterations t uniformly from {1, . . . , T},
where T is a maximum number of iterations. Then

E ‖∇LD(Θt)‖2 ≤
2(L(Θ1)− Linf )

αT
+ αβσ2. (6)



ActNN: Reducing Training Memory Footprint via 2-Bit Activation Compressed Training

Eq. (6) is composed of two terms. The first term converges
to zero as the number of iterations T goes to infinity, while
the second term does not. Intuitively, the algorithm con-
verges to the neighborhood of a stationary point, where the
radius is controlled by the gradient variance. Note that un-
like the previous work (Fu et al., 2020), the convergence of
ActNN is established for general network architectures, not
just for multi-layer perceptrons.

3.4. Gradient Variance

According to Thm. 2, gradient variance plays a critical role
to the quality of the converged solution. We investigate how
does the quantization affect the variance, so we can design
quantization strategies accordingly. Let GH(·) and GΘ(·)
be components of G(·), corresponding to ∇H and ∇Θ. For
simplicity, let C(l) and Ĉ

(l)
be the full-precision and com-

pressed context. Further, define G
(l∼m)
Θ

(
∇̂H(m) , Ĉ

(m)
)

= G
(l)
Θ

(
G

(l+1)
H

(
· · ·G(m)

H

(
∇̂H(m) , Ĉ

(m)
)
· · · ,C(l+1)

)
,C(l)

)
,

which is the gradient ∇̂Θ(l) computed from ∇̂H(m) , using
the compressed context only at the m-th layer, and the full-
precision context for all the other layers. Then, the gradient
variance is specified by the following theorem:
Theorem 3. (Gradient Variance)

Var
[
∇̂Θ(l)

]
= Var [∇Θ(l) ] + (7)
L∑

m=l

E
[
Var

[
G

(l∼m)
Θ

(
∇̂H(m) , Ĉ

(m)
) ∣∣∣ ∇̂H(m)

]]
.

Thm. 3 disentangles all stochasticities in the gradient. The
first term in Eq. (7) is just the FP gradient variance, and it
accounts for the minibatch sampling. All the rest terms ac-
count for the noise of utilizing compressed context. Specif-
ically, the term with G

(l∼m)
Θ

(
·, Ĉ(m)

)
is the variance in-

troduced by utilizing the compressed context Ĉ
(m)

. See
Appendix C.2 for a visualization of these terms.

The significance of Thm. 3 is in two folds. Firstly, it tells
how much extra variance does activation compression intro-
duce. If the activation compression variance is much smaller
than the origin minibatch sampling variance, according to
Thm. 2, we are confident that ActNN will converge similarly
with FP training. In this case, we may reduce the numerical
precision for free, as the quantization variance is negligible.
Secondly, having an exact measurement of the variance, we
can design quantization strategies to explicitly minimize it,
as we shall see soon.

4. Compression Strategy
As mentioned earlier, ActNN compresses the activation
by quantizing them to lower precision. As the number of
bits goes down, the compression ratio gets better, but the
gradient variance also grows.

(a)

0 5 10 15 20

101

103

Fr
eq

.

(b)

0.000 0.002 0.004 0.006 0.008 0.010 0.012
100

101

Fr
eq

.

(c)

0 10 20 30 40 50
Layer

10−6

10−4

10−2

Se
ns

it
iv

it
y

Figure 3. Heterogeneity in a ResNet50’s activations. (a) Histogram
of the per-group range at the conv 2 2 1 layer; (b) Histogram of
the per-sample sensitivity at the same layer; (c) The sensitivity per
dimension for each layer.

The activation is highly heterogeneous. As illustrated in
Fig. 3, the activation’s magnitude, sensitivity, and dimen-
sionality vary across different feature dimensions, samples
in the batch, and network layers. Therefore, it is suboptimal
to use the same quantization scheme for all the elements,
as done in prior works (Chakrabarti & Moseley, 2019; Fu
et al., 2020). We design ActNN’s quantization strategy to be
aware of these heterogeneities. Based on our theory, ActNN
tunes its quantization strategy on-the-fly to approximately
minimize the variance defined as Eq. (7). As we mentioned
in Sec. 2, these techniques exploit unique characteristics of
the activation compression problem, and differ from existing
methods for quantized training and model compression.

4.1. Per-group Quantization

First, we propose a per-group quantization strategy to tackle
the distinct numerical range across feature dimensions.
Given an activation tensor H ∈ RN×D, we partition its
dimensions into groups hni, where each group has G ele-
ments. The numbers are quantized to b-bit unsigned integers,
or B = 2b−1 quantization bins. For each element, we com-
pute the minimum and maximum, and scale the activation:

ūni ← B (hni − Zni) /Rni,
where Rni = max{hni} − min{hni} is the range, Zni =

min{hni} is the zero point, and ūni is the activation scaled
to [0, B]. Convert ūni to integers with stochastic round-
ing (Courbariaux et al., 2015) and store the result in memory
as

ûni = dūnie w.prob. ūni − būnic otherwise būnic .
During back-propagation, the activation is dequantized as

ĥni = ûniRni/B + Zni.

Due to the unbiased nature of stochastic rounding, it is clear
that E [ûni] = ūni and E

[
ĥni

]
= hni.

