
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Inefficiency of K-FAC for Large Batch Size Training

Linjian Ma,1∗ Gabe Montague,1∗ Jiayu Ye,1∗

Zhewei Yao,1 Amir Gholami,1 Kurt Keutzer,1 Michael W. Mahoney1

1University of California at Berkeley, Berkeley, USA
{linjian, gabe montague, yejiayu, zheweiy, amirgh, keutzer, mahoneymw}@berkeley.edu

Abstract

There have been several recent work claiming record times
for ImageNet training. This is achieved by using large batch
sizes during training to leverage parallel resources to produce
faster wall-clock training times per training epoch. However,
often these solutions require massive hyper-parameter tuning,
which is an important cost that is often ignored. In this work,
we perform an extensive analysis of large batch size training
for two popular methods that is Stochastic Gradient Descent
(SGD) as well as Kronecker-Factored Approximate Curva-
ture (K-FAC) method. We evaluate the performance of these
methods in terms of both wall-clock time and aggregate com-
putational cost, and study the hyper-parameter sensitivity by
performing more than 512 experiments per batch size for each
of these methods. We perform experiments on multiple dif-
ferent models on two datasets of CIFAR-10 and SVHN. The
results show that beyond a critical batch size both K-FAC
and SGD significantly deviate from ideal strong scaling be-
haviour, and that despite common belief K-FAC does not ex-
hibit improved large-batch scalability behavior, as compared
to SGD.

1 Introduction

As the boundaries of parallelism are pushed by modern hard-
ware and distributed systems, researchers are increasingly
turning their attention toward leveraging these advances for
faster training of deep neural networks (DNNs). When using
the prevailing Stochastic Gradient Descent (SGD) method, a
batch of training data is split across computational process-
ing units, which together compute a stochastic gradient used
to update the parameters of the DNN.

To allow for efficient parallel scalability to a large number
of processors, one would like to use a large batch of train-
ing data to compute the stochastic gradient estimate (Gho-
lami et al. 2018). Using a larger batch size allows scal-
ing of the training to more GPUs, thus reducing training
time for a fixed number of epochs as opposed to small
batch training. However, large batch training of DNNs often
results in sub-optimal generalization performance as com-
pared to training with small batch size (Keskar et al. 2016;

∗Equal contribution. Authors ordered alphabetically.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Yao et al. 2018b). However, multiple different groups have
provided solutions for large batch size, reducing training
time of ImageNet from 720 hours on a Titan X (Iandola
et al. 2016) down to minutes/seconds (Goyal et al. 2017a;
Yao et al. 2018a; Devarakonda, Naumov, and Garland 2017;
You, Gitman, and Ginsburg 2017; You et al. 2017; Jia
et al. 2018; Yamazaki et al. 2019; Osawa et al. 2018;
Ginsburg, Gitman, and You 2018; Mu et al. 2018). An im-
portant practical consideration in methods is the sensitivity
to hyperparameters. While it is possible to train ImageNet
in minutes, but often the cost of hyper-parameter tuning and
some times ad-hoc rules has made large batch training not a
feasible method in practice. Generally, we find that this sen-
sitivity is quite strong, and the required tuning process is ex-
pensive in terms of both analyst time and in-search training
time. If performing large batch training requires significant
hyperparameter tuning for each batch-size, then one would
not achieve any effective speed up in total training time (i.e.,
hyperparameter tuning time plus final training time).

Using a large batch size changes the dynamics of the
training. It has been demonstrated both theoretically (Ma,
Bassily, and Belkin 2017; Martin and Mahoney 2018; 2019)
and empirically (Yao et al. 2018b; Golmant et al. 2018;
McCandlish et al. 2018; Shallue et al. 2018; Keskar et al.
2016) that, in many cases, training with large-batch SGD
comes with significant drawbacks. This includes degraded
testing performance, worse implicit regularization, and di-
minishing returns in terms of training loss reduction. Among
other things, there exists a critical batch size beyond which
these effects are most acute. For practitioners operating on
a data-driven computational budget, large batch size comes
with the additional inconvenience of increased sensitiv-
ity to hyperparameters and thus increased tuning time and
cost (Shallue et al. 2018).

There has been recent efforts in using approximate
second-order optimization method known as Kronecker-
Factored Approximate Curvature (K-FAC) (Martens and
Grosse 2015) for large batch training. K-FAC views the pa-
rameter space as a manifold of distribution space, in which
distance between parameter vectors is measured by a vari-
ant of the Kullback–Leibler divergence between their corre-
sponding distributions. In certain circumstances, K-FAC has

5053

been demonstrated to attain comparable effectiveness with
large batch size as small batch SGD (Osawa et al. 2018), but
the cost for hyper-parameter tuning and often the need for
performing many more iterations with K-FAC has not been
considered.

