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Abstract

Incorporating second-order curvature information into ma-
chine learning optimization algorithms can be subtle, and
doing so naı̈vely can lead to high per-iteration costs associated
with forming the Hessian and performing the associated linear
system solve. To address this, we introduce ADAHESSIAN, a
new stochastic optimization algorithm. ADAHESSIAN directly
incorporates approximate curvature information from the loss
function, and it includes several novel performance-improving
features, including: (i) a fast Hutchinson based method to ap-
proximate the curvature matrix with low computational over-
head; (ii) a spatial averaging to reduce the variance of the sec-
ond derivative; and (iii) a root-mean-square exponential mov-
ing average to smooth out variations of the second-derivative
across different iterations. We perform extensive tests on NLP,
CV, and recommendation system tasks, and ADAHESSIAN
achieves state-of-the-art results. In particular, we find that
ADAHESSIAN: (i) outperforms AdamW for transformers by
0.13/0.33 BLEU score on IWSLT14/WMT14, 2.7/1.0 PPL
on PTB/Wikitext-103; (ii) outperforms AdamW for Squeeze-
Bert by 0.41 points on GLUE; (iii) achieves 1.45%/5.55%
higher accuracy on ResNet32/ResNet18 on Cifar10/ImageNet
as compared to Adam; and (iv) achieves 0.032% better score
than Adagrad for DLRM on the Criteo Ad Kaggle dataset. The
cost per iteration of ADAHESSIAN is comparable to first-order
methods, and ADAHESSIAN exhibits improved robustness
towards variations in hyperparameter values. The code for
ADAHESSIAN is open-sourced and publicly-available (Yao
and Gholami 2020).

Introduction
The high-dimensional and non-convex nature of many ma-
chine learning tasks has rendered many classical optimization
methods inefficient for training and/or evaluating Neural Net-
work (NN) models. As such, first order methods, in particular
variants of Stochastic Gradient Descent (SGD), have become
the main workhorse for training NN models. However, they
are by no means an ideal solution. For example, there are of-
ten many ad-hoc rules that need to be followed very precisely
in order to converge (hopefully) to a point with good general-
ization properties. This includes heuristics for the choice of
the many hyperparameters, e.g., learning rate, decay schedule,
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momentum parameters, number of warmup iterations, etc.
Even the choice of the first order optimizer has become an
ad-hoc rule, which can significantly affect the performance.

For example, SGD (Robbins and Monro 1951) with
momentum is typically used in Computer Vision (CV);
Adam (Kingma and Ba 2015) is used for training transformer
models for Natural Language Processing (NLP); and Ada-
grad (Duchi, Hazan, and Singer 2011) is used for Recom-
mendation Systems (RecSys). It is far from obvious a priori
which variant (if any) is appropriate for a new problem do-
main, and using the wrong SGD variant can lead to signifi-
cant performance degradation. Importantly, this may not be
immediately apparent if one only considers certain popular
learning tasks, such as ResNet50 (He et al. 2016) training on
ImageNet (Deng et al. 2009). The reason is that, for these
tasks, years of industrial scale (namely, brute force) hyperpa-
rameter tuning, and years of building systems to exploit first
derivative (but not second derivative or other) information,
has led to what may be termed ideal-SGD behaviour. Such a
brute force approach is computationally and financially not
possible for many large scale learning problems—certainly
it is not possible to do routinely. It points to a failure of our
theoretical understanding, and it has made it challenging to
train and apply NN models reliably and more generally.

Many of these issues arise since first order methods only
use gradient information and do not (reliably1) consider the
curvature properties of the loss landscape. Second order meth-
ods, on the other hand, are specifically designed to capture
and exploit curvature properties by using both gradient and
Hessian information. They have many favorable properties,
including resiliency to ill-conditioned loss landscapes, invari-
ance to parameter scaling, and robustness to hyperparameter
tuning.2 The main idea underlying second order methods
involves preconditioning the gradient vector before using it
for weight update. For example, the loss could be very flat
in one dimension and very sharp in another. As a result, the
(larger/smaller) step size taken by the optimizer should be
different for these (flatter/sharper) dimensions. Second or-

1Some people view Adam and Adagrad as quasi-Newton meth-
ods, i.e., in between first order and second order methods, but the
connection is quite indirect, and others justify them differently.