Assuming that ūni − būnic ∼ U(0, 1), the quantization vari-
ance is Var

[
ĥni

]
=

R2
ni

B2 Var [ûni] =
R2

niG

6B2 . The advantage



ActNN: Reducing Training Memory Footprint via 2-Bit Activation Compressed Training

of per-group quantization (PG) can be seen through the
variance. Existing quantization strategies (Chakrabarti &
Moseley, 2019; Fu et al., 2020) use a single range and zero-
point per tensor, which can be viewed as a single group
with the range R = maxniRni. However, as illustrated
in Fig. 3(a), the range for most groups is far smaller than
R. Therefore, this strategy uses unnecessarily large range
for most groups, significantly enlarging the variance. In
practice, we set G = 256 and store the per-group range and
zero points in bfloat16, so each group costs extra 32 bits,
which is 0.125 bits on average.

4.2. Fine-Grained Mixed-Precision

To further reduce the variance, ActNN uses mixed-precision
quantization strategies, that choose the numerical precision
adaptively for each sample and each layer. Let b(l)n be the
number of bits for sample n’s activation at layer l, H

(l)
n .

Let B(l)
n be the corresponding number of quantization bins.

Theoretically, b(l)n should be chosen to minimize the quan-
tization variance specified as the second term in Eq. (7).
However, the full gradient variance is too complicated to be
tractable. Instead, ActNN minimizes the following objective

Var =

L∑
l=1

E
[
Var

[
G

(l)
Θ

(
∇̂H(l) , Ĉ

(l)
) ∣∣∣ ∇̂H(l)

]]
, (8)

which omits some terms from Eq. (7). Firstly, it omits
the minibatch sampling term, which is not affected by the
quantization scheme. Secondly, it only keeps the impact
to ∇̂H(l) from Ĉ

(l)
, omitting all the more distant contexts

Ĉ
(m)

(m > l). As studied in Appendix C.2, the impact di-
minishes as the parameter and context become more distant.
We find optimizing with this approximate objective already
significantly reduces the true gradient variance.

Regarding the specific form of variance, we take linear lay-
ers as an example, where

Var
[
G

(l)
Θ

(
∇̂H(l) , Ĉ

(l)
) ∣∣∣ ∇̂H(l)

]
= Var

[
Ĥ

(l−1)>∇̂H(l)

]
.

Simplifying the notations by omitting the conditional vari-
ance, layer indices, and let ∇ := ∇̂H(l) , we have

Var
[
Ĥ
>∇
]

=
∑
ij

Var[
∑
n

ĥni∇nj ] =
∑
ijn

∇2
njVar

[
ĥni

]
=
G

6

∑
ijn

∇2
njR

2
ni/B

2
n =

G

6

∑
n

‖∇n‖2 ‖Rn‖2 /B2
n, (9)

where G and Rni are the group size and per-group range
defined in Sec. 4.1, and Rn = {Rni}. For each sample, the
variance depends on the gradient magnitude ‖∇n‖2 and the
range ‖Rn‖2.

In general, we can minimize the overall variance under a bits
budget btotal by allocating more bits to sensitive layers and
samples, described as the following optimization problem:

min
b
(l)
n

L∑
l=1

N∑
n=1

w(l)
n /B(l)

n

2
s.t.

L∑
l=1

D(l)
N∑

n=1

b(l)n ≤ btotal, (10)

where B(l)
n = 2b

(l)
n − 1 as defined earlier, D(l) is the feature

dimensionality, and w(l)
n is the sensitivity for sample n at

layer l. For linear layers, we have w(l)
n = G

6
‖∇̂

h
(l)
n
‖2‖R(l)

n ‖2

by Eq. (9). We derive the sensitivity for other layers in
Appendix B.

Mixed-precision can reduce the gradient variance signifi-
cantly. According to Fig. 3(b, c), the sensitivity is diverse
across samples, and the per-dimension sensitivity varies by
several orders of magnitudes across layers. Mixed-precision
considers these heterogeneities. Furthermore, with mixed-
precision, the average number of bits is no longer limited
to integers, enabling a more fine-grained tradeoff between
compression ratio and gradient variance.

4.3. Run-time Adaptation

To best utilize the data characteristics, ActNN tunes the
mixed-precision quantization strategy at run time. In each
SGD iteration, the tuning happens in two stages:

1. (per-sample allocation) During the forward propagation
for each layer l, ActNN computes and stores the sensitivity
w

(l)
n for each sample. Then, it computes the optimal b(l)n for

each sample under a fixed bits budget b(l) for this layer, by
solving Prob. (10). b(l)n is used to compress the activation.

2. (per-layer allocation) After finishing the back propa-
gation, ActNN solves Prob. (10) again for all the layers
together, and sets b(l) ←

∑
n b

(l)
n .

Prob. (10) is a discrete optimization problem, and can be
solved exactly by dynamic programming (DP). However,
DP is too costly to be computed in each SGD iteration. In-
stead, ActNN adopts a simple greedy algorithm. It starts
with high numerical precision, e.g., b(l)n = 8 for all layers
and samples, and progressively reduces the precision until
it fits in the total bits budget. In each move, it chooses a b(l)n
to reduce by one, such that the increment of variance is min-
imal. With a binary heap for picking up the optimal move,
this greedy algorithm runs in O(NL log2(NL)), where N
is the batch size, and L is the model depth.

