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Abstract. Kernel methods are widespread in machine learning; however, they are limited by
the quadratic complexity of the construction, application, and storage of kernel matrices. Low-rank
matrix approximation algorithms are widely used to address this problem and reduce the arithmetic
and storage cost. However, we observed that for some datasets with wide intraclass variability, the
optimal kernel parameter for smaller classes yields a matrix that is less well-approximated by low-
rank methods. In this paper, we propose an efficient structured low-rank approximation method—the
block basis factorization (BBF)—and its fast construction algorithm to approximate radial basis func-
tion kernel matrices. Our approach has linear memory cost and floating point operations for many
machine learning kernels. BBF works for a wide range of kernel bandwidth parameters and extends
the domain of applicability of low-rank approximation methods significantly. Our empirical results
demonstrate the stability and superiority over the state-of-the-art kernel approximation algorithms.
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1. Introduction. Kernel methods are mathematically well-founded nonpara-
metric methods for learning. The essential part of kernel methods is a kernel function
K:X x X~ R. It is associated with a feature map ¥ from the original input space
X € R? to a higher-dimensional Hilbert space H such that

K(x,y) = (¥(x), U(y))n-

Presumably, the underlying function for data in the feature space is linear. Therefore,
the kernel function enables us to build expressive nonlinear models based on the
machinery of linear models. In this paper, we consider the radial basis function
(RBF) kernel that is widely used in machine learning.

The kernel matrix is an essential part of kernel methods in the training phase and
is defined in what follows. Given n data points {x;}? ,, the (4, j)th entry in a kernel
matrix is K;; = K(x;,%;). For example, the solution to a kernel ridge regression is

the same as the solution to the linear system
(K+d)a=y.

Regrettably, any operations involving kernel matrices can be computationally
expensive. Their construction, application, and storage complexities are quadratic in
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the number of data points n. Moreover, for solving linear systems involving these
matrices, the complexity is even higher. It is O(n3) for direct solvers [19] and O(n2T)
for iterative solvers [28, 33], where T is the iteration number. This is prohibitive in
large-scale applications. One popular solution to address this problem and reduce
the arithmetic and storage cost is using matrix approximation. If we are able to
approximate the matrix such that the number of entries that need to be stored is
reduced, then the timing for iterative solvers will be accelerated (assuming memory
is a close approximation of the running time for a matrix-vector multiplication).

In machine learning, low-rank matrix approximations are widely used [19, 32,
27, 31, 34, 15, 18, 14, 44]. When the kernel matrix has a large spectrum gap, a
high approximation accuracy can be guaranteed by theoretical results. Even when
the matrix does not have a large spectrum gap or fast spectrum decay, these low-
rank algorithms are still popular practical choices to reduce the computational cost;
however, the approximation would be less accurate.

The motivation of our algorithm is that in many machine learning applications,
the RBF kernel matrices cannot be well-approximated by low-rank matrices [37]; none-
theless, they are not arbitrary high-rank matrices and are often of certain structure.
In the rest of the introduction, we first discuss the importance of higher-rank matri-
ces and then introduce the main idea of our algorithm that takes advantage of those
structures. The RBF kernel f(||x —y||/h) has a bandwidth parameter h that controls
the size of the neighborhood, i.e., how many nearby points to be considered for inter-
actions. The numerical rank of a kernel matrix depends strongly on this parameter.
As h decreases from large to small, the corresponding kernel matrix can be approxi-
mated by a low-rank matrix whose rank increases from O(1) to O(n). In the large-h
regime, traditional low-rank methods are efficient; however, in the small-h regime,
these methods fall back to quadratic complexity. The bandwidth parameter is often
chosen to maximize the overall performance of regression/classification tasks, and its
value is closely related to the smoothness of the underlying function. For kernel re-
gressions and kernelized classifiers, the hypothesis function classes are ), o;KCp (x, %)
and ), a;y;KCh (%, X;), respectively. Both can be viewed as interpolations on the train-
ing data points. Clearly, the optimal value of h should align with the smoothness of
the underlying function. Although many real-world applications have found large h
to lead to good overall performances, in a lot of cases a large h will hurt the perfor-
mance. For example, in kernel regression, when the underlying function is nonsmooth
such as those with sharp local changes, using a large bandwidth will smooth out the
local structures; in kernelized classifiers, when the true decision surfaces that separate
two classes are highly nonlinear, choosing a large bandwidth imposes smooth deci-
sion surfaces on the model and ignores local information near the decision surfaces.
In practice, the previous situations where relatively small bandwidths are needed are
very common. One example is that for classification datasets with imbalanced classes,
often the optimal h for smaller classes is relatively small. Hence, if we are particu-
larly interested in the properties of smaller classes, a small h is appropriate. As a
consequence, matrices of higher ranks occur frequently in practice.

Therefore, for certain machine learning problems, low-rank approximations of
dense kernel matrices are inefficient. This motivates the development of approxima-
tion algorithms that extend the applicability of low-rank algorithms to matrices of
higher ranks, i.e., that work efficiently for a wider range of kernel bandwidth param-
eters.

In the field of scientific computing (which also considers kernel matrices, but
typically for very different ends), hierarchical algorithms [20, 21, 12, 13, 17, 42] ef-
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ficiently approximate the forward application of full-rank PDE kernel matrices in
low dimensions. These algorithms partition the data space recursively using a tree
structure and separate the interactions into near- and far-field interactions, where the
near-field interactions are calculated hierarchically and the far-field interactions are
approximated using low-rank factorizations. Later, hierarchical matrices (H-matrix,
H2-matrix, HSS matrix, HODLR matrix) [24, 26, 25, 8, 40, 4] were proposed as alge-
braic variants of these hierarchical algorithms. Based on the algebraic representation,
the application of the kernel matrix as well as its inverse, or its factorization can be
processed in quasi-linear (O(n log” n)) operations. Due to the tree partitioning, the
extension to high-dimensional kernel matrices is problematic. Both the computational
and storage costs grow exponentially with the data dimension, spoiling the O(n) or
O(nlogn) complexity of those algorithms.

In this paper, we adopt some ideas from hierarchical matrices and butterfly factor-
izations [29, 30] and propose a block basis factorization (BBF) structure that gener-
alizes the traditional low-rank matrix, along with its efficient construction algorithm.
We apply this scientific computing—based method to a range of problems, with an em-
phasis on machine learning problems. We will show that the BBF structure achieves
significantly higher accuracy than plain low-rank matrices, given the same memory
budget, and the construction algorithm has a linear in n complexity for many machine
learning kernel learning tasks.

The key of our structure is realizing that in most machine learning applications,
the submatrices representing the interactions from one cluster to the entire dataset
are numerically low-rank. For example, Wang et al. [39] mathematically proved that
if the diameter of a cluster C is smaller than that of the entire dataset X', then the
rank of the submatrix K(C, X) is lower than the rank of the entire matrix (X, X). If
we partition the data such that each cluster has a small diameter, and the clusters are
as far apart as possible from each other, then we can take advantage of the low-rank
property of the submatrix K(C,X) to obtain a presentation that is more memory-
efficient than low-rank representations.

The application of our BBF structure is not limited to RBF kernels or machine
learning applications. There are many other types of structured matrices for which
the conventional low-rank approximations may not be satisfactory. Examples include
but are not limited to covariance matrices from spatial data [38], frontal matrices in
the multifrontal method for sparse matrix factorizations [3], and kernel method in
dynamic systems [7].