2For NNs, ill-conditioning is described in terms of observed
properties, such as “exploding” and “vanishing” gradients, rather
than problem-specific structural properties like condition numbers.
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der methods (including ADAHESSIAN), however, normalize
different dimensions via rotation and scaling of the gradient
vector before the weight update, and thus can capture this
curvature difference.

Nonetheless, in spite of their advantages, second order
methods come with challenges. Most obvious is the higher
per-iteration cost. In addition, it isn’t obvious how to incorpo-
rate moving averages or local averaging, as is common with
practical first order algorithms, into the Hessian matrix. Fi-
nally, much of the systems infrastructure that has been built is
biased towards first order methods. Thus, despite their faster
convergence rate and improved robustness properties, second
order methods are rarely used for training NNs.

In this paper, we introduce ADAHESSIAN, an adaptive
second order optimizer that addresses these problems and
that exceeds state-of-the-art performance for a wide range
of learning problems. Particularly, our contributions are as
follows:
• We approximate the Hessian matrix as a diagonal oper-

ator. This is achieved by applying Hutchinson’s method
to approximate the Hessian diagonal, and it reduces the
overhead of second order methods from quadratic to linear
in d (the number of parameters).
• We incorporate a spatial averaging to reduce the variance

of Hessian diagonal elements. This has no additional over-
head in the Hutchinson’s method, but it favorably affects
the performance of the optimizer.

• We exploit this diagonal form to apply a root-mean-square
exponential moving average to smooth out “rugged” loss
surfaces. This incurs only O(d) memory complexity.
• We extensively test ADAHESSIAN on a wide range of

learning tasks. In all cases, ADAHESSIAN is comparable
to or better than state-of-the-art first order methods, and it
outperforms other adaptive optimization methods.
– NLP: ADAHESSIAN improves the performance of trans-

formers for machine translation and language modeling
tasks, as compared to AdamW. In particular, ADAHES-
SIAN significantly outperforms AdamW by 0.13/0.33
BLEU on IWSLT14/WMT14, and by 2.7/1.0 PPL on
PTB/WikiText-103. Moreover, for SqueezeBERT (Ian-
dola et al. 2016) fine-tuning on GLUE, ADAHESSIAN
achieves 0.41 better points than AdamW.

– CV: ADAHESSIAN achieves significantly higher
accuracy, as compared to Adam. For instance,
for ResNet32/ResNet18 on Cifar10/ImageNet, ADA-
HESSIAN achieves 93.08%/70.08%, as opposed to
91.63%/64.53% achieved by Adam, respectively. In all
cases, ADAHESSIAN achieves similar performance to
the heavily-tuned SGD behavior. See Appendix for more
details.

– RecSys: ADAHESSIAN improves the performance of
DLRM on the Criteo Ad Kaggle dataset by 0.032% as
compared to Adagrad, which is commonly used. See
Appendix for more details.

• We measure the sensitivity of ADAHESSIAN to different
hyperparameters such as learning rate, spatial averaging
size, and delayed Hessian computation. Interestingly, our
results show that ADAHESSIAN is robust to those hyper-
parameters.

We emphasize that our empirical results are achieved even
though we use the same learning rate schedule, weight decay,
warmup schedule, dropout, batch size, and first/second order
moment coefficients as the heavily-tuned default first order
baseline optimizers. Additional gains could be achieved if
one wanted to extensively optimize these hyperparameters.

Problem Formulation And Related Work
We focus on supervised learning tasks. The goal is to solve a
non-convex stochastic optimization problem of the form:

min
θ
L(θ) =

1

N

N∑
i=1

li(xi, yi; θ), (1)

where θ ∈ Rd denotes the model parameters, li(xi, yi; θ) is
the loss function, (xi, yi) is the paired input data and cor-
responding ground truth label, and N is the total number
of data points in the training dataset. We denote the first
derivative (gradient) of the loss w.r.t. model parameters as
g = 1

NB

∑NB

i=1
∂li
∂θ and the corresponding second derivative

(Hessian) as H = 1
NB

∑NB

i=1
∂2li
∂θ2 , where NB is the size of

one mini-batch. In general, first order methods (Robbins and
Monro 1951; Nesterov 1983; Duchi, Hazan, and Singer 2011;
Tieleman and Hinton 2012; Zeiler 2012; Kingma and Ba
2015; Loshchilov and Hutter 2019; Liu et al. 2020) can be
represented using the following general update formula:

θt+1 = θt − ηmt/vt, (2)

where η is the learning rate, and mt and vt are the so-called
first and second moment terms, respectively. A summary
of the values of mt and vt for various methods is given in
Appendix.