Finally, the sensitivity w(l)
n might depend on the gradient

magnitude for each sample, which is unknown by the time
we compress. ActNN provides two options for estimating
the gradient magnitude. The first option uses the stale gra-
dient magnitude in the last epoch. The second option uses
the moving average of gradient magnitude across samples.
Both strategies work well in practice.

5. System Implementation
We implement ActNN as a library based on PyTorch (Paszke
et al., 2019). The system includes a collection of activation
compressed layers. Using the system only requires substi-



ActNN: Reducing Training Memory Footprint via 2-Bit Activation Compressed Training

class RegularLayer: 
def forward(context, input):

context.save_for_backward(input)
return compute_output(input)

def backward(context, grad_output):
input = context.saved_tensors
return compute_gradient(grad_output, input)

class ActivationCompressedLayer:
def forward(context, input):

context.save_for_backward(compress(input))
return compute_output(input)

def backward(context, grad_output):
input = decompress(context.saved_tensors))
return compute_gradient(grad_output, input)

Figure 4. Pseudo code for activation compressed layers.

Table 1. Usability Comparison of Memory Saving Systems. The
systems include Checkmate (Jain et al., 2019), DTR (Kirisame
et al., 2020), MONet (Shah et al., 2020), SwapAdvi-
sor (Huang et al., 2020), Capuchin (Peng et al., 2020), and
BLPA (Chakrabarti & Moseley, 2019). Remat.=Rematerialization,
Comp.=Compression, AOT=ahead-of-training.

System Method Arbitrary Dynamic Zero AOT Standalone
Graph Exec. Overhead Package

Checkmate Remat. yes no no yes
MONet Remat. yes no no yes

DTR Remat. yes yes yes no
SwapAdvisor Swap yes no no no

Capuchin Swap yes yes yes no
BLPA Comp. no no yes yes
ActNN Comp. yes yes yes yes

tuting all PyTorch’s default layers with ActNN’s layers (e.g.,
replace all torch.nn.Conv2d with actnn.Conv2d).
This substitution can be done automatically with a model
converter. The system also provides different optimization
levels to control the trade-off between memory and speed.

5.1. Activation Compressed Layers

Fig. 4 shows the pseudo-code for regular layers and activa-
tion compressed layers. A regular layer saves full-precision
activations into its context, while an activation compressed
layer compresses the activations before saving them. There-
fore, the memory required for saving context is reduced.
We implement highly-optimized CUDA kernels for com-
pression and decompression, which quantize floating-point
numbers into integers and compress them into bit streams.

Tab. 1 compares the usability of ActNN against other mem-
ory saving systems. ActNN’s layers can be easily plugged
into existing deep learning frameworks without modifying
the frameworks themselves. The layers are fully compatible
with existing features of PyTorch, such as dynamic execu-
tion and auto-differentiation. In contrast, advanced swap-
ping and tensor rematerialization methods require heavy

Table 2. Optimization levels for ActNN.

Level Compression Strategy Bits

L0 Do not compress 32
L1 per-group quantization for conv. layers 4, 32
L2 per-group quantization 4
L3 L2 + fine-grained mixed-precision 2
L4 L3 + swapping 2
L5 L4 + defragmentation 2

modification of the frameworks. Another benefit of ActNN
is not introducing any ahead-of-training overhead. In con-
trast, some systems (e.g., Checkmate, MONeT, SwapAdvi-
sor) require non-trivial ahead-of-training overhead to solve
expensive optimization problems, which can take up to
hours.

5.2. Optimization Levels

There is a trade-off between memory saving and training
speed. More overhead will be introduced for saving more
memory. To exploit this trade-off, ActNN provides 6 opti-
mization levels. Higher levels can save more memory but
with more overhead.

Tab. 2 lists these optimization levels. L1 uses per-group
quantization to compress convolutional layers and leaves all
other layers unchanged, while L2 uses per-group quantiza-
tion for all the layers. L3 further adds fine-grained mixed-
precision, which achieves a better compression ratio with
some additional computational overhead. L4 combines com-
pression with swapping. We swap out all compressed acti-
vations to CPU memory during the forward pass and swap
them in during the backward pass. At L5, we improve the
memory allocator to reduce fragmentation. PyTorch uses a
caching allocator to reuse GPU buffers. This makes alloca-
tion faster but introduces a serious memory fragmentation
issue. At this level, we disable this caching allocator for
large tensors to reduce fragmentation.

6. Experiments
In this section, we evaluate ActNN on a wide range of tasks
and compare it with other memory-saving systems. We
use open-source model implementations and recipes for all
tasks. Detailed experimental setup is in Appendix C.1. The
training logs for all the models we used are available at
https://wandb.ai/actnn.

6.1. Quantization Strategy

We study the impact of activation compression on the accu-
racy and demonstrate our heterogeneity-aware quantization
strategies. The baselines are full-precision (FP) training and
BLPA (Chakrabarti & Moseley, 2019), a per-tensor quanti-
zation strategy with fixed numerical precision. To compare

https://wandb.ai/actnn


ActNN: Reducing Training Memory Footprint via 2-Bit Activation Compressed Training

1 1.5 2 2.5 3 4
Bits

10−3

10−2

10−1

100

101

G
ra

d.
V

ar
.

