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c o m m u n I c aT I o n — T h e  c o s T  of moving 
bits between levels of the memory hier-
archy on a single machine or between 
machines in a network or data cen-
ter—is often a more precious resource 
than computation. Although not new, 
communication-computation trade-
offs have received renewed interest 
in recent years due to architectural 
trends underlying high-performance 
computing as well as technologi-
cal trends that permit the automatic 
generation of enormous quantities of 
data. On the practical side, this has led 
to multicore processors, libraries such 
as LAPACK and ScaLAPACK, schemes 
such as MPI and MapReduce, and dis-
tributed cloud-computing platforms. 
On the theoretical side, this has moti-
vated a large body of work on new al-
gorithms for old problems under new 
models of data access.

Into this fray enters the following 
paper by Ballard, Demmel, Holtz, and 
Schwartz, which considers a funda-
mental problem, adopting a new per-
spective on an old algorithm that has 
for years occupied a peculiar place in 
the theory and practice of matrix al-
gorithms. In doing so, the work high-
lights how abstract ideas from theoret-
ical computer science (TCS) can lead to 
useful results in practice, and it illus-
trates how bridging the theory-practice 
gap requires a healthy understanding 
of the practice.

The basic problem is the multiplica-
tion of two n × n matrices. This is a fun-
damental primitive in numerical linear 
algebra (NLA), scientific computing, 
machine learning, and large-scale data 
analysis. Clearly, n2 time is a trivial low-
er bound—that much time is necessary 
to read the input and write the output. 
Moreover, at first glance, it seems “ob-
vious” the ubiquitous three-loop al-
gorithm for multiplying two matrices 
(given as input two n × n matrices, A 
and B, for each i, j, k, do: C(i, j)+= A(i, k) 
* B(k, j)) shows that a constant times n3 
time is needed to solve the problem. 

Back in 1969, it was surprising when 
Strassen presented his by-now well-
known algorithm. The basic idea is two 
2 × 2 matrices can be multiplied using 
7, rather than the usual 8, multiplica-
tions. Since the same idea applies to 2 × 
2 block matrices, the natural recursive 
extension can be used to multiply two 
n × n matrices in no more than a con-
stant times nω arithmetic operations, 
where ω = log2 7 ≈ 2.808. Over the years, 
the exponent ω has been whittled down 
to ω ≈ 2.373, and many conjecture that 
there exist Strassen-like algorithms 
with ω = 2.

Strassen’s algorithm highlights 
the distinction, extremely important 
in TCS, between problems and algo-
rithms; and it demonstrates that non-
obvious algorithms can have better 
running times, in theory at least, than 
the obvious algorithm. Although its 
running time can be better than the 
usual three-loop algorithm for input 
matrices larger than ca. 100 × 100, 
Strassen’s algorithm has, for both tech-
nical and non-technical reasons, yet to 
be widely used in practice.

This paper is part of a larger body 
of work on minimizing communica-
tion in NLA algorithms. Previous work 
has shown that geometric embedding 
methods can be used to establish com-
munication lower bounds for three-
loop matrix multiplication algorithms 
in both shared-memory sequential and 
distributed-memory parallel models. 
Basically, the algorithm can be mod-
eled as a computation directed acyclic 
graph (CDAG). Due to the three-loop 
structure of the algorithm, this graph 
can be embedded into a 3D cube; and 
from the isoperimetric properties of 
that embedding a lower bound on 
communication can be established. 
The main result of this paper is a new 
lower bound on the amount of commu-
nication for both sequential and paral-
lel versions of Strassen-like algorithms 
that is lower than the lower bound of 
the usual three-loop algorithm.

Since the geometric embedding 
methods do not seem to apply to the 
recursive structure of Strassen-like 
algorithms, the new lower bound is 
established by considering the edge 
expansion of the CDAG of Strassen’s 
algorithm. Expanders—graphs that do 
not have any good partitions and that 
do not embed well in any low-dimen-
sional Euclidean space—are remark-
ably useful structures that are ubiqui-
tous within TCS and almost unknown 
outside TCS. For readers familiar with 
expanders, this paper will provide yet 
another application. For readers not 
familiar with expanders, this paper 
should be a starting point.

Finally, in a stroke that will make 
practitioners of numerical analysis and 
data analysis—as well as lower bound 
complexity theorists—happy, the au-
thors also show their lower bounds 
are tight by providing an optimal al-
gorithm. In the sequential case, this is 
attained by the standard implementa-
tion of Strassen’s algorithm; and, in the 
parallel case, the authors, in joint work 
with Benjamin Lipshitz, have devel-
oped a novel Communication Avoiding 
Parallel Strassen algorithm. This latter 
algorithm communicates asymptoti-
cally less than previous three-loop and 
Strassen-based algorithms; and its em-
pirical performance exceeds all other 
known matrix multiplication algo-
rithms, three-loop or Strassen-based, 
on large parallel machines. Remark-
ably, this suggests that Strassen’s algo-
rithm should be adopted into existing 
parallel NLA libraries, providing a great 
example of how to bridge the theory-
practice gap, and suggesting that Stras-
sen’s algorithm might still see practical 
use—ironically, though, due to its bet-
ter communication properties. 
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