Using SGD and related first order methods to solve Eq. 1
is often very challenging, due to their strong sensitivity to
learning rate, decay schedule, momentum parameters, etc. To
address this, several adaptive methods (Duchi, Hazan, and
Singer 2011; Kingma and Ba 2015) have been proposed to
take into account knowledge of the geometry of the data by
scaling gradient coordinates, using the past gradient infor-
mation. This can be viewed in one of two equivalent ways:
either as automatically adjusting the learning rate in Eq. 2; or
as an adaptive preconditioner of the gradient.

The above first-order adaptive methods have been pro-
posed to improve SGD. However, for some practical machine
learning problems they actually perform worse than vanilla
SGD with momentum. This is in fact one of the main baffling
practical issues in machine learning, and one for which the-
ory has little to say. For example, SGD is currently the best
performing optimizer for some CV tasks. That is, using other
variants such as AdamW (Loshchilov and Hutter 2019) leads
to significantly worse generalization performance. However,
for NLP tasks, AdamW has the best performance by a large
margin as compared to SGD. The point here is that even the
choice of the optimizer has effectively become a hyperparam-
eter.

Another class of preconditioning is to use the second
order information (Byrd et al. 1995; Bollapragada, Byrd,
and Nocedal 2019; Bollapragada et al. 2018; Yao et al.
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Hessian: H ∈ Rd×d
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Figure 1: A simple model with N layers (first column); with the convolutional blocks of the N-1 layer shown (second column);
and the loss landscape of each block (third column), which can be calculated by perturbing the convolutions’s parameters in two
different eigen-directions. (See (Yao et al. 2019) for details of how to construct loss landscape.) Note the different loss landscape
topologies. First order methods do not explicitly capture this difference. The entries (3D tensors) colored in orange show the
components used for calculating the spatial average of Hessian. The part of the gradient (fourth panel) highlighted in the orange
box is the corresponding gradient of the orange convolution kernel; and the part of the Hessian diagonal (fifth panel) highlighted
in the orange box is used to compute the spatial average.

2018b; Roosta-Khorasani and Mahoney 2016; Xu et al. 2016;
Xu, Roosta-Khorasani, and Mahoney 2017a; Xu, Roosta-
Khorasan, and Mahoney 2017; Conn, Gould, and Toint 2000;
Martens and Grosse 2015; Agarwal, Bullins, and Hazan 2016;
Wang et al. 2018b; Agarwal et al. 2016; Carmon et al. 2018;
Chen et al. 2019; Gupta, Koren, and Singer 2018; Schaul,
Zhang, and LeCun 2013) (we refer the interested reader
to (Bottou, Curtis, and Nocedal 2018) for a thorough review
of these methods). Second order methods are particularly
useful for ill-conditioned problems, and they can have better
theoretical convergence rates than their first-order counter-
parts. However, in practice one of the difficulties in applying
second order methods is that noisy estimates of the Hes-
sian could lead to sub-optimal preconditioning (one source
of the noise could be the mini-batch used to compute the
sub-sampled Hessian). The same problem applies to the mini-
batch gradient as well, but it is possible to address it through
momentum. However, it is not computationally feasible to
(naı̈vely) incorporate momentum in second order methods as
we need to explicitly from the Hessian matrix to average it.
Ideally, if there was a way to apply the momentum method
to the Hessian, then that would help smooth out the noise to
get a better approximation to the non-noisy curvature of the
loss landscape.

One way to address the Hessian momentum problem, is
to use the Hessian diagonal, instead of the full Hessian op-
erator. Using the diagonal not only allows us to incorporate
momentum but also enables the efficient application of in-
verse Hessian. As we will discuss in the next section, this
diagonal approximation along with spatial averaging and
momentum of the Hessian proves very helpful for various

practical problems.

Methodological Approach
Here, we first provide the formulation for the full Newton
method. Then we describe the three components of ADA-
HESSIAN, namely Hessian diagonal approximation, spatial
averaging, and Hessian momentum. Finally, we discuss the
overall formulation of ADAHESSIAN.

