
106 CoMMuniCations of the aCM | feBRuARy 2014 | voL. 57 | No. 2

c o m m u n I c aT I o n — T h e c o s T of moving
bits between levels of the memory hier-
archy on a single machine or between
machines in a network or data cen-
ter—is often a more precious resource
than computation. Although not new,
communication-computation trade-
offs have received renewed interest
in recent years due to architectural
trends underlying high-performance
computing as well as technologi-
cal trends that permit the automatic
generation of enormous quantities of
data. On the practical side, this has led
to multicore processors, libraries such
as LAPACK and ScaLAPACK, schemes
such as MPI and MapReduce, and dis-
tributed cloud-computing platforms.
On the theoretical side, this has moti-
vated a large body of work on new al-
gorithms for old problems under new
models of data access.

Into this fray enters the following
paper by Ballard, Demmel, Holtz, and
Schwartz, which considers a funda-
mental problem, adopting a new per-
spective on an old algorithm that has
for years occupied a peculiar place in
the theory and practice of matrix al-
gorithms. In doing so, the work high-
lights how abstract ideas from theoret-
ical computer science (TCS) can lead to
useful results in practice, and it illus-
trates how bridging the theory-practice
gap requires a healthy understanding
of the practice.

The basic problem is the multiplica-
tion of two n × n matrices. This is a fun-
damental primitive in numerical linear
algebra (NLA), scientific computing,
machine learning, and large-scale data
analysis. Clearly, n2 time is a trivial low-
er bound—that much time is necessary
to read the input and write the output.
Moreover, at first glance, it seems “ob-
vious” the ubiquitous three-loop al-
gorithm for multiplying two matrices
(given as input two n × n matrices, A
and B, for each i, j, k, do: C(i, j)+= A(i, k)
* B(k, j)) shows that a constant times n3
time is needed to solve the problem.

Back in 1969, it was surprising when
Strassen presented his by-now well-
known algorithm. The basic idea is two
2 × 2 matrices can be multiplied using
7, rather than the usual 8, multiplica-
tions. Since the same idea applies to 2 ×
2 block matrices, the natural recursive
extension can be used to multiply two
n × n matrices in no more than a con-
stant times nω arithmetic operations,
where ω = log2 7 ≈ 2.808. Over the years,
the exponent ω has been whittled down
to ω ≈ 2.373, and many conjecture that
there exist Strassen-like algorithms
with ω = 2.

Strassen’s algorithm highlights
the distinction, extremely important
in TCS, between problems and algo-
rithms; and it demonstrates that non-
obvious algorithms can have better
running times, in theory at least, than
the obvious algorithm. Although its
running time can be better than the
usual three-loop algorithm for input
matrices larger than ca. 100 × 100,
Strassen’s algorithm has, for both tech-
nical and non-technical reasons, yet to
be widely used in practice.

This paper is part of a larger body
of work on minimizing communica-
tion in NLA algorithms. Previous work
has shown that geometric embedding
methods can be used to establish com-
munication lower bounds for three-
loop matrix multiplication algorithms
in both shared-memory sequential and
distributed-memory parallel models.
Basically, the algorithm can be mod-
eled as a computation directed acyclic
graph (CDAG). Due to the three-loop
structure of the algorithm, this graph
can be embedded into a 3D cube; and
from the isoperimetric properties of
that embedding a lower bound on
communication can be established.
The main result of this paper is a new
lower bound on the amount of commu-
nication for both sequential and paral-
lel versions of Strassen-like algorithms
that is lower than the lower bound of
the usual three-loop algorithm.

Since the geometric embedding
methods do not seem to apply to the
recursive structure of Strassen-like
algorithms, the new lower bound is
established by considering the edge
expansion of the CDAG of Strassen’s
algorithm. Expanders—graphs that do
not have any good partitions and that
do not embed well in any low-dimen-
sional Euclidean space—are remark-
ably useful structures that are ubiqui-
tous within TCS and almost unknown
outside TCS. For readers familiar with
expanders, this paper will provide yet
another application. For readers not
familiar with expanders, this paper
should be a starting point.

Finally, in a stroke that will make
practitioners of numerical analysis and
data analysis—as well as lower bound
complexity theorists—happy, the au-
thors also show their lower bounds
are tight by providing an optimal al-
gorithm. In the sequential case, this is
attained by the standard implementa-
tion of Strassen’s algorithm; and, in the
parallel case, the authors, in joint work
with Benjamin Lipshitz, have devel-
oped a novel Communication Avoiding
Parallel Strassen algorithm. This latter
algorithm communicates asymptoti-
cally less than previous three-loop and
Strassen-based algorithms; and its em-
pirical performance exceeds all other
known matrix multiplication algo-
rithms, three-loop or Strassen-based,
on large parallel machines. Remark-
ably, this suggests that Strassen’s algo-
rithm should be adopted into existing
parallel NLA libraries, providing a great
example of how to bridge the theory-
practice gap, and suggesting that Stras-
sen’s algorithm might still see practical
use—ironically, though, due to its bet-
ter communication properties.

Michael W. Mahoney (mmahoney@icsi.berkeley.edu) is
at the international Computer Science institute and the
department of Statistics at the University of California at
berkeley.

Copyright held by author.

technical Perspective
a new spin on
an old algorithm
By michael W. mahoney

research highlights

Doi:10.1145/2556329