1.1. Main contributions. Our main contribution is threefold. First, we showed
that for classification datasets whose decision surfaces have small radius of curvature, a
small kernel bandwidth parameter is needed for high accuracy. Second, we proposed
a novel matrix approximation structure that extends the applicability of low-rank
methods to matrices whose ranks are higher. Third, we developed a correspond-
ing construction algorithm that produces errors with small variance (the algorithm
uses randomized steps) and that has linear, i.e., O(n) complexity, for most machine
learning kernel learning tasks. Specifically, our contributions are as follows:

e For several datasets with imbalanced classes, we observed an improvement in
accuracy for smaller classes when we set the kernel bandwidth parameter to be
smaller than that selected from a cross-validation procedure. We attribute
this to the nonlinear decision surfaces, which we quantify as the smallest
radius of curvature of the decision boundary.
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e We proposed a novel matrix structure called the BBF for machine learning
applications. BBF approximates the kernel matrix with linear memory and
is efficient for a wide range of bandwidth parameters.

e We proposed a construction algorithm for the BBF structure that is accurate,
stable, and linear for many machine learning kernels. This is in contrast to
most algorithms to calculate the singular value decomposition (SVD), which
are more accurate but lead to a cubic complexity, or naive random sampling
algorithms (e.g., uniform sampling), which are linear but often inaccurate or
unstable for incoherent matrices. We also provided a fast precomputation
algorithm to search for suggested input parameters for BBF.

Our algorithm involves three major steps. First, it divides the data into k distinct
clusters and permutes the matrix according to these clusters. The permuted matrix
has k2 blocks, each representing the interactions between two clusters. Second, it
computes the column basis for every row-submatrix (the interactions between one
cluster and the entire dataset) by first selecting representative columns using a ran-
domized sampling procedure and then compressing the columns using a randomized
SVD. Finally, it uses the corresponding column- and row- basis to compress each of
the k2 blocks, also using a randomized subsampling algorithm. Consequently, our
method computes an approximation for the k2 blocks using a set of only &k bases. The
resulting framework yields a rank-R approximation and achieves a similar accuracy
as the best rank-R approximation, where R refers to the approximation rank. The
memory complexity for BBF is O(nR/k + R?), where k is upper bounded by R. This
should be contrasted with a low-rank scheme that gives a rank-R approximation with
O(nR) memory complexity. BBF achieves a similar approximation accuracy to the
best rank-R approximation with a factor of k saving on memory.

1.2. Related research. There is a large body of research that aims to accelerate
kernel methods by low-rank approximations [19]. Given a matrix K € R"*" a
rank-r approximation of K is given by K ~ UV, where U,V € R"¥" and r is
related to accuracy. The SVD provides the most accurate rank-r approximation
of a matrix in terms of both 2-norm and Frobenius-norm; however, it has a cubic
cost. Recent work [34, 31, 27, 32] has reduced the cost to O(n?r) using randomized
projections. These methods require the construction of the entire matrix to proceed.
Another line of the low-rank approximation research is the Nystrém method [15,
18, 5], which avoids constructing the entire matrix. A naive Nystrém algorithm
uniformly samples columns and reconstructs the matrix with the sampled columns,
which is computationally inexpensive but which works well only when the matrix
has uniform leverage scores, i.e., low coherence. Improved versions [16, 44, 14, 18,
1] of Nystréom have been proposed to provide more sophisticated ways of column
sampling.

There are several methods proposed to address the same problem as in this pa-
per. The clustered low-rank approximation (CLRA) [35] performs a blockwise low-
rank approximation of the kernel matrix from social network data with quadratic
construction complexity. The memory-efficient kernel approximation (MEKA) [36]
successfully avoids the quadratic complexity in CLRA. Importantly, these previous
methods did not consider the class size and parameter size issues as we did in detail.
Also, in our benchmark, we found that under multiple trials, MEKA is not robust; i.e.,
it often failed to be accurate and produced large errors. This is due to its inaccurate
structure and its simple construction algorithm. We briefly discuss some significant
differences between MEKA and our algorithm. In terms of the structure, the basis
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in MEKA is computed from a smaller column space and is inherently a less accu-
rate representation, making it more straightforward to achieve a linear complexity; in
terms of the algorithm, the uniform sampling method used in MEKA is less accurate
and less stable than the sophisticated sampling method used in BBF that is strongly
supported by theory.

There is also a strong connection between our algorithm and the improved fast
Gauss transform (IFGT) [41], which is an improved version of the fast Gauss trans-
form [22]. Both BBF and IFGT use a clustering approach for space partitioning.
Differently, the IFGT approximates the kernel function by performing an analytic
expansion, while BBF uses an algebraic approach based on sampling the kernel ma-
trix. This difference has made BBF more adaptive and achieves higher approximation
accuracy. Along the same line of adopting ideas from hierarchical matrices, Chen et
al. [10] combined the hierarchical matrices and the Nystrom method to approximate
kernel matrices rising from machine learning applications.

The paper is organized as follows. Section 2 discusses the motivations behind ex-
tending low-rank structures and designing efficient algorithms for higher-rank kernel
matrices. Section 3 proposes a new structure that better approximates higher-rank
matrices and remains efficient for lower-rank matrices, along with its efficient con-
struction algorithm. Finally, section 4 presents our experimental results, which show
the advantages of our proposed BBF over the state of the art in terms of the structure,
algorithm, and applications to kernel regression problems.

2. Motivation: Kernel bandwidth and class size. In this section, we discuss
the motivations behind designing an algorithm that remains computationally efficient
when the matrix rank increases. Three main motivations are as follows. First, the
matrix rank depends strongly on the kernel bandwidth parameters (chosen based on
the particular problem); the smaller the parameter, the higher the matrix rank. Sec-
ond, a small bandwidth parameter (higher-rank matrix) imposes high nonlinearity
on the model; hence, it is useful for regression problems with nonsmooth function
surfaces and classification problems with complex decision boundaries. Third, when
the properties of smaller classes are of particular interest, a smaller bandwidth pa-
rameter would be appropriate, and the resulting matrix would be of higher rank. In
the following, we focus on the first two motivations.

2.1. Dependence of matrix rank on kernel parameters. We consider first
the bandwidth parameters, and we will show that the matrix rank depends strongly
on the parameter. Take the Gaussian kernel exp(—||x — y||?/h?) as an example. The
bandwidth A controls the function smoothness. As h increases, the function becomes
more smooth, and, consequently, the matrix numerical rank decreases. Figure 1
constructs a matrix from a real dataset and shows the numerical rank versus h with
varying tolerances tol. As h increases from 27% to 22, the numerical rank decreases
from full (4177) to low (66 with tol = 107%, 28 with tol = 1073, 11 with tol = 1072).

Low-rank matrix approximations are efficient in the large-h regime, and in such
a regime, the matrix rank is low. Unfortunately, in the small-h regime, they fall back
to models with quadratic complexity. One natural question is whether the situation
where a relatively small h is useful occurs in machine learning or whether low-rank
methods are sufficient. We answer this question in the following section, where we
study kernel classifiers on real datasets and investigate the influence of h on accuracy.

2.2. Optimal kernel bandwidth. We study the optimal bandwidth parame-
ters used in practical situations, and, in particular, we consider kernel classifiers. In
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TABLE 1
Statistics for classification datasets and their selected classes. r; is the median distance to the
center for class i; n; is the number of points in class i.

Selected classes (Other classes not shown)
Data n d I 5 3 1 5
n; 1500 1500 1500 1500 1500

EMG 28500 & r?2 1.3x107% 29x107% 26x107? 45x107! 2.6x10°

n; 51 71 241 318 555
TG 2126 23 r? 1.0 1.2 1.4 1.3 1.4
n; 2741 998 2097 1087 2948
Gesture 9873 32| 12 1841072 27x102 14x10- 19x10-' 23x10-1
n; 625 870 1602 2736 4570
Otto 20000 93 | .5 (96 0.40 0.46 0.45 0.64

practice, the parameter h is selected by a cross-validation procedure combined with a
grid search, and we denote such parameter as hoy. For datasets with wide intravari-
ability, we observed that the optimal parameters of some small classes turned out to
be smaller than hcy. By small classes, we refer to those with fewer points or smaller
diameters.