A General Hessian Based Descent Direction
For the loss function f(w) : Rd → R, let us denote the
corresponding gradient and Hessian of f(wt) at iteration t
as gt, and Ht, respectively.3 A general descent direction can
then be written as follows for a positive-definite Hessian:

∆wt = H−k
t gt, where H−k

t = UTt Λ−k
t Ut. (3)

Here, we refer to 0 ≤ k ≤ 1 as Hessian power, and UTt ΛtUt
is the eigen-decomposition of Ht. Note that for k = 0, we re-
cover the gradient descent method; and for k = 1, we recover
the Newton method. While in our empirical tests we consider
non-convex machine learning problems, but we provide a
standard convergence behaviour of Eq. 3 in Appendix for
a simple strongly convex and strictly smooth function f(w)
(we emphasize that the proof is very standard and we are only
including it for completeness).

The basic idea of Hessian based methods is to precondi-
tion the gradient with the H−k and use H−kg for the update

3Without confusion, we use the same gradient and Hessian nota-
tions for f(w) and L(θ). Furthermore, when there is no confusion
we will drop subscript t.
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direction, instead of using the bare gradient g vector. The
preconditioner automatically rotates and rescales the gradient
vector. This is important since the loss landscape curvature
is generally different across different directions/layers and
since these directions need not correspond to the canoni-
cal axes. This is illustrated in Fig. 1, where we show a 2D
schematic plot of the loss landscape for different convolution
channels (Yao et al. 2019). Each channel can have a differ-
ent loss landscape topology. For example, the last channel
has a much flatter loss landscape, as compared to other lay-
ers. As a result, it is preferable to take a larger step size for
the last channel than for the first channel, which has a very
“sharp” loss landscape. Problems that exhibit this behaviour
are ill-conditioned. The role of the Hessian is to automatically
normalize this ill-conditionedness by stretching and contract-
ing different directions to accommodate for the curvature
differences (full Newton method also rotates the gradient
vector along with adjusting the step size).

However, there are two major problems with this approach.
The first problem is that a naı̈ve use of the Hessian precondi-
tioner comes at the prohibitively high cost of applying Hes-
sian inverse to the gradient vector at every iteration (H−kg
term). The second and more challenging problem is that local
Hessian (curvature) information has noise when a mini-batch
is used to compute it. The same problem exists for the gradi-
ent as well, but that can be alleviated by using gradient mo-
mentum instead of local gradient information. However, as
mentioned before it is computationally infeasible to (naı̈vely)
compute a Hessian momentum. The reason is that we cannot
form the Hessian matrix and average it throughout different
iterations, as such an approach has quadratic memory com-
plexity in the number of parameters along with a prohibitive
computational cost. However, as we discuss next, both prob-
lems can be resolved by using Hessian diagonal instead of
the full Hessian.

Hessian Diagonal Approximation
To address the issue that applying the inverse Hessian to
the gradient vector at every iteration is computationally in-
feasible, one could use an inexact Newton method, where
an approximate Hessian operator is used instead of the full
Hessian (Dembo, Eisenstat, and Steihaug 1982; Xu, Roosta-
Khorasani, and Mahoney 2017b,a; Yao et al. 2018b; Bol-
lapragada, Byrd, and Nocedal 2019). The most simple and
computationally efficient approach is to approximate the Hes-
sian as a diagonal operator in Eq. 3:

∆w = diag(H)−kg, (4)

where diag(H) is the Hessian diagonal, which we denote as
D.4 We show that using Eq. 4 has the same convergence rate
as using Eq. 3 for simple strongly convex and strictly smooth
function f(w) (see Appendix). Note that we only include
the proof for completeness, and our algorithm ADAHESSIAN
can be applied for general machine learning problems.

The Hessian diagonal D can be efficiently computed us-
ing the Hutchinson’s method. The two techniques we use

4Note that D can be viewed as a vector, in which case D−kg
is an element-wise product of vectors. Without clarification, D is
treated as a vector for the rest of the paper.

for this approximation are: (i) a Hessian-free method (Yao
et al. 2018a); and (ii) a randomized numerical linear algebra
(RandNLA) method (Bekas, Kokiopoulou, and Saad 2007,
Figure 1). In particular, the Hessian-free method is an oracle
to compute the multiplication between the Hessian matrix H
with a random vector z, i.e.,

∂gT z

∂θ
=
∂gT

∂θ
z + gT

∂z

∂θ
=
∂gT

∂θ
z = Hz. (5)

Here, the first equality is the chain rule, and the second equal-
ity is since z is independent of θ. Eq. 5 effectively allows
us to compute the Hessian times a vector z, without hav-
ing to explicitly forming the Hessian, by backpropotating
the gT z term, which has the same cost as ordinary gradient
backpropogation (Yao et al. 2018a). Then, with the Hessian
matvec oracle, one can compute the Hessian diagonal using
Hutchinson’s method:

D = diag(H) = E[z � (Hz)], (6)

where z is a random vector with Rademacher distribution, and
Hz is computed by the Hessian matvec oracle given in Eq. 5.
This process is illustrated in Appendix. It can be proved that
the expectation of z � (Hz) is the Hessian diagonal (Bekas,
Kokiopoulou, and Saad 2007).