1 1.5 2 2.5 3 4
Bits

65

66

67

68

69

70

71

Te
st

A
cc

.
1 1.5 2 2.5 3 4

Bits

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Tr
ai

ni
ng

L
os

s

1 1.5 2 2.5 3 4
Bits

10−2

10−1

100

101

102

G
ra

d.
V

ar
.

−1 0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
×1016

Sample
FP
BLPA
ActNN (L2)
ActNN (L2.5)
ActNN (L3)

(a) Gradient variance on CIFAR-100 (b) Testing accuracy on CIFAR-100 (c) Testing loss on CIFAR-100 (d) Gradient variance on ImageNet

Figure 5. Ablation study on the quantization strategy. BLPA diverges with 1 and 2 bits. The gradient variance is calculated at the 10th
epoch for CIFAR-100 and the 50th epoch for ImageNet. Sample=minibatch sampling, FP=full precision.

quantization strategies, we use ActNN (L2, L3) listed in
Tab. 2. ActNN (L4, L5) do not further compress the acti-
vation, so they have identical behavior with ActNN (L3).
We also add an ActNN (L2.5) for comparison, which only
allocates bits between samples while keeping all the layers
with the same bits per dimension.

We perform the ablation studies on ResNet-56 (He et al.,
2016b) on CIFAR-100 (Krizhevsky & Hinton, 2009), and
ResNet-50 (He et al., 2016a) on ImageNet (Deng et al.,
2009). We also provide results on CIFAR-10 in Ap-
pendix C.3 for reference. The average number of bits is var-
ied between {1, 1.25, 1.5, 1.75, 2, 2.5, 3, 4}. Non-integer
bits is only supported by mixed-precision approaches,
namely, ActNN (L2.5, L3). Each configuration is repeated
by 5 times on CIFAR-100, and by once on ImageNet.
Fig. 5(a,d) shows the gradient variance from both minibatch
sampling (“Sample”) and activation compression. The acti-
vation compression variance increases exponentially as the
number of bits decreases, as analyzed in Eq. (9). However,
better algorithms achieve lower variance under a given bits
budget. On ImageNet, the required bits to reach a variance
below 2 is 4-bit for BLPA, 2-bit for ActNN (L2), 1.75-bit
for ActNN (L2.5), and 1.5-bit for ActNN (L3). At the ex-
treme 1-bit case, mixed-precision ActNN (L2.5, L3) fall
back to ActNN (L2), since each number needs at least 1 bit
to encode. This can be potentially improved by allowing the
bits to go below 1 bit, e.g., with product quantization (Stock
et al., 2020), which we leave as future work.

The validation accuracy (Fig. 5(b)) and the training loss
(Fig. 5(c)) align with the gradient variance results, where
BLPA needs 4-bit to achieve near-lossless accuracy, and
ActNN only needs 2-bit. These results support our theo-
retical analysis (Thm. 2), where the gradient variance can
be used as a surrogate of the approximation quality. Tab. 3
shows the results on ImageNet. ActNN significantly outper-
forms BLPA. BLPA achieves near-lossless result at 4-bit,
and diverges at 3-bit, while ActNN (L2.5, L3) are still loss-
less at 2-bit. The result of BLPA at 4-bit is on par with
ActNN (L3) with only 1.5 bits. Remarkably, ActNN con-

0 10 20 30 40 50 60 70 80 90

Epoch

20

40

60

80

V
a
l.

A
cc

.

Method

Stale

Moving Average

Figure 6. Ablation study on the gradient estimation strategy.

verges and gives reasonable results even at the extreme
1.25-bit setting. This shows the robustness of our quantiza-
tion strategy. Another relevant work, TinyScript (Fu et al.,
2020), utilizes non-uniform quantization intervals for acti-
vation compression. TinyScript has no public code, and it
reports 7.74% top-5 error with 3-bit, which is on par with
ActNN with 1.25-bit.

As we mentioned in Sec. 2, ActNN can be combined with
other quantized training approaches. Here, we demonstrate
this idea by combining ActNN with a mixed-precision train-
ing library, AMP (Nvidia, 2019). In this setting, AMP
accelerates the training by computing the convolutions us-
ing 16-bit floating point numbers. We further apply ActNN
upon AMP to compress the saved activation, reducing the
memory footprint. The result is shown in Table 4. ActNN
works well with AMP, and the accuracy is not affected.

We also conduct an ablation study of the gradient estimation
strategy discussed in Sec. 4.3, which is used for ActNN (L3).
The result is shown in Fig. 6, where “Stale” estimates the
gradient magnitude with stale gradients, and “Moving Av-
erage” averages the gradient across training samples. Both
strategies work well in practice, and there is not perceivable
differences. We use the “Moving Average” strategy in all
our experiments for its simplicity.