Table 1 lists some classification datasets with wide intravariability. This class
imbalance has motivated us to study the individual performance of each class. We
found that there can be a significant discrepancy between hey which is optimal overall
for the entire dataset and the optimal h for a specific class. In Figure 2, we use kernel
SVM classifier under a wide range of h and measure the performance by F; score on
the test data. The F} score is the harmonic mean of the precision and recall, i.e.,

2 X precision x recall

precision + recall

The data were randomly divided into an 80% training set and a 20% testing set.
Figure 2 shows the test F; score versus h for selected classes. We see that for some
smaller classes represented by darker colors, the F} score peaks at a value for h that is
smaller than heoy. Specifically, for the smallest class (black curve) of each dataset, as
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Fic. 2. Test F1 score of selected class for different datasets. Each curve represents one class,
and the solid circle represents the mazximum point along the curve. The legend represents a pair
(ni, r?), where n; is the number of point in each class, r; is the median distance to class center, and
hcov is the parameter obtained from cross validation. We see that for smaller classes (represented
by darker colors), the F1 score peaks at an h that is smaller than hoy .

h increases from their own optimal h to hoy, the test Y scores drop by 21%, 100%,
16%, and 5% for EMG, CTG, Otto, and Gesture datasets, respectively. To interpret
the value of h in terms of matrix rank, we plotted the singular values for different
values of h for the CTG and Gesture dataset in Figure 3. We see that when using
hev, the numerical rank is much lower than using a smaller h, which leads to a better
performance on smaller classes.

The above observation suggests that the value of hgy is mostly influenced by
large classes and using hcy may degrade the performance of smaller classes. There-
fore, to improve the prediction accuracy for smaller classes, one way is to reduce the
bandwidth h. Unfortunately, a decrease in h increases the rank of the corresponding
kernel matrix, making low-rank algorithms inefficient. Moreover, even if we create
the model using hcv, as discussed previously, the rank of the kernel matrix will not
be very low in most cases. These altogether stress the importance of developing an
algorithm that extends the domain of applicability of low-rank algorithms.

2.3. Factors affecting the optimal kernel bandwidth. This section com-
plements the previous section by investigating some data properties that influence the
optimal kernel bandwidth parameter h.

We studied synthetic two-dimensional data, and our experiments suggested that
the optimal h depends strongly on the smallest radius of curvature of the decision
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Fic. 4. Decision boundary with varying smallest radius of curvatures. Dots represent data
points, and different classes are color coded. The curves represent the decision boundaries, of which
the radii of curvature are large, median, and small for the orange, blue, and black (those surrounding
the small clusters) curves, respectively.

surface (depicted in Figure 4). By optimal, we mean the parameter that yields the
highest accuracy, and if multiple such parameters exist, we refer to the largest one to
be optimal and denote it as h*.

We first experimentally study the relation between hA* and the smallest radius of
curvature of the decision boundary. Figure 5 shows Gaussian clusters with alternating
labels that are color coded. We decrease the radius of curvature of the decision
boundary by decreasing the radius of each cluster while keeping the box size fixed.
We quantify the smallest radius of curvature of the decision boundary approximately
by the standard deviation o of each cluster. Figure 5b shows a linear correlation
between o and h*.

We study a couple more examples. Figure 6 shows two smaller circles with dif-
ferent radii surrounded by a large circle. For this example, the smallest radius of
curvature of the decision boundary depends strongly on the cluster radius. Hence,
the optimal A for the smaller class (pink colored) should be smaller than that for the
larger class (orange colored), which was verified by the Fj score. Compared to the
large cluster, the F; score for the small cluster peaks at a smaller h and drops faster
as h increases. A similar observation was made in higher-dimensional data as well.
We generated two clusters of different radii which are surrounded by a larger cluster
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F1G. 6. Left: classes surrounded by a larger one; the legend shows the number of points in each
class. The decision boundary (black curve) is for h = 0.125. Right: the test F1 score for the test
data versus h.

in dimension 10. Figure 7 shows that the intuition in dimension 2 nicely extends to
dimension 10. Another cluster example is in Figure 4, which shows multiple small
clusters overlapping with a larger cluster at the boundary. The 3 reference decision
boundaries correspond to h being 1.5 (orange), 0.2 (blue), and 0.02 (black), respec-
tively. The highest accuracy was achieved at h = 0.5, which is close to the small
cluster radius 0.2 and is large enough to tolerate the noises in the overlapping region.

The above examples, along with many that are not shown in this paper, have
experimentally suggested that the optimal parameter h and the smallest radius of
curvature of the decision surface are positively correlated. Hence, for datasets whose
decision surfaces are highly nonlinear, i.e., of small radius of curvature, a relatively
small h is very likely needed to achieve a high accuracy.

In the following section, we will introduce our novel scheme to accelerate kernel
evaluations, which remains efficient in cases where traditional low-rank methods are
inefficient.

3. BBF. In this section, we propose the BBF that extends the availability of
traditional low-rank structures. Subsection 3.1 describes the BBF structure. Subsec-
tion 3.2 proposes its fast construction algorithm.
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3.1. BBF structure. This section defines and analyzes the BBF. Given a sym-
metric matrix M € R"*"™ partitioned into k by k blocks, let M; ; denote the (7, j)th
block for ¢,7 =1,..., k. Then the BBF of M is defined as

(1) M=UCU",

where U is a block diagonal matrix with the 7th diagonal block U; being the column
basis of M; ; for all j and C' is a k by k block matrix with the (4, j)th block denoted
by C; ; = U;" M; ;U;. The BBF structure is depicted in Figure 8.

We discuss the memory cost for the BBF structure. If the numerical ranks of all
the base U; are bounded by 7, then the memory cost for the BBF is O(nr + (rk)?).
Further, if £ < y/n and r is a constant independent of n, then the BBF gives a data-
sparse representation of matrix M. In this case, the complexity for both storing the
BBF structure and applying it to a vector will be linear in n.

It is important to distinguish between our BBF and a block low-rank (BLR)
structure [2]. There are two main differences: (1) The memory usage of the BBF is
much less than BLR. BBF has one basis for all the blocks in the same row, while
BLR has a separate basis for each block. The memory for BBF is nr + (rk)?, whereas
for BLR it is 2nkr. (2) It is more challenging to construct BBF in linear complexity
while remaining accurate. A direct approach using SVD to construct the low-rank
base has a cubic cost, while a simple randomized approach would be inaccurate and
unstable.
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In the next section, we will propose an efficient method to construct the BBF
structure, which uses randomized methods to reduce the cost while still providing a
robust approach. Our method is linear in n for many kernels used in machine learning
applications.

3.2. Fast construction algorithm for BBF. In this section, we first introduce
a theorem in subsubsection 3.2.1 that reveals the motivation behind our BBF structure
and addresses the applicable kernel functions. We then propose a fast construction
algorithm for BBF in subsubsection 3.2.2.

3.2.1. Motivations. Consider a RBF kernel function K : R¢ x R? s R. The
following theorem in [39] provides an upper bound on the error for the low-rank
representation of kernel K. The error is expressed in terms of the function smoothness
and the diameters of the source domain and the target domain.

THEOREM 3.1. Consider a function f and kernel K(x,y) = f(||[x—y|3) with x =
(z1,...,2q) andy = (y1,...,ya). We assume that x; € [0,D//d], y; € [0,D/d],
where D is a constant independent of d. This implies that ||x — y||3 < D% We
assume further that there are Dx < D and Dy < D such that ||x; — x||2 < Dx and

lyi —yill2 < Dy.
Let fp(x) =3, T o f(x+4nD?) be a 4D*-periodic extension of f(x), where T (-)

is 1 on [-D?, D?] and smoothly decays to O outside of this interval. We assume that

fp and its derivatives through fz(,qfl) are continuous and that the qth derivative is
piecewise continuous with its total variation over one period bounded by V.