Another important advantage, besides computational effi-
ciency, of using the Hessian diagonal is that we can compute
its moving average to resolve the local noisy Hessian as
mentioned before. This allows us to smooth out noisy local
curvature information, and to obtain estimates that use global
Hessian information instead. We incorporate both spatial av-
eraging and momentum (temporal averaging) to smooth out
this noisy Hessian estimate as described next.

Spatial Averaging
The Hessian diagonal can vary significantly for each single
parameter dimension of the problem. We found it helpful to
perform spatial averaging of Hessian diagonal and use the
average to smooth out spatial variations. For example, for a
convolutional layer, each convolution parameter can have a
very different Hessian diagonal. In ADAHESSIAN we com-
pute the average of the Hessian diagonal for each convolution
kernel (3× 3) as illustrated in Appendix. Mathematically, we
perform a simple spatial averaging on the Hessian diagonal
as follows:

D(s)[ib+ j] =

∑b
k=1 D[ib+ k]

b
, for 1 ≤ j ≤ b, 0 ≤ i ≤ d

b
− 1,

(7)
where D ∈ Rd is the Hessian diagonal, D(s) ∈ Rd is the
spatially averaged Hessian diagonal, D[i] (D(s)[i]) refers to
the i-th element of D (D(s)), b is the spatial average block
size, and d is the number of model parameters divisible by
b. We show that replacing D in Eq. 4 by D(s) in Eq. 7, the
update direction has the same convergence rate as using Eq. 3
for simple strongly convex and strictly smooth function f(w)
(see Appendix).

The Appendix provides illustration of spatial averaging for
both convolutional and matrix kernels. In general, the block
size b is a hyperparameter that can be tuned for different
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Algorithm 1: ADAHESSIAN

Require: Initial Parameter: θ0
Require: Learning rate: η
Require: Exponential decay rates: β1, β2
Require: Block size: b
Require: Hessian Power: k
Set: m0 = 0, v0 = 0
for t = 1, 2, . . . do // Training Iterations

gt ← current step gradient
Dt ← current step estimated diagonal Hessian
Compute D

(s)
t based on Eq. 7

Update D̄t based on Eq. 8
Update mt, vt based on Eq. 9
θt = θt−1 − ηmt/vt

tasks. While this is a new hyperparameter that can help the
performance, but the performance of ADAHESSIAN is not
sensitive to it (we provide sensitivity results in result section).

Next we describe momentum which is another useful
method to smooth out Hessian noise over different iterations.

Hessian Momentum
We can easily apply momentum to Hessian diagonal since it is
a vector instead of a quadratically large matrix. This enables
us to adopt momentum for Hessian diagonal in ADAHES-
SIAN. More specifically, let D̄t denote the Hessian diagonal
with momentum that is calculated as:

D̄t =

√
(1− β2)

∑t
i=1 β

t−i
2 D

(s)
i D

(s)
i

1− βt2
, (8)

where D(s) is the spatially averaged Hessian diagonal (de-
fined in Eq. 7), and 0 < β2 < 1 is the second moment
hyperparameter. Note that this is exactly the same as the
momentum term in Adam (Kingma and Ba 2015) or RM-
SProp (Tieleman and Hinton 2012) except that we are using
the spatial averaging Hessian diagonal instead of the gradient.