In this work, we investigate these issues, and perform an
extensive study of large batch training with both K-FAC and
SGD. In particular, we focus on the following two questions
regarding large batch training:

• What is the scalability behavior of K-FAC and SGD, and
how does it compare with that of small batch SGD?

• How does increasing batch size affect the hyperparameter
sensitivity?

To answer these questions, we conduct a comprehensive
investigation in the context of image classification on
CIFAR-10 (Krizhevsky and Hinton 2009) and SVHN (Net-
zer et al. 2011). We investigate the performance of CIFAR-
10 with Residual Networks (ResNet20 and ResNet32) clas-
sifier (He et al. 2016), and we investigate SVHN with
an AlexNet classifier (Krizhevsky, Sutskever, and Hinton
2012). We investigate the problem of large-batch diminish-
ing returns by measuring iteration speedup and comparing
it to an ideal scaling scenario. Our key observations are as
follows:

• Performance. Even with extensive hyperparameter tun-
ing, K-FAC has comparable, but not superior, train/test
performance to SGD (Fig. 1).

• Speedup. Both K-FAC and SGD exhibit diminishing re-
turns with the increase of batch size. Increasing batch size
for K-FAC yields lower, i.e., less prominent, speedup, as
compared with SGD, when measured in terms of itera-
tions, even when ignoring the important cost of matrix
inversion in K-FAC (Fig. 2).

• Hyperparameter Sensitivity. Hyperparameter sensitiv-
ity depends on both batch size and epochs/iterations. For
fixed epochs, i.e., running the same number of epochs,
larger batch sizes result in greater hyperparameter sensi-
tivity and smaller regions of hyperparameter space which
result in “good convergence”. For fixed iterations, i.e.,
running the same number of iterations, larger batch sizes
result in less sensitivity and larger regions of hyperparam-
eter space which result in “good convergence” (Fig. 3,
Fig. 4).

We start with mathematical background and related work
in Section 2, followed by a description of our experimental
setup in Section 3. Our empirical results demonstrating the
inefficiencies of both K-FAC and SGD with large batch sizes
appear in Section 4. Our conclusions are in Section 5.

2 Background and Related Work

For a supervised learning framework, the goal is to minimize
a loss function expressed as

L(θ) =
1

N

N∑

i=1

l(xi, yi, θ),

where θ ∈ R
d is the vector of model parameters, and

l(x, y, θ) is the loss for a datum (x, y) ∈ (X,Y). Here, X
is the input, Y is the corresponding label, and N = |X| is
the cardinality of the training set. SGD is typically used to
optimize the loss by taking steps of the form:

θt+1 = θt − ηt
1

|B|
∑

(x,y)∈B

∇θl(x, y, θt),

where B is a mini-batch of examples drawn randomly from
X × Y , and ηt is the learning rate at iteration t.

2.1 Kronecker-Factored Approximate Curvature

As opposed to SGD, which treats model parameter space as
Euclidean, natural gradient descent methods (Amari 1998)
for DNN optimization operate in the space of distributions
defined by the model, in which the parameter distance be-
tween two vectors is defined using the KL-divergence be-
tween the two corresponding distributions. Denoting DKL

as our vector norm in this space, it can be shown that
DKL(Δθ) ≈ 1

2Δθ�FΔθ, where F is the Fisher Informa-
tion Matrix (FIM) defined as:

F = E[∇θ log p(y|x, θ)∇θ log p(y|x, θ)�],
where the expectation is taken over both the model’s train-
ing data space and target variable space (Martens and Grosse
2015). The update rule for natural gradient descent then be-
comes θt+1 = θt − ηtF

−1∇θ�(θt). As noted by (Osawa
et al. 2018) and others, the FIM is often poorly-conditioned
for DNNs, leading to unstable training. To counter this ef-
fect, a damping term is often added (i.e., the FIM is pre-
conditioned). Using the preconditioned FIM, the update rule
then becomes:

θt+1 = θt − ηt(F + λI)−1∇θ�(θt), (1)

with λ denoting a positive damping parameter. Due to the
computational intractability of the true Fisher matrix, natu-
ral gradient methods typically rely on approximations to F .
For example, (Martens and Grosse 2015) proposes an ap-
proximation, the K-FAC method, exploiting the assumption
that (i) F is largely block-diagonal1 and (ii) across the train-
ing distribution, the products of unit activations and prod-
ucts of unit output derivatives are statistically independent.
While these assumptions are inexact, their accuracy has been
empirically verified by the authors in several cases. The ap-
proximation can be written as:

Fi = E[Ai−1A
�
i−1 ⊗GiG

�
i] ≈ E[Ai−1A

�
i−1]⊗ E[GiG

�
i],

where Fi represents the Fisher matrix of i-th layer, Gi is
the gradient of the loss with respect to the i-th layer out-
put before non-linear activation function, and Ai−1 is the
activation output of the previous layer. Note that this is the
approximation form we use in our implementation.