6.2. Memory Saving and Computational Overhead

Next, we measure the memory saving and the overhead in-
troduced by ActNN. The experiments are done with PyTorch



ActNN: Reducing Training Memory Footprint via 2-Bit Activation Compressed Training

Table 3. ResNet-50 on ImageNet. N/A: not available; Div.: di-
verge; “-”: skipped since lower precision achieves lossless results.

Bits 32 4 3 2 1.5 1.25

FP 77.1 N/A N/A N/A N/A N/A
BLPA N/A 76.6 Div. Div. N/A N/A

ActNN (L2) N/A - 77.4 0.1 N/A N/A
ActNN (L2.5) N/A - - 77.1 75.9 75.1
ActNN (L3) N/A - - 76.9 76.4 75.9

Table 4. ActNN with mixed precision training. Act. Bits indicates
the average number of bits for the saved activation.

Method Act. Bits Val. Acc.

FP 32 77.1
AMP 16 77.3

ActNN (L2) + AMP 4 77.1
ActNN (L3) + AMP 2 76.9

v1.7 and an AWS g4dn.4xlarge instance, which has a
16GB NVIDIA T4 GPU and 64GB CPU memory.

Tab. 5 shows the memory usage right before backward pass.
The activation memory reaches its peak at this point. For
both models, activations consume over 90% of the total
memory. This justifies the potential of activation com-
pressed training. ActNN compresses activation memory
by 12×. This matches the theoretical value. Take a Conv-
BN-ReLU block as example, FP takes 32 bits (Conv) + 32
bits (BN) = 64 bits, while ActNN takes 2.125 bits (Conv) +
2.125 bits (BN) + 1 bit (ReLU) = 5.25 bit. The extra 0.125
bit is used to store the zero point and scale for each group.
The compression ratio is 64/5.25 ≈ 12.

We compare the training throughput of ActNN against other
memory saving systems in Fig. 1 and Fig. 7. Each curve
shows the trade-off between memory saving and training
speed for one system. “DTR” is dynamic tensor remateri-
alization (Kirisame et al., 2020), a state-of-the-art remate-
rialization method for dynamic graphs. DTR runs out-of-
memory very soon when trying to increase the batch size.
“BLPA” is the system implemented in Chakrabarti & Mose-
ley (2019). It only supports a dedicated ResNet architecture,
so we cannot run it on DenseNet. Further, its dedicated
design is not compatible with fused high-performance ker-
nel libraries, so its training speed is very slow. “CAP” is
the Capuchin system based on swapping and recomputation
(Peng et al., 2020). It is not open-source, so we get relative
overhead numbers from its paper and compute the scaled
training throughput. Because our system runs in dynamic
graph mode, we use Capuchin’s numbers in eager mode as
a fair comparison. “swap” is a simple swapping strategy
that swaps all activations to the CPU. However, the CPU
memory is finite, so it cannot increase the batch size un-
limitedly. “ActNN” is our system with 6 different levels

Table 5. Memory usage before backward pass. “Total Mem.” in-
cludes model parameters, optimizer states, input data and activa-
tion. “Act. Mem.” includes activation for all layers except the final
loss layer. R=memory saving ratio; OOM=out of memory.

Network Batch Total Mem. (GB) Act. Mem. (GB)
FP ActNN (L3) R FP ActNN (L3) R

ResNet-152

32 6.01 1.18 5× 5.28 0.44 12×
64 11.32 1.64 7× 10.57 0.88 12×
96 OOM 2.11 / OOM 1.32 /

512 OOM 8.27 / OOM 7.01 /

FCN-HR-48

2 5.76 1.39 4× 4.76 0.39 12×
4 10.52 1.79 6× 9.52 0.79 12×
6 OOM 2.17 / OOM 1.18 /

20 OOM 4.91 / OOM 3.91 /

(a)
ResNet-50

0 200 400 600 800 1000
Batch Size

0

50

100

Tr
ai

ni
ng

T
hr

ou
gh

pu
t

6.6×

L0
L1

L2 L3
L4

L5

DTR
BLPA
CAP
swap
ActNN

(b)
WideResNet-
101

0 200 400 600
Batch Size

0

20

40

Tr
ai

ni
ng

T
hr

ou
gh

pu
t

10.5×

L0 L1 L2 L3 L4
L5

DTR
BLPA
swap
ActNN

(c)
DenseNet-201

0 100 200 300 400 500 600
Batch Size

0

25

50

75

Tr
ai

ni
ng

T
hr

ou
gh

pu
t

9.5×

L0
L1

L2
L3

L4

DTR
swap
ActNN

Figure 7. Training throughput vs batch size. Red cross mark means
out-of-memory. The shaded yellow region denotes the possible
batch sizes with full precision training given the memory budget.

of optimization, so the curve of ActNN shows roughly 6
segments. As shown in the figures, ActNN achieves a much
larger maximum batch size and extends the Pareto frontier
significantly over state-of-the-art systems. ActNN enables
training with a 6.6 × −14.0× larger batch size under the
same memory budget.

To show the potential of training larger models, we scale a
ResNet-152 to deeper, wider, or higher resolution. Table 6
compares the largest model we can train against full preci-
sion. With the same memory budget and batch size (64),
ActNN can scale a ResNet-152 to 6.4× deeper, 3.7× wider
or 3.1× higher resolution, while maintaining 64%− 155%
original training throughput.