AdaHessian
To summarize, instead of only applying momentum for gra-
dient, ADAHESSIAN uses spatial averaging and Hessian
momentum to smooth out local variations in Hessian diago-
nal. More specifically, the first and second order moments
(mt and vt) for ADAHESSIAN are computed as follows:

mt =
(1− β1)

∑t
i=1 β

t−i
1 gi

1− βt1
,

vt = (D̄t)
k =

√
(1− β2)

∑t
i=1 β

t−i
2 D

(s)
i D

(s)
i

1− βt2

k

,

(9)

where 0 < β1, β2 < 1 are the first and second moment
hyperparameters that are also used in Adam. Note that Adam
uses the same formulation except that the spatial averaging
Hessian diagonal D(s)

i is replaced with gradient.
The main overhead of ADAHESSIAN is the Hutchinson’s

method to approximate Hessian diagonal, D. We use one

Model IWSLT14 WMT14
small base

SGD 28.57 ± .15 26.04
AdamW 35.66 ± .11 28.19

ADAHESSIAN 35.79 ± .06 28.52

Table 1: NMT performance (BLEU) on IWSLT14 De-En and
WMT14 En-De testsets (higher is better).

Hutchinson step per iteration to approximate the Hessian
diagonal (i.e., one random Rademacher vector z in Eq. 6).
The cost of this estimation is one Hessian matvec (to com-
pute Hz), which is equivalent to one gradient backpropaga-
tion (Yao et al. 2018a, 2019).

Also note that, it is possible to get a more accurate ap-
proximation to Hessian diagonal by using more Hutchinson
steps per iteration. However, we found that one step per itera-
tion performs well in practice since the multiple calculations
could be performed as Hessian momentum. In fact, as we dis-
cuss later, it is possible to skip the Hutchinson calculation for
few iterations to further reduce its computational overhead,
without significant impact on final accuracy.

Empirical Performance
We have tested ADAHESSIAN extensively on various learning
tasks (NLP, CV, and RecSys). We first describe the experi-
mental setup. Then we present results for Neural Machine
Translation (NMT), Language Modeling (LM), and Natural
Language Understanding (NLU). We provide further results
on CV in and RecSys in Appendix. The reason for such a
broad empirical evaluation is that several previous optimiza-
tion methods were originally tested with very simple models
on very few tasks, and when those methods were later tested
by the community on more complex models, the results were
often worse than popular optimization methods.

Experiment Setup
We start with NLP tasks and compare ADAHESSIAN with
SGD and AdamW (Loshchilov and Hutter 2019). For each
task we use the optimal hyperparameters reported in the
literature for SGD and AdamW to compare with a strong
baseline. However, we perform little tuning on ADAHESSIAN
since first we do not have access to industrial scale resources
to do extensive tuning, and second we want to show the
average performance of ADAHESSIAN instead of the absolute
best performance achieved with brute force tuning. As such,
we directly use the same β1, β2, weight decay, batch size,
dropout rate and learning rate schedule in ADAHESSIAN as in
AdamW for each task (even though tuning those is expected
to improve ADAHESSIAN performance). For ADAHESSIAN
we only tune the learning rate and the spatial averaging block
size b. Please see Appendix for more detailed experimental
settings.

Neural Machine Translation
We use BLEU (Papineni et al. 2002) as the evaluation metric
for NMT. Following standard practice, we measure tokenized
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Model PTB Wikitext-103
Three-Layer Six-Layer

SGD 59.9 ± 3.0 78.5
AdamW 54.2 ± 1.6 20.9

ADAHESSIAN 51.5 ± 1.2 19.9

Table 2: LM performance (PPL) on PTB and Wikitext-103
test datasets (lower is better).

case-sensitive BLEU and case-insensitive BLEU for WMT14
En-De and IWSLT14 De-En, respectively. For a fair compar-
ison, we do not include other external datasets.

The NMT results are shown in Tab. 1. The first interest-
ing observation is that here SGD performs much worse than
AdamW (which is opposite to its behaviour for image clas-
sification problems where SGD has superior performance;
See Appendix). As pointed out in the introduction, even the
choice of the optimizer has become another hyperparameter.
In particular, note that the BLEU scores of SGD are 7.09 and
2.15 lower than AdamW on IWSLT14 and WMT14, which is
quite significant. Similar observations about SGD were also
reported in (Zhang et al. 2019).

Despite this, ADAHESSIAN achieves state-of-the-art per-
formance for NMT with transformers. In particular, ADA-
HESSIAN outperforms AdamW by 0.13 BLEU score on
IWSLT14. Furthermore, the accuracy of ADAHESSIAN on
WMT14 is 28.52, which is 0.33 higher than that of AdamW.
We also plot the training losses of AdamW and ADAHESSIAN
on IWSLT14/WMT14 in Appendix. As one can see, ADA-
HESSIAN consistently achieves lower training loss. These
improvements are quite significant for NMT, and importantly
these are achieved even though ADAHESSIAN directly uses
the same β1 and β2, as well as the same number of warmup
iterations as in AdamW.