Then ¥ Mg, My > 0 with 9My < My, the kernel K can be approzimated in a
separable form whose rank is at most R = R(My, My, d) = 4M; (N[”Cl+d) :

R
Kxy) = Z gi(X)hi(y) + enry -

i=1

The Lo, error is bounded by

D.D M+1 V. 2D2 q
< xy _4 .
|€Mf,Mt| — ||f||00 ( D2 ) + ™q (Tf'Mf)

In Theorem 3.1, the error is up bounded by the summation of two terms. We first
study the second term, which is independent of Dy or D,,. The second term depends
on the smoothness of the function and decays exponentially as the smoothness of the
function increases. Many kernel functions used in machine learning are sufficiently
smooth; hence, the second term is usually smaller than the first term. Regarding the
first term, the domain diameter information influences the error through the factor
(%)Mﬁ‘l, which suggests that for a fixed rank (positively related to M), reducing
either Dy or D, reduces the error bound. It also suggests that for a fixed error,
reducing either Dy or Dy reduces the rank. This has motivated us to cluster points
into distinct clusters of small diameters, and by the theorem, the rank of the submatrix
that represents the local interactions from one cluster to the entire dataset would be
lower than the rank of the entire matrix.

Hence, we seek linear-complexity clustering algorithms that are able to separate
points into clusters of small diameters; k-means and k-centers algorithms are natural
choices. Both algorithms partition n data points in dimension d into k clusters at



1508

R. WANG, Y. LI, M. W. MAHONEY, AND E. DARVE

10°
Cluster Radius  Size 10-1 ::\ i
1 42.4 752 o "
2 41.3 603 =N
- )
3 37.6 729 T10°F ‘et 3
4 24.3 733 < RN
5 242 1571 s Y
6 23.0 588 2107 ¢ AR :
C S8
7 21.8 1006 & R w“
8 21.6 421 4 N
9 21.4 236 10 o i
10 21.3 855 R
A TR IR
Full 62.8 7494 ‘ ‘ IERSYNIRLN
0 200 400 600 800 1000

(a)

Index of singular value

(b)

F1G. 9. Left (a): clustering result of the pendigits dataset. Right (b): normalized singular value
decay. In subplot (b), the solid curve represents the entire matriz M, and the dash curves represent
the row-submatrices M (C;,:). The kernel used was the Gaussian kernel with bandwidth parameter
h=2.

a cost of O(nkd) per iteration. Moreover, they are based on the Euclidean distance
between points, which is consistent with the RBF kernels which are functions of the
Fuclidean distance. In practice, the algorithms converge to slightly different clusters
due to different objective functions, but neither is absolutely superior. Importantly,
the clustering results from these algorithms yield a more memory-efficient BBF struc-
ture than random clusters. A more task-specific clustering algorithm will possibly
yield better result; however, the main focus of this paper is on factorizing the matrix
efficiently rather than proposing new approaches to identify good clusters.

We experimentally verify our motivation on a real-world dataset. We clustered
the pendigits dataset into 10 clusters (C1,Co,...,C1p) using the k-means algorithm
and reported the statistics of each cluster in Figure 9(a). We see that the radius of
each cluster is smaller than that of the full dataset. We further plotted the normalized
singular values of the entire matrix M and its submatrices M (C;,:) in Figure 9(b).
Notably, the normalized singular value of the submatrices shows a significantly faster
decay than that of the entire matrix. This suggests that the ranks of submatrices are
much lower than that of the entire matrix. Hence, by clustering the data into clusters
of smaller radius, we are able to capture the local interactions that are missed by the
conventional low-rank algorithms which only consider global interactions. As a result,
we achieve a similar level of accuracy with a much less memory cost.

3.2.2. BBF construction algorithm. This section proposes a fast construc-
tion algorithm for the BBF structure. For simplicity, we assume that the data points
are evenly partitioned into k clusters, Cy,...,C; and that the numerical rank for each
submatrix is r. We first permute the matrix according to the clusters:

s Cy - C
Ci (Mg Mo -+ My

(2) ar—prpt = | M Mhe e A

)

Ci \Mr1 Mpo - Mgy
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Fic. 10. A pictorial description of the sampling algorithm. We start with sampling random
columns and iterate between important rows (by pivoted LQ) and important columns (by pivoted
QR) to obtain our refined important columns. This procedure is usually repeated a few times to
ensure the stability of the important indices.

where P is a permutation matrix and M;; = K(C;,C;) is the interaction matrix
between cluster C; and cluster C;.

Our fast construction algorithm consists of two components: basis construction
and inner matrix construction. In the following, we adopt MATLAB’s notation for
submatrices. We use the colon to represent 1:end, e.g., M; . = (M;1 -+ M;}), and
use the index vectors Z and J to represent subrows and subcolumns; e.g., M(Z,J)
represents the intersection of rows and columns, whose indices are Z and J, respec-
tively.

1. Basis construction

We consider first the basis construction algorithm. The most accurate approach
is to explicitly construct the submatrix M; . and apply an SVD to obtain the column
basis; regrettably, it has a cubic cost to compute all the bases. Randomized SVD [27]
reduces the cost to quadratic while being accurate; however, a quadratic complexity
is still expensive in practice. In the following, we describe a linear algorithm that is
accurate and stable. Since the proposed algorithm adopts randomness, by “stable”
we mean that the variance of the output is small under multiple runs. The key idea
is to restrict us in a subspace by sampling columns of large volume.

The algorithm is composed of two parts. In the first part, we select some columns
of M, . that are representative of the column space. By representative, we mean
that the r sampled columns have volume approximating the maximum r-dimensional
volume among all column sets of size r. In the second part, we apply the randomized
SVD algorithm to the representative columns to extract the column basis.

Part 1: Randomized sampling algorithm

We seek a sampling method that samples columns with approximate maximum
volume. Strong rank revealing QR (RRQR) [23] returns columns whose volume is
proportional to the maximum volume obtained by SVD. QR with column pivoting
(pivoted QR) is a practical replacement for the strong RRQR due to its inexpensive
computational cost. To ensure a linear complexity, we use the pivoted QR factoriza-
tion with a randomized approach.

We describe the randomized sampling method [16] used in our BBF algorithm;
the algorithm detail is in Algorithm 1 with the procedure depicted in Figure 10. The
complexity of sampling r columns from an m x n matrix is O(r?(m +n)). The size of
the output index sets II,. and II. could grow as large as qr, but it can be controlled by
some practical algorithmic modifications. One is that given a tolerance, we truncate
the top columns based on the magnitudes of the diagonal entries of matrix R from
the pivoted QR. Another is to apply an early stopping once the important column
index set does not change for two consecutive iterations. For the numerical results
reported in this paper, we used ¢ = 2. Note that any linear sampling algorithm can
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substitute Algorithm 1, and in practice, Algorithm 1 returns columns whose volume
is very close to the largest.

Algorithm 1: Randomized sampling algorithm for each submatrix.

Function Randomized_Sampling(M; ., r;, q)
input : (1) Row-submatrix M, . to sample from in its implicit form
(given data and kernel function); (2) Sample size r;; (3)
Iteration parameter g
output: Important column index set II. for M, .
I, =0
for iter=1, ..., ¢ do
Important columns. Uniformly sample r; rows, and denote the index
set as [',., update II,. = II,. UT',.. Apply a pivoted QR factorization on
M, .(II,, ) to get the important columns index set, denoted as IL.
Important rows. Uniformly sample r; columns, and denote the index
set as I'.. Update II, =T'. UII.. Apply a pivoted LQ factorization on
M, .(:,I1.) to get the important row index set, denoted as II,.
end

return II.
Note: The pivoted QR is the QR factorization with column pivoting based on

the largest column norm.

Algorithm 2: BBF sampling algorithm.