ActNN: Reducing Training Memory Footprint via 2-Bit Activation Compressed Training

Table 6. Comparison of the largest models ActNN can train before
out-of-memory with the same batch size (64). D = depth = the
number of layers, W = width = the base width of the bottleneck
block, R = resolution = width and height of input images.

Dim. Maximum Value Training Throughput (TFLOPS)
FP ActNN (L3) ActNN (L4) FP ActNN (L3) ActNN (L4)

D 160 660 1016 0.59 0.46 0.38
W 92 332 340 0.70 1.07 1.09
R 240 636 740 0.59 0.46 0.42

Table 7. Semantic segmentation on Cityscapes and object detec-
tion on Coco. Models: HRNetV2W48 (HRNet) (Wang et al.,
2020), ResNet-50 dilation 8 (Dilation8), FPN (Kirillov et al., 2019),
RetinaNet (Lin et al., 2017).

Task Model Method Bits Batch mIoU / AP

Seg.

HRNet FP 32 8 80.65
HRNet ActNN (L3) 2 8 81.02
HRNet ActNN (L3) 2 160 80.31

Dilation8 FP 32 8 73.61
Dilation8 ActNN (L3) 2 8 72.92
Dilation8 ActNN (L3) 2 160 75.85

FPN FP 32 8 74.52
FPN ActNN (L3) 2 8 74.18
FPN ActNN (L3) 2 160 75.98

Det.
RetinaNet FP 32 16 36.5
RetinaNet ActNN (L3) 2 16 36.2
RetinaNet ActNN (L3) 2 80 36.0

6.3. Segmentation and Detection

Here, we report results for high-resolution segmentation and
detection in Tab. 7. Activation memory is a more severe
problem for these tasks, as the activation memory scales
quadratically with the image resolution. For all the models,
ActNN converges within 0.5% mIoU / AP comparing with
the full-precision baseline. It worth noticing that ActNN
could finish the default training recipe, batch size of 16/8 for
detection/segmentation, within only one GPU. Remarkably,
by training with a larger batch size of 160, ActNN gains
1.8%/1.4% mIoU for Dilation8 (dilated FCN) (Shelhamer
et al., 2017) / FPN (Kirillov et al., 2019). This gain comes
from the more reliable estimation of normalization param-
eters (Peng et al., 2018) with large batch size. Without
memory saving techniques, such a large batch size is only
achievable with a cluster of machines.

6.4. Self-supervised Learning

Here, we test ActNN for two self-supervised learning meth-
ods, MoCov2 (Chen et al., 2020c) and BYOL (Grill et al.,
2020). As the contrastive loss used in these methods in-
volves comparing pairs of examples in a batch, larger batch
size gives more accurate estimation of the contrastive loss,
and has positive impact to the quality of the learned repre-
sentation (Chen et al., 2020b).

Table 8. Self-supervised learning on ImageNet.

Model Method Bits Batch GPUs Val. Acc.

MoCov2 FP 32 256 8 67.69
MoCov2 ActNN (L3) 2 512 2 67.25
BYOL FP 32 256 8 72.35
BYOL ActNN (L3) 2 1024 8 72.65

We directly apply ActNN (L3) to MoCov2 and BYOL. Both
methods use ResNet-50 as the backbone. MoCov2 (Chen
et al., 2020c) is trained for 200 epochs and it uses the
last layer’s feature after global pooling for evaluation;
BYOL (Grill et al., 2020) is trained for 300 epochs and it
combines multiple layer’s features for evaluation. As shown
in Table 8, ActNN can train the models with significantly
larger batch size per GPU, and achieve good validation
accuracy using only 2-bit activations.

7. Conclusions
We have presented ActNN, a framework for training neu-
ral networks with randomly quantized activations. ActNN
is grounded by the convergence guarantee for general net-
work architectures that we provide. Quantization affects
the convergence through the gradient variance. We propose
per-group quantization and fine-grained mixed-precision
quantization strategies, which approximately minimizes the
gradient variance during training. On a wide range of tasks,
ActNN achieves negligible accuracy loss with 2-bit acti-
vation, improving significantly over prior state-of-the-arts.
ActNN can be readily applied as a collection of layers in
PyTorch, and it enables up to 14× batch size, 6.4× deeper,
3.7× wider, or 3.1× higher-resolution models.

Acknowledgements
This work was supported by a gracious fund from Intel cor-
poration, Berkeley Deep Drive (BDD), and Berkeley AI
Research (BAIR) sponsors. In addition to NSF CISE Expe-
ditions Award CCF-1730628, this research is supported by
gifts from Amazon Web Services, Ant Group, CapitalOne,
Ericsson, Facebook, Futurewei, Google, Intel, Microsoft,
Nvidia, Scotiabank, Splunk and VMware. We would like
to thank the Intel VLAB team for providing us with access
to their computing cluster. We also gratefully acknowledge
the support of NVIDIA Corporation for their donation of
two Titan Xp GPU used for this research. We would also
like to acknowledge the UC Berkeley CLTC, ARO, DARPA,
IARPA, NSF, and ONR for providing partial support of this
work. Our conclusions do not necessarily reflect the position
or the policy of our sponsors, and no official endorsement
should be inferred.