Language Modeling
We report the language modeling results in Tab. 2, using the
tensorized transformer proposed in (Ma et al. 2019). Similar
to NMT, note that the perplexity (PPL) of SGD is more
than 57 points worse than AdamW on Wikitext-103. That is
similar to the NMT task, SGD performs worse than AdamW.
However, ADAHESSIAN achieves more than 1.8/1.0 better
PPL than that of AdamW on PTB/Wikitext-103, respectively.

We also show the detailed training loss curves in Ap-
pendix. ADAHESSIAN achieves consistently lower loss val-
ues than AdamW throughout the training process on both
PTB and Wikitext-103. Similar to NMT, the β1/β2 as well
as the warmup phase of ADAHESSIAN are kept the same
as AdamW.

Natural Language Understanding
We report the NLU results in Tab. 3, using the SqueezeBERT
model (Iandola et al. 2016) tested on GLUE datasets (Wang
et al. 2018a). As can be seen, ADAHESSIAN has better per-
formance than AdamW on 5 out of 8 tasks. Particularly, on
RTE and MPRC, ADAHESSIAN achieves more than 1 point

as compared to AdamW. On average, ADAHESSIAN out-
performs AdamW by 0.41 points. Note that similar to NMT
and LM, except learning rate and block size, ADAHESSIAN
directly uses the same hyperparameters as AdamW. Interest-
ingly note that these results are better than those reported in
SqueezeBERT (Iandola et al. 2020), even though we only
change the optimizer to ADAHESSIAN instead of AdamW.

Sensitivity Analysis
Here, we study the sensitivity of ADAHESSIAN to learning
rate and spatial averaging block size, and then discuss the
computational overhead of ADAHESSIAN and how reduc-
ing the frequency of Hutchinson calculation can reduce the
overhead.

Learning Rate and Block Size Effects
Here, we explore the effects of the learning rate and block
size b on ADAHESSIAN. We first start with the effect of
learning rate, and test the performance of ADAHESSIAN and
AdamW with different learning rates. The results are reported
in Tab. 4 for IWSLT14 dataset, where we scale the original
learning rate with a constant factor, ranging from 0.5 to 20
(the original learning rate is the same as previous section. It
can be seen that ADAHESSIAN is more robust to the large
learning rates. Even with 10× learning rate scaling, ADA-
HESSIAN still achieves 32.48 BLEU score, while AdamW
diverges even with 6× learning rate scaling. This is a very
desirable property of ADAHESSIAN as it results in reasonable
performance for such a wide range of learning rates.

We also test the effect of the spatial averaging block size
(parameter b in Eq. 7). As a reminder, this parameter is used
for spatially averaging the Hessian diagonal as illustrated in
Appendix. The sensitivity results are shown in Tab. 5 where
we vary the block size from 1 to 128. While the best perfor-
mance is achieved for the block size of 32, the performance
variation for other block sizes is rather small. Moreover, all
the results are still no worse than the result with AdamW.

ADAHESSIAN Overhead
Here we discuss and measure the overhead of ADAHES-
SIAN. In terms of computational complexity, ADAHESSIAN
requires twice the flops as compared to SGD. This 2× over-
head comes from the cost of computing the Hessian diagonal,
when one Hutchinson step is performed per optimization iter-
ation. Each Hutchinson step require computing one Hessian
matvec (the Hz term in Eq. 6). This step requires one more
gradient backpropagation, hence leading to twice the theo-
retical complexity. Please refer to (Yao et al. 2019) for more
details.

We have also measured the actual runtime of ADAHES-
SIAN in PyTorch on a single RTX Titan GPU machine, as
reported in the second column of Tab. 6. For ResNet20, ADA-
HESSIAN is 2.42× slower than SGD (and 2.27× slower than
Adam). As one can see, ADAHESSIAN is not orders of mag-
nitude slower than first order methods. The gap between the
measured and theoretical speed is likely due to the fact that
Pytorch (Paszke et al. 2019) (and other existing frameworks)
are highly optimized for first order methods. But even then,
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RTE MPRC STS-B SST-2 QNLI QQP MNLI-m MNLI-mm Avg.