Function BBF_Sampling({M; .}5_,, {ri}* 1, )

input : (1) Submatrices {M;.}* | to sample from in their implicit forms
(given data and kernel function); (2) Sample sizes {r;}%_, for
each submatrix M, .; (3) Iteration parameter ¢

output: Important column index set II; for each row-submatrix

fori=1,...,k do

| II, = Randomized _Sampling(M; .(:,T'), 75, ¢) (using Algorithm 1)
end
return II; fori =1,...,k

Applying Algorithm 1 to k submatrices {Mi’;}le will return the desired k sets
of important columns for BBF, which is described in Algorithm 2. The complexity
of Algorithm 2 depends on k (see subsubsection 3.2.3 for details), and we can remove
this dependence by applying Algorithm 1 on a preselected and refined set of columns
instead of all the columns. This leads to a more efficient procedure to sample col-
umns for the & submatrices as described in Algorithm 3. Our final BBF construction
algorithm will use Algorithm 2 for column sampling.

Part 2: Orthogonalization algorithm

Having sampled the representative columns M; .(:,II;), the next step is to obtain
the column basis that approximates the span of the selected columns. This can be
achieved through any orthogonalization methods, e.g., pivoted QR, SVD, randomized
SVD [27], etc. According to Algorithm 1, the size of the sampled index set II. can
be as large as gr. In practice, we found that the randomized SVD works efficiently.
The randomized SVD algorithm was proposed to reduce the cost of computing a
rank-r approximation of an m x n matrix to O(mnr). The algorithm is described in
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Algorithm 3: More efficient BBF sampling algorithm.

Function BBF_Sampling I({M;.}%_,, {r:i}¥_,, q)
input : (1) Submatrices {M;.}¥ | to sample from in their implicit forms
(given data and kernel function); (2) Sample sizes {r;}%_, for
each submatrix M, .; (3) Iteration parameter ¢
output: Important column index set II; for each row-submatrix
fori=1,...,k do
Randomly sample r; columns from M; and denote the index set as II;
Apply a pivot LQ on M; .(:,II;) to obtain r important rows, and we
denote the index set as I';
end
Stack all the sampled rows I' = [I'y, ..., (]
fori=1,...,k do
| II; = Randomized_Sampling(M; .(:,T"), 75, q) (using Algorithm 1)
end
return Il; fori =1,...,k

Algorithm 4: Randomized SVD.

Function Randomized_.SVD(M, r, q)
input : (1) Matrix M € R™*"; (2) desired rank r; (3) iteration
parameter g
output: U, ¥, and V such that M ~ ULV T
Randomly generate a Gaussian matrix 2 € R™*"
MQ = QR
fori=1,..., ¢do
MTQ=0QR
MQ=QR
end
UsvT =Q™M
U=QU
return U, X, V

Algorithm 4. The practical implementation of Algorithm 4 involves an oversampling
parameter ¢ to reduce the iteration parameter ¢q. For simplicity, we eliminate ¢ from
the pseudocode.

2. Inner matrix construction

We then consider the inner matrix construction. Given column base U; and Uj,
we seek a matrix C; ; such that it minimizes

1M; 5 — UiCi ;US|

The minimizer is given by C;; = U;Mi,j(U]T)T. Computing C; ; exactly has a qua-
dratic cost. Again, we restrict ourselves in a subspace and propose a sampling-based
approach that is efficient yet accurate. The following proposition provides a key the-
oretical insight behind our algorithm.

PROPOSITION 3.2. If a matriz M € R™*" can be written as M = UCV T, where
UeR™ " andV € R**". Further, if for some index setZ and J, U(Z,:) and V(T ,:)
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are full rank, then the inner matriz C' is given by
(3) C=UE N MZ.T) V(T

where T denotes the pseudoinverse of the matrix.

Proof. To simplify the notations, we denote U= U(Z,:), V= V(J,:), and M=
M(Z,J), where T is the sampled row index set for U and J is the sampled row index
set for V. We apply the sampling matrices Pr and Py (matrices of 0s and 1s) to both
sides of equation M = UCV T and obtain

PLMP} = PLUCV'P],

ie.,

M=UCVT.
The assumption that U and 1% are tall and skinny matrices with full column ranks
implies that UTU = I and VT (V)T = I. We then multiply U' and (V') on both
sides and obtain the desired result:

otMyh =UtTevT vt =c. O

Proposition 3.2 provides insights into an efficient, stable, and accurate construc-
tion of the inner matrix. In practice, the equality M = UCV T in Proposition 3.2
often holds with an error term, and we seek index sets Z and J such that the com-
putation for C' is accurate and numerically stable. Equation 3 suggests that a good
choice leads to an M(Z,J) with a large volume. However, finding such a set can be
computationally expensive, and a heuristic is required for efficiency. We used a sim-
plified approach where we sample Z (resp., J) such that U(Z,:) (resp., V(J,:)) has
a large volume. This leads to good numerical stability because having a large volume
is equivalent to being nearly orthogonal, which implies a good condition number. In
principle, a pivoted QR strategy could be used, but fortunately we are able to skip
it by using the results from the basis construction. Recall that in the basis construc-
tion, the important rows were sampled using a pivoted LQ factorization; hence, they
already have large volumes.

Therefore, the inner matrix construction is described in what follows. We first
uniformly sample r column indices I'; and r row indices I';, respectively, from C; and
C;. Then the index sets are constructed as 7 = 1I; UI'; and J = II; UT';, where 1I;
and II; are the important row index sets from the basis construction. Finally, C; ; is
given by

(UAT, )" Mii(2,T) (U(T,5) T

We also observed small entries in some off-diagonal blocks of the inner matrix.
Those blocks normally represent far-range interactions. We can set the blocks for
which the norm is below a preset threshold to 0. In this way, the dense inner matrix
becomes a blockwise sparse matrix, further reducing the memory.

Having discussed the details for the construction algorithm, we summarize the
procedure in Algorithm 5, which is the algorithm used for all the numerical results.

In this section, for simplicity, we only present BBF for symmetric kernel matrices.
However, the extension to general nonsymmetric cases is straightforward by applying
similar ideas, and the computational cost will be roughly doubled. Asymmetric BBF
can be useful in compressing the kernel matrix in the testing phase.
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Algorithm 5: Main Algorithm—Fast construction algorithm for BBF.

Function BBF_Construction (k, {C;}¥_;, {ri}*_-1, M, qsamp, qsvD)

Input : (1) Number of clusters k; (2) Clustering assignments {C;}¥_;;
(3) Rank {r;}*_, for each column basis; (4) Matrix M in its
implicit form; (5) Iteration parameter gsamp for randomized
sampling; (6) Iteration parameter gsyp for randomized SVD.

Output: Block diagonal matrix U and blockwise sparse matrix C s.t.
M~UCUT

[T, ...,1I;] = BBF_Sampling({M; . }¥_,, {ri}¥_1, ¢samp) (Algorithm 2)

fori=1,...,k do

| U; = Randomized-SVD(M,.(:,I1;), r;, gsyp) (Algorithm 4)

end

fori=1,...,k do

for j=1,...,ido

if cutoff criterion is not satisfied then

Uniformly sample I'; and I'; from C; and Cj, respectively

I:HZU].—‘Z andj:HjUPj

Cij= (Ui(T, :))TMi,j (Z, j)(Uj (7, :)T)T

Cji = CZj
else
C@j =0
Oj’i =0
end
end
end
return (7, C

3. Precomputation: Parameter selection

We present a heuristic algorithm to identify input parameters for BBF. The al-
gorithm takes n input points {x;}?; and a requested error (tolerance) € and outputs
the suggested parameters for the BBF construction algorithm, specifically the num-
ber of clusters k, the index set for each cluster Z, and the estimated rank r; for the
submatrix corresponding to the cluster Z. We seek a set of parameters that minimizes
the memory cost while keeping the approximation error below e.