ActNN: Reducing Training Memory Footprint via 2-Bit Activation Compressed Training

References
Bottou, L. Large-scale machine learning with stochastic

gradient descent. In Proceedings of COMPSTAT’2010,
pp. 177–186. Springer, 2010.

Bottou, L., Curtis, F. E., and Nocedal, J. Optimization
methods for large-scale machine learning. SIAM Review,
60(2):223–311, 2018.

Chakrabarti, A. and Moseley, B. Backprop with approxi-
mate activations for memory-efficient network training.
arXiv preprint arXiv:1901.07988, 2019.

Chen, J., Gai, Y., Yao, Z., Mahoney, M. W., and Gonzalez,
J. E. A statistical framework for low-bitwidth training of
deep neural networks. In Advances in neural information
processing systems, 2020a.

Chen, K., Wang, J., Pang, J., Cao, Y., Xiong, Y., Li, X., Sun,
S., Feng, W., Liu, Z., Xu, J., Zhang, Z., Cheng, D., Zhu,
C., Cheng, T., Zhao, Q., Li, B., Lu, X., Zhu, R., Wu, Y.,
Dai, J., Wang, J., Shi, J., Ouyang, W., Loy, C. C., and Lin,
D. MMDetection: Open mmlab detection toolbox and
benchmark. arXiv preprint arXiv:1906.07155, 2019.

Chen, T., Xu, B., Zhang, C., and Guestrin, C. Training
deep nets with sublinear memory cost. arXiv preprint
arXiv:1604.06174, 2016.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. A
simple framework for contrastive learning of visual rep-
resentations. In International conference on machine
learning, pp. 1597–1607. PMLR, 2020b.

Chen, X., Fan, H., Girshick, R., and He, K. Improved
baselines with momentum contrastive learning. arXiv
preprint arXiv:2003.04297, 2020c.

Choi, J., Wang, Z., Venkataramani, S., Chuang, P. I.-J., Srini-
vasan, V., and Gopalakrishnan, K. Pact: Parameterized
clipping activation for quantized neural networks. arXiv
preprint arXiv:1805.06085, 2018.

Contributors, M. Mmsegmentation, an open source seman-
tic segmentation toolbox. https://github.com/
open-mmlab/mmsegmentation, 2020.

Courbariaux, M., Bengio, Y., and David, J.-P. Binarycon-
nect: Training deep neural networks with binary weights
during propagations. In Advances in neural information
processing systems, pp. 3123–3131, 2015.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In Computer Vision and Pattern Recognition, 2009. CVPR
2009. IEEE Conference on, pp. 248–255. Ieee, 2009.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Dong, Z., Yao, Z., Cai, Y., Arfeen, D., Gholami, A., Ma-
honey, M. W., and Keutzer, K. Hawq-v2: Hessian aware
trace-weighted quantization of neural networks. arXiv
preprint arXiv:1911.03852, 2019.

Fedus, W., Zoph, B., and Shazeer, N. Switch transform-
ers: Scaling to trillion parameter models with simple and
efficient sparsity. arXiv preprint arXiv:2101.03961, 2021.

Fu, F., Hu, Y., He, Y., Jiang, J., Shao, Y., Zhang, C., and
Cui, B. Don’t waste your bits! squeeze activations and
gradients for deep neural networks via tinyscript. In
International Conference on Machine Learning, pp. 3304–
3314. PMLR, 2020.

Grill, J.-B., Strub, F., Altché, F., Tallec, C., Richemond,
P. H., Buchatskaya, E., Doersch, C., Pires, B. A., Guo,
Z. D., Azar, M. G., et al. Bootstrap your own latent: A
new approach to self-supervised learning. In Advances in
neural information processing systems, 2020.

Han, S., Mao, H., and Dally, W. J. Deep compression:
Compressing deep neural networks with pruning, trained
quantization and huffman coding. In International Con-
ference on Learning Representations (ICLR), 2016.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016a.

He, K., Zhang, X., Ren, S., and Sun, J. Identity mappings
in deep residual networks. In European conference on
computer vision, pp. 630–645. Springer, 2016b.

Huang, C.-C., Jin, G., and Li, J. Swapadvisor: Pushing deep
learning beyond the gpu memory limit via smart swap-
ping. In Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming
Languages and Operating Systems, pp. 1341–1355, 2020.

Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard,
A., Adam, H., and Kalenichenko, D. Quantization
and training of neural networks for efficient integer-
arithmetic-only inference. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pp. 2704–2713, 2018.

Jain, P., Jain, A., Nrusimha, A., Gholami, A., Abbeel, P.,
Keutzer, K., Stoica, I., and Gonzalez, J. E. Checkmate:
Breaking the memory wall with optimal tensor remateri-
alization. arXiv preprint arXiv:1910.02653, 2019.

https://github.com/open-mmlab/mmsegmentation
https://github.com/open-mmlab/mmsegmentation


ActNN: Reducing Training Memory Footprint via 2-Bit Activation Compressed Training

Kirillov, A., Girshick, R., He, K., and Dollár, P. Panoptic
feature pyramid networks. In CVPR, 2019.