AdamW+ (Iandola et al. 2020) 71.8 89.8 89.4 92.0 90.5 89.4 82.9 82.3 86.01

AdamW∗ 79.06 90.69 90.00 91.28 90.30 89.49 82.61 81.84 86.91
ADAHESSIAN 80.14 91.94 90.59 91.17 89.97 89.33 82.78 82.62 87.32

Table 3: Comparison of AdamW and ADAHESSIAN for SqueezeBERT on the development set of the GLUE benchmark. The
result of AdamW+ is directly from (Iandola et al. 2020) and the result of AdamW∗ is reproduced by us.

LR Scaling 0.5 1 2 3 4 5 6 10

AdamW 35.42 ± .09 35.66 ± .11 35.37 ± .07 35.18 ± .07 34.79 ± .15 14.41 ± 13.25 0.41 ± .32 Diverge
ADAHESSIAN 35.33 ± .10 35.79 ± .06 35.21 ± .14 34.74 ± .10 34.19 ± .06 33.78 ± .14 32.70 ± .10 32.48 ± .83

Table 4: Robustness of AdamW and ADAHESSIAN to the learning rate on IWSLT14. As can be seen, ADAHESSIAN is much
more robust to large learning rate variability as compared to AdamW.

Block Size 1 2 4 8 16 32 64 128

ADAHESSIAN 35.67 ± .10 35.66 ± .07 35.78 ± .07 35.77 ± .08 35.67 ± .08 35.79 ± .06 35.72 ± .06 35.67 ± .11

Table 5: Block Size effect of ADAHESSIAN on IWSLT14.

Hutchinson Calculation Frequency 1 2 3 4 5

Theoretical Cost (×SGD) 2× 1.5× 1.33× 1.25× 1.2×
ResNet20 (Cifar10) 92.13 ± .08 92.40 ± .04 92.06 ± .18 92.17 ± .21 92.16 ± .12
Measured Cost (×SGD) 2.42× 1.71× 1.47× 1.36× 1.28×
Measured Cost (×Adam) 2.27× 1.64× 1.42× 1.32× 1.25×
ResNet32 (Cifar10) 93.08 ± .10 92.91 ± .14 92.95 ± .17 92.93 ± .24 93.00 ± .10
Measured Cost (×SGD) 3.23× 2.12× 1.74× 1.56× 1.45×
Measured Cost (×Adam) 2.91× 1.96× 1.64× 1.48× 1.38×

Table 6: Comparison between theoretical and measured speed of ADAHESSIAN, as compared to SGD and Adam, tested on
Cifar10. We also measured the speed up for different Hutchinson calculation frequencies. The real time measurement is performed
on one RTX Titan GPU.

if one considers the fact that SGD needs a lot of tuning then
this overhead may not be large.

It is also possible to reduce the ADAHESSIAN overhead.
One simple idea is to reduce the Hutchinson calculation
frequency from 1 Hessian matvec per iteration to multiple
iterations. For example, for a frequency of 2, we perform the
Hutchinson step at every other optimization iteration. This
reduces the theoretical computational cost to 1.5× from 2×.
One can also further reduce the frequency to 5, for which this
cost reduces to 1.2×.

We studied how such reduced Hutchinson calculation fre-
quency approach would impact the performance. We report
the results for training ResNet20/ResNet32 on the Cifar10
in Tab. 6, when we vary the Hutchinson frequency from 1
to 5. As one can see, there is a small performance variation,
but the ADAHESSIAN overhead significantly decreases as
compared to SGD and Adam.

Conclusions
In this work, we proposed ADAHESSIAN, an adaptive Hes-
sian based optimizer. ADAHESSIAN incorporates an approxi-
mate Hessian diagonal, with spatial averaging and momen-
tum to precondition the gradient vector. This automatically
rescales the gradient resulting in better descent directions.
One of the key novelties in our approach is the incorporation
spatial averaging for Hessian diagonal along with an expo-
nential moving average in time. These enable us to smooth
noisy local Hessian information which could be highly mis-
leading. We extensively tested ADAHESSIAN on various
datasets and tasks, using state-of-the-art models. These in-
clude IWSLT14 and WMT14 for neural machine translation,
PTB and Wikitext-103 for language modeling, GLUE for nat-
ural language understanding, Cifar10 and ImageNet for im-
age classification, and Criteo Ad Kaggle for recommendation
system. ADAHESSIAN consistently achieves comparable or
higher generalization performance as compared to the highly
tuned default optimizers used for these different tasks.
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