Choice of column ranks. Given the tolerance ¢ and the number of clusters k,
we describe our method of identifying the column ranks. To maintain a low cost, the
key idea is to consider only the diagonal blocks instead of the entire row-submatrices.
For each row-submatrix in the RBF kernel matrices (after permutation), the diagonal
block, which represents the interactions within a cluster, usually has a slower spec-
tral decay than that of off-diagonal blocks, which represent the interactions between
clusters. Hence, we minimize the input rank for the diagonal block and use this as
the rank for those off-diagonal blocks in the same row.

Specifically, we denote o1, > 02,; > -+ > 0y,,; as the singular values for M, ;.
Then for block M, ; € R™*™  the rank r; is chosen as

r; = min {m

n; n2
> ok < Ml }

p=m-+1
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Choice of number of clusters k. Given the tolerance ¢, we consider the
number of clusters k. For k clusters, the upper bound on the memory usage of BBF is
Zle n;T; + (Zf:l 7;)?, where r; is computed as described above. Hence, the optimal
k is the solution to the following optimization problem:

k k 2
minimize, g(k) = Zm—ri + <Z ri>
i=1 i=1
n; ’[’L2
Z oy < TT;HMMH% 62}

subj to r; = min {m
p=m+1

We observed empirically that in general, g(k) is close to convex in the interval
[1,0(y/n)], which enables us to perform a dichotomy search algorithm with com-
plexity O(logn) for the minimal point.

3.2.3. Complexity analysis. In this section, we analyze the algorithm com-
plexity. We will provide detailed analysis on the factorization step, including the
basis construction and the inner matrix construction, and skip the analysis for the
precomputation step. We first introduce some notations.

Notations. Let k denote the number of clusters, {n;}*_, denote the number of
point in each cluster, {r;}*_, denote the requested rank for the blocks in the ith
submatrix, and [ denote the oversamphng parameter.

Basis construction. The cost comes from two parts: the column sampling
and the randomized SVD. We first calculate the cost for the ith row-submatrix. For
the column sampling, the cost is n;(r; +1)? + n(r; + )2, where the first term comes
from the pivoted L@ factorization and the second term comes from the pivoted QR
factorization. For the randomized SVD, the cost is n;(r; +1)?. Summing up the costs
from all the submatrices, we obtain the overall complexity

k
0 <Z ni(ri + 0%+ n(r; + 0% +ng(r; + l)2> .
i=1

We simplify the result by denoting the maximum numerical rank of all blocks as r.
Then the above complexity is simplified to O(nkr?).

Inner matrix construction The cost for computing inner matrix C;; with
sampled M; ;, U;, and U is r? irj s 2. Summing over all the k2 blocks, the overall
complexity is given by

kE k
ZZ 7“]—|—7“1
i=1 j=1

With the same assumptions as above, the simplified complexity is O(k?r3). Note that
k can reach up to O(y/n) while still maintaining a linear complexity for this step.

Finally, we summarize the complexity of our algorithm in Table 2.

From Table 2, we note that the factorization and application cost (storage) depend
quadratically on the number of clusters k. This suggests that a large k will spoil
the linearity of the algorithm. However, this may not be the case for most machine
learning kernels, and we will discuss the influence of k£ on three types of kernel matrices:
(1) well-approximated by a low-rank matrix, (2) full-rank but approximately sparse,
and (3) full-rank and dense:
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TABLE 2

Complexity table; n is the total number of points, k is the number of clusters, and r is the
numerical rank for column basis.

time (s)

Precomputation Factorization Application
Each block O(n;r?) Basis O(nkr?)
2
Compute g(k) O(nr?) Inner matrix O(k2r3) Onr + (k)°)
Total O(r?nlogn) Total O(nkr? + k2r3)
10° ‘ ‘ 10°
P e
10t 10%
)
®
E
10° 10t}
-1 0
10 ' ' 10 ' '
102 10° 10* 10° 10° 10* 10° 10°
number of sampled data points number of sampled data points
(a) Census housing, h = 2 (b) Forest covertype, h = 2

Fi1G. 11. Factorization time (log-log scale) for kernel matrices from real datasets. To illustrate
the linear growth of the complexity, we generated datasets with a varying number of points with the
following strategy. We first clustered the data into 15 groups and sampled a portion p% from each
group, then increased p. To avoid the influence from other factors on the timing, we fized the input
rank for each block. As we can see, the timing grows linearly with the data size (matriz size).

1. Well-approzimated by a low-rank matriz. When the kernel matrix is well-

approximated by a low-rank matrix, kr is up bounded by a constant (up
to the approximation accuracy). In this case, both the factorization and
application costs are linear.

. Full-rank but approzimately sparse. When the kernel matrix is full-rank (kr =

O(n)) but approximately sparse, the application cost (storage) remains linear
due to the sparsity. By sparsity, we mean that as h decreases, the entries
in the off-diagonal blocks of the inner matrices become small enough that
setting them to 0 does not cause much accuracy loss. The factorization cost,
however, becomes quadratic when using Algorithm 2. One solution is to
use Algorithm 3 for column sampling, which removes the dependence on k,
assuming k < O(y/n).

. Full-rank and dense. In this case, BBF would be suboptimal. However,

we experimentally observed that many kernel matrices generated by RBF
functions with high-dimensional data are in case 1 or 2.

In the end, we empirically verify the linear complexity of our method. Figure 11
shows the factorization time (in seconds) versus the number of data points on some
real datasets. The trend is linear, confirming the linear complexity of our algorithm.

4. Experimental results. In this section, we experimentally verify the advan-
tages of the BBF structure in subsection 4.1 and the BBF algorithm in subsection 4.2.
By BBF algorithm, we refer to the BBF structure and the proposed fast construction
algorithm.
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TABLE 3
Real datasets used in the experiments.

Dataset Abalone Mushroom Cpusmall
# Instance 4177 8124 8192
# Attributes 8 112 16
Dataset Pendigits Census house  Forest covertype
# Instance 10992 22748 581012
# Attributes 11 16 54

The datasets are listed in Tables 3 and 1, and they can be downloaded from the
UCI repository [6], the libsvm website [9], and Kaggle. All the data were normalized
such that each dimension has mean 0 and standard deviation 1. All the experiments
were performed on a computer with a 2.4 GHz CPU and 8 GB memory.

4.1. BBF structure. In this section, we will experimentally analyze the key fac-
tors in our BBF structure that contribute to its advantages over competing methods.
Many factors contribute, and we will focus our discussions on the following two: (1)
The BBF structure has its column base constructed from the entire row-submatrix,
which is an inherently more accurate representation than from diagonal blocks only
(see MEKA), and (2) the BBF structure considers local interactions instead of only
global interactions used by a low-rank scheme.

4.1.1. Basis from the row-submatrix versus diagonal blocks. We verify
that computing the column basis from the entire row-submatrix M, . is generally more
accurate than from the diagonal blocks M; ; only. Column basis computed from the
diagonal blocks only preserves the column space information in the diagonal blocks
and will be less accurate in approximating the off-diagonal blocks Figure 12 shows
that computing the basis from the entire row-submatrix is more accurate.

4.1.2. BBF structure versus low-rank structure. We compare the BBF
structure and the low-rank structure. The BBF structure refers to Figure 8, and
the low-rank structure means K ~ UU', where U is a tall and skinny matrix.
For a fair comparison, we fixed all the factors to be the same except for the struc-
ture. For example, for both the BBF and the low-rank schemes, we used the same
sampling method for the column selection and computed the inner matrices exactly
to avoid randomness introduced in that step. The columns for BBF and low-rank
scheme, respectively, were sampled from each row-submatrix M;. € R™*" and the
entire matrix M € R"*". For BBF with leverage-score sampling, we sampled col-
umns of M; . based on its column leverage scores computed from the algorithm in
[14].