1Although the K-FAC authors propose an alternative tridiago-
nal approximation that eases the strength of this assumption, we
consider their block diagonal approximation of the Fisher, due to
its demonstrated performance.

5054

2.2 Difficulties of Large Batch Training

The problems of large batch training under SGD have been
studied in detail through both analytical and empirical stud-
ies. (Ma, Bassily, and Belkin 2017) proves that for convex
cases, increasing batch size by a factor f yields a no worse
than a factor f speedup in the number of SGD iterations, so
long as batch size is below a critical point. The batch sizes
falling below this critical point are referred to collectively
as the linear scaling regime. (Golmant et al. 2018) empiri-
cally investigates this in the context of non-convex training
of DNNs for a variety of training workloads; and it finds
evidence of a similar critical batch size for the non-convex
case, before which f -fold increases of batch size yield f -
fold reductions in total iterations needed to converge, and af-
ter which diminishing returns are observed, eventually lead-
ing to stagnation and no further benefit.

Subsequent to (Golmant et al. 2018), (Shallue et al. 2018;
McCandlish et al. 2018) obtain broadly similar conclusions
with more detailed studies. In particular, (McCandlish et al.
2018) goes further to predict the critical batch size to the
nearest order of magnitude, demonstrating that critical batch
size can be predicted from the gradient noise scale, repre-
senting the noise-to-signal ratio of the stochastic estimation
of the gradient. The authors further find that gradient noise
scale increases during the course of training. This principle
motivates the success of techniques as in (Smith et al. 2017;
Devarakonda, Naumov, and Garland 2017; Yao et al. 2018a),
in which batch size is adaptively increased during training.

Apart from increasing batch size during training, effort
has been undertaken to increase critical batch size and lin-
ear scaling throughout the entire training process. (Goyal et
al. 2017b) attempts to improve SGD scalability by tuning
hyperparameters more carefully using a linear batch-size to
learning-rate relationship. While this proves effective for the
authors’ training setup, (Golmant et al. 2018) demonstrates
that for a wide variety of other training workloads a linear
scaling rule is ineffective to counter inefficiencies of large
batch. Recent work has applied K-FAC to large-batch train-
ing settings, as in training ResNet50 on ImageNet reducing
training time down to 10 minutes on 1024 V100 GPU ma-
chines of ABCI supercomputer (Osawa et al. 2018). This
work actually observed that K-FAC requires more iterations
to reach the same accuracy as small batch SGD.

3 Experimental Setup

We investigate the performances of both K-FAC and SGD
on CIFAR-10 with ResNet20 and ResNet32, and on SVHN
with AlexNet. To be comparable with state-of-art results for
K-FAC (Zhang et al. 2019), we apply batch normalization
to the models along with standard data augmentation during
the training process. We further regularize with a weight de-
cay parameter of 5× 10−4. We perform extensive hyperpa-
rameter tuning individually for each batch size ranging from
128 to 16,384.

3.1 Learning Rate Schedule

For experiments on CIFAR-10, we decay the learning rate
twice by a factor of ten for each run over the course of

training. These two learning rate decays separate the train-
ing process into three stages. Because training extends to
a greater number of epochs for large batches under the ad-
justed epoch budget, for large batch runs we allow a pro-
portionally greater number of epochs to pass before learning
rate decay. For each run we therefore decay the learning rate
at 40% and 80% of the total epochs2. We refer to this de-
cay scheme as a scaled learning rate schedule. Similarly,
for SVHN, we also choose the scaled learning rate schedule
and decay the learning rate by a factor of 5 at 50% of the
total epochs.

It has been shown that large batch size training often can-
not reach the same accuracy as small batch for fixed num-
ber of epochs (Keskar et al. 2016; Yao et al. 2018b). Our
initial experiments also found the same conclusion. Recent
work has shown that large batch requires more iterations to
converge to the same accuracy as compared to small batch
size (Hoffer, Hubara, and Soudry 2017). To consider this, we
allow larger batches to perform more iterations for an ad-
justed epoch budget, in which the epoch limit of training is
extended proportionally to the log of the batch size. Specif-
ically, we use the rule: for CIFAR-10, number of training
epochs equals (log2(batch size/128)+1)×100; for SVHN,
it equals (log2(batch size/128) + 1) × 20. This adjusted
schedule allows