Kirisame, M., Lyubomirsky, S., Haan, A., Brennan, J., He,
M., Roesch, J., Chen, T., and Tatlock, Z. Dynamic ten-
sor rematerialization. arXiv preprint arXiv:2006.09616,
2020.

Krizhevsky, A. and Hinton, G. Learning multiple layers
of features from tiny images. Technical report, Citeseer,
2009.

Lepikhin, D., Lee, H., Xu, Y., Chen, D., Firat, O., Huang, Y.,
Krikun, M., Shazeer, N., and Chen, Z. Gshard: Scaling
giant models with conditional computation and automatic
sharding. arXiv preprint arXiv:2006.16668, 2020.

Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Dollár, P.
Focal loss for dense object detection. In ICCV, 2017.

Lin, Y., Han, S., Mao, H., Wang, Y., and Dally, W. J.
Deep gradient compression: Reducing the communica-
tion bandwidth for distributed training. In International
Conference on Learning Representations (ICLR), 2018.

Meng, C., Sun, M., Yang, J., Qiu, M., and Gu, Y. Training
deeper models by gpu memory optimization on tensor-
flow. In Proc. of ML Systems Workshop in NIPS, volume 7,
2017.

Micikevicius, P., Narang, S., Alben, J., Diamos, G., Elsen,
E., Garcia, D., Ginsburg, B., Houston, M., Kuchaiev,
O., Venkatesh, G., et al. Mixed precision training. In
International Conference on Learning Representations,
2018.

Nvidia. apex.amp. https://nvidia.github.io/
apex/amp.html, 2019.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. arXiv preprint arXiv:1912.01703,
2019.

Peng, C., Xiao, T., Li, Z., Jiang, Y., Zhang, X., Jia, K.,
Yu, G., and Sun, J. Megdet: A large mini-batch object
detector. In CVPR, 2018.

Peng, X., Shi, X., Dai, H., Jin, H., Ma, W., Xiong, Q., Yang,
F., and Qian, X. Capuchin: Tensor-based gpu memory
management for deep learning. In Proceedings of the
Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Sys-
tems, pp. 891–905, 2020.

Ren, J., Rajbhandari, S., Aminabadi, R. Y., Ruwase, O.,
Yang, S., Zhang, M., Li, D., and He, Y. Zero-offload: De-
mocratizing billion-scale model training. arXiv preprint
arXiv:2101.06840, 2021.

Shah, A., Wu, C.-Y., Mohan, J., Chidambaram, V., and
Krähenbühl, P. Memory optimization for deep networks.
arXiv preprint arXiv:2010.14501, 2020.

Shelhamer, E., Long, J., and Darrell, T. Fully convolutional
networks for semantic segmentation. TPAMI, 2017.

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper,
J., and Catanzaro, B. Megatron-lm: Training multi-
billion parameter language models using model paral-
lelism. arXiv preprint arXiv:1909.08053, 2019.

Stock, P., Joulin, A., Gribonval, R., Graham, B., and Jégou,
H. And the bit goes down: Revisiting the quantization of
neural networks. In International Conference on Learn-
ing Representations, pp. 1–11, 2020.

Sun, X., Wang, N., Chen, C.-Y., Ni, J., Agrawal, A., Cui,
X., Venkataramani, S., El Maghraoui, K., Srinivasan,
V. V., and Gopalakrishnan, K. Ultra-low precision 4-bit
training of deep neural networks. In Advances in Neural
Information Processing Systems, volume 33, 2020.

Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y.,
Liu, D., Mu, Y., Tan, M., Wang, X., et al. Deep high-
resolution representation learning for visual recognition.
TPAMI, 2020.

Wang, L., Ye, J., Zhao, Y., Wu, W., Li, A., Song, S. L.,
Xu, Z., and Kraska, T. Superneurons: Dynamic gpu
memory management for training deep neural networks.
In Proceedings of the 23rd ACM SIGPLAN symposium
on principles and practice of parallel programming, pp.
41–53, 2018a.

Wang, M., Huang, C.-c., and Li, J. Supporting very large
models using automatic dataflow graph partitioning. In
Proceedings of the Fourteenth EuroSys Conference 2019,
pp. 1–17, 2019.

Wang, N., Choi, J., Brand, D., Chen, C.-Y., and Gopalakrish-
nan, K. Training deep neural networks with 8-bit floating
point numbers. In Advances in Neural Information Pro-
cessing Systems, pp. 7675–7684, 2018b.

Yang, G. and Schoenholz, S. S. Mean field residual net-
works: on the edge of chaos. In Proceedings of the 31st
International Conference on Neural Information Process-
ing Systems, pp. 2865–2873, 2017.

Zhang, D., Yang, J., Ye, D., and Hua, G. LQ-Nets: Learned
quantization for highly accurate and compact deep neural
networks. In The European Conference on Computer
Vision (ECCV), September 2018.

Zhou, S., Wu, Y., Ni, Z., Zhou, X., Wen, H., and Zou, Y.
Dorefa-net: Training low bitwidth convolutional neural
networks with low bitwidth gradients. arXiv preprint
arXiv:1606.06160, 2016.

https://nvidia.github.io/apex/amp.html
https://nvidia.github.io/apex/amp.html