Figure 13 shows the relative error versus the memory cost for different sampling
”IﬁKIII(p”F
kernel matrix, K is the exact kernel matrix, and ||-|| 7 denotes the Frobenius norm. As
can be seen, the BBF structure is strictly a generalization of the low-rank scheme and
achieves lower approximation error regardless of the sampling method used. More-
over, for most sampling methods, the BBF structure outperforms the best low-rank
approximation computed by an SVD, which strongly implies that the BBF structure
is favorable.

methods. The relative error is computed by , Where K is the approximated
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F1c. 12. Errors for each block in the approzimated matriz from the Abalone dataset. Warmer
color represents larger error. Subplots (al) and (a2) share the same colorbar, and (bl) and (b2)
share the same colorbar. The error for block (i,j) is computed as ||M;; — M; |7 /||M| F, where

]\//Ti,j is the approzimation of M; ;. The basis in subplots (al) and (a2) is computed by an SVD
and in (bl) and (b2) by the randomized sampling algorithm. As we can see, computing the column
basis from the diagonal blocks leads to lower error in the diagonal blocks; however, the errors in
the off-diagonal blocks are much larger. The relative error in subplots (al), (a2), (bl), and (b2) are
1.4 x 1073, 6.3 x 1073, 1.5 x 10~2, and 4.0 x 10~2, respectively.
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Fic. 13. Kernel approzimation error versus memory cost for BBF and low-rank structure with
different sampling methods. Gaussian kernel is used. The results are averaged over 5 runs. BBF
(solid lines) uses the structure described in Figure 8, and LR (dash lines) uses a low-rank structure.
“rand”: randomized sampling; “unif”: uniform sampling; “ls”: leverage score sampling; “svd”: an
SVD is used for computing the basis.
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4.2. BBF algorithm. In this section, we experimentally evaluate the perfor-
mance of our BBF algorithm with other state-of-the-art kernel approximation meth-
ods. Subsections 4.2.1 and 4.2.2 examine the matrix reconstruction error under vary-
ing memory budget and kernel bandwidth parameters. Subsubsection 4.2.3 applies the
approximations to the kernel ridge regression problem. Finally, subsubsection 4.2.4
compares the linear complexity of BBF with the IFGT [41]. Throughout the experi-
ments, we use BBF to denote our algorithm, whose input parameters are computed
from our precomputation algorithm.

In what follows, we briefly introduce some implementation and input parameter
details for the methods we are comparing to:

e The naive Nystrom (Nys). We uniformly sampled 2k columns without re-
placement for a rank k approximation.

e k-means Nystrom (kNys). It uses k-means clustering and sets the centroids
to be the landmark points. We used the code provided by the author.

e Leverage score Nystrom (IsNys). It samples columns with probabilities pro-
portional to the statistical leverage scores. We calculated the approximated
leverage scores [14] and sampled 2k columns with replacement for a rank-k
approximation.

e MEKA. We used the code provided by the author.

e Random kitchen sinks (RKS). We used our own MATLAB implementation
based on their algorithm.

e /FGT. We used the C++ code provided by the author.

4.2.1. Approximation with varying memory budget. We consider the re-
construction errors from different methods when the memory cost varies. The memory
cost (storage) is also a close approximation of the running time for a matrix-vector
multiplication. In addition, computing memory is more accurate than running time,
which is sensitive to the implementation and algorithmic details. In our experiments,
we indirectly increased the memory cost by requesting a lower tolerance in BBF. The
memories for all the methods were fixed to be roughly the same in the following way.
For low-rank methods, the input rank was set to be the memory of BBF divided by
the matrix size. For MEKA, the input number of clusters was set to be the same as
BBF; the “eta” parameter (the percentage of blocks to be set to zeros) was also set
to be similar as BBF.

Figures 14 and 15 show the reconstruction error versus memory cost on real
datasets and two-dimensional synthetic datasets, respectively. We see that BBF
achieves comparable and often significantly lower error than the competing meth-
ods regardless of the memory cost. There are two observations worth noting. First,
the BBF outperforms the exact SVD, which is the best rank-r approximation, and it
outperforms with a factorization complexity that is only linear rather than cubic. This
has demonstrated the superiority of the BBF structure over the low-rank structure.
Second, even when compared to a similar structure as MEKA, BBF achieves a lower
error whose variance is also smaller, and it achieves so with a similar factorization
complexity. These have verified that the representation of BBF is more accurate and
that the constructing algorithm is more stable.

4.2.2. Approximation with varying kernel bandwidth parameters. We
consider the reconstruction errors with varying decay patterns of singular values,
which we achieve by choosing a wide range of kernel bandwidth parameters. The
memory for all methods are fixed to be roughly the same.
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Fic. 14. Comparisons of BBF (our algorithm) with competing methods. Top four plots (log-log
scale) share the same legend. For each method, we show the improvement in error as more memory
is available. For each memory footprint, we report the error of 5 runs of each algorithm. FEach run is
shown with a marker, while the lines represent the average error. For CTG and EMG datasets, the
parameter h was chosen to achieve higher F1 score on smaller classes, which leads to matrices with
higher ranks, as shown by the plateau or slow decay of singular values in the bottom plots subplots
(e) and (f).

The plots on the left of Figure 16 show the average matrix reconstruction error
versus 1/h%. We see that for all the low-rank methods, the error increases when h
decreases. When h becomes smaller, the kernel function becomes less smooth, and
consequently the matrix rank increases. This relation between h and the matrix rank
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FiG. 15. The left plots report the numerical ranks of matrices versus h and the right plots report
the relative error versus memory. The data for top plots have alternating labels (see Figure 5 with
100 clusters), while the data for the bottom plots have smaller clusters surrounded by larger ones
(see Figure 6). The values of h reported in subplot (a) and (c) yield test accuracy greater than 0.99.
The h in (b) and (d) are the largest optimal h with values 0.0127 and 0.25, respectively. For each
memory cost, we report the relative error of 5 runs of each algorithm. The number of clusters for
BBF was fized at 20 for subplot (b) and selected automatically for subplot (d).

is revealed in some statistics listed in Table 4. The results in the table are consistent
with the results shown in [18] for varying kernel bandwidth parameters.

In the large-h regime, the gap in error between BBF and other methods is small.
In such a regime, the matrix is low-rank, and the low-rank algorithms work effectively.
Hence, the difference in error is not significant. In the small-h regime, the gap starts to
increase. In this regime, the matrix becomes close to diagonal dominant, and the low-
rank structure, as a global structure, cannot efficiently capture the information along
the diagonal, while for BBF, the precomputation procedure will increase the number
of clusters to better approximate the diagonal part, and the off-diagonal blocks can be
set to 0 due to their small entries. By efficiently using the memory, BBF is favorable
in all cases, from low-rank to nearly diagonal.

4.2.3. Kernel ridge regression. We consider the kernel ridge regression. The
standard optimization problem for the kernel ridge regression is

(4) min | Ko — y[[* + Al
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TABLE 4
Summary statistics for abalone and pendigits datasets with the Gaussian kernel, where r is the
2
rank, M is the exact matriz, and M, is the best rank-r approximation for M. ['l"”]é“‘lg] is referred
2

to as the stable rank and is an underestimate of the rank; I, represents the rth largest leverage score
scaled by .

Abalone (r = 100) | Pendigits (r = 252)

1 1M1% 1My |l 1 M3 1My ||

7z HM\@W 00, b ‘ w HMM 1005505 I
0.25 2 99.99 434 | 0.1 3 99.99 2.39

1 4 99.86 2.03 | 0.25 6 99.79 1.83

4 5 97.33 1.94 | 0.44 8 98.98 1.72

25 15 72.00 5.20 1 12 93.64 2.02
100 175 33.40 12.60 2 33 77.63 2.90
400 931 19.47 20.66 | 4 207 49.60 4.86
1000 1155 16.52 20.88 | 25 2794 19.85 14.78

where K is a kernel matrix, y is the target, and A > 0 is the regularization parameter.
The minimizer is given by the solution of the following linear system:

(5) (K+M)a=y.
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The linear system can be solved by an iterative solver, e.g., MINRES [33], and the
complexity is O(n?T), where n? is from matrix-vector multiplications and T’ denotes
the iteration number. If we can approximate K by K , which can be represented in
lower memory, then the solving time can be accelerated. This is because the mem-
ory is a close approximation for the running time of a matrix-vector multiplication.
We could also solve the approximated system directly when the matrix can be well-
approximated by a low-rank matrix; that is, we compute the inversion of K first by
the Woodbury formula' and then apply the inversion to y.

In the experiments, we approximated K by K and solved the following approxi-
mated system with MINRES:

(6) (K +X\)a=y.

The dataset was randomly divided into training set (80%) and testing set (20%). The
kernel used is the Laplacian kernel K(x,y) = exp(||x —y||/h) for this subsection. We
report the test root-mean-square error (RMSE), which is defined as

1 .
) ¢ 1K o — yiems 12
ntest

where Kiest is the interaction matrix between the test data and training data, & is
the solution from solving (6), and yies; is the true test target. Figure 17 shows the
test RMSE with varying memory cost of the approximation. We see that with the
same memory footprint, the BBF achieves lower test error.

Discussion. For downstream prediction tasks, better generalization error could be
achieved by using the surrogate kernel, which is the kernel matrix between the testing
points and landmark points, instead of the exact kernel matrix for naive Nystrom,
k-means Nystrom, leverage score Nystrom, and random kitchen sink. Based on our
experience, using surrogate kernels with Nystrém methods and random Fourier meth-
ods achieves testing accuracy competitive with that of BBF. Hence, although BBF
significantly outperforms Nystrém methods and random Fourier methods in the ap-
proximation of kernel matrices, the advantage of BBF in prediction compared with
surrogate kernels is less pronounced.

Meanwhile, an easy modification of BBF can be used to construct a surrogate
kernel for downstream predictions as well. Specifically, for U;, we can set U; as
the carefully sampled important columns with points denoted as X; instead of the
column basis of those sampled columns. This further reduces our factorization cost
due to the removal of the orthonormalization step. Once these important columns are
available, the middle matrix C' can be constructed identical to that in Algorithm 5.
These steps construct the modified BBF, which can be used to accelerate the linear
system solve of (6) and obtain « efficiently. Then the coefficient for the surrogate
kernel is computed as & = CUTa. We denote a; as the coefficient for cluster 4. The
downstream prediction task, then, is divided into two steps. First, for a testing point
Xsest, We find the cluster ¢ that x5 belongs to. Second, we compute the predictions
Ytest AS K(Xtesta Xz)a;

With this modified BBF and the corresponding prediction procedure, assuming a
surrogate kernel of the same size is used, it will be more efficient to compute the coef-
ficients of the surrogate kernel as well as the predictions through BBF than through
Nystrom methods or random Fourier methods.

Thttps://en.wikipedia.org/wiki/Woodbury_matrix_identity.
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Fic. 17. Test RMSE versus memory for kernel ridge regression. For each memory cost, we
report the results averaged over 5 runs. The black line on the bottom of each plot represents the test
RMSE when using the exact matriz. The kernel parameter h and the regularization parameter A
were selected by a 5-fold cross validation with a grid search, and the selected (h, \) pairs are listed
in the subcaption.

4.2.4. Comparison with IFGT. We benchmarked the linear complexity of the
IFGT [41] and BBF. IFGT was proposed to alleviate the dimensionality issue for the
Gaussian kernel. For a fixed dimension d, the IFGT has a linear complexity in terms
of application time and memory cost; regrettably, when d increases (e.g., d > 10),
the algorithm requires a large number of data points n to make this linear behavior
visible. BBF, on the other hand, does not require a large n to observe a linear growth.

We verify the influence of dimension d on the complexity of BBF and the IFGT
on synthetic datasets. We fixed the tolerance to be 10~3 throughout the experiments.
Figure 18 shows the time versus the number of points. We focus only on the trend of
time instead of the absolute value because the IFGT was implemented in C++, while
BBF was in MATLAB. We see that the growth rate of IFGT is linear when d = 5
but falls back to quadratic when d = 40; the growth rate of BBF, however, remains
linear.

5. Conclusions and future work. In this paper, we observed that for clas-
sification datasets whose decision boundaries are complex, i.e., of small radius of
curvature, a small bandwidth parameter is needed for a high prediction accuracy.
In practical datasets, this complex decision boundary occurs frequently when there
exist a large variability in class sizes or radii. These small bandwidths result in ker-



1524 R. WANG, Y. LI, M. W. MAHONEY, AND E. DARVE

10? 10*
-o-BBF
O(n
o0 IFGT) (n) 102 om?)
z z
2 0
210 ; 210
104 ----"77 oM 102 ”
_---""" oM
10°® 10—+
10 10° 10* 10°
N N
(a) Application time (d = 5) (b) Application time (d = 40)
10° 10°
10t 10? o(n?
0 B
o 10° @ 10t /QM
E E ,
. . / - _ -
10 O(n) 10 .-~ "om)
1072 : : 10 : :
10* 10° 10* 10°
N N
(c) Total time (d = 5) (d) Total time (d = 40)

F1G. 18. Timing (loglog scale) for IFGT and BBF on a synthetic dataset with dimensionsd =5
and 40. We generated 10 centers uniformly at random in a unit cube, and around each center we
randomly generated data with standard deviation 0.1 along each dimension. The tolerance and the
kernel parameter h were set to 1072, and 0.5, respectively. All the plots share the same legends. The
top plots show the application time (matriz-vector product), and bottom plots show the total time
(factorization and application). The timing for BBF is linear for all dimensions, while the timing
for the IFGT falls back to quadratic when d increases.

nel matrices whose ranks are not low, and hence traditional low-rank methods are
no longer efficient. Moreover, for many machine-learning applications, low-rank ap-
proximations of dense kernel matrices are inefficient. Hence, we are interested in
extending the domain of availability of low-rank methods and retain computational
efficiency. Specifically, we proposed a structured low-rank—based algorithm that is
of linear memory cost and floating point operations and that remains accurate even
when the kernel bandwidth parameter is small, i.e., when the matrix rank is not
low. We experimentally demonstrated that the algorithm works in fact for a wide
range of kernel parameters. Our algorithm achieves comparable and often orders-of-
magnitude-higher accuracy than other state-of-the-art kernel approximation methods,
with the same memory cost. It also produces errors with smaller variance, thanks to
the sophisticated randomized algorithm. This is in contrast with other randomized
methods whose error fluctuates much more significantly. Applying our algorithm to
the kernel ridge regression also demonstrates that our method competes favorably
with the state-of-the-art approximation methods.

There are a couple of future directions. One direction is on the efficiency and
performance of the downstream inference tasks. The focus of this paper is on the
approximation of the kernel matrix itself. Although the experimental results have
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demonstrated good performance in real-world regression tasks, we could further im-
prove the downstream tasks by relaxing the orthogonality constrains of the U; matri-
ces. That is, we can generate U; from interpolative decomposition [11], which allows
us to share the same advantages as algorithms using Nys and RKS. Another direc-
tion is on the evaluation metric for the kernel matrix approximation. This paper
used the conventional Frobenius norm to measure the approximation performance.
Zhang et al. [43] proposed a new metric that better measures the downstream perfor-
mance. The new metric suggests that to achieve a good generalization performance,
it is important to have a high-rank approximation. This suggestion aligns well with
the design of BBF and further emphasizes its advantage. Evaluating BBF under the
new metric will be explored in the future. Last but not least, the BBF construction
did not consider the regularization parameter used in many learning algorithms. We
believe that the regularization parameter could facilitate the low-rank compression of
the kernel matrix in our BBF, while the strategy requires further exploration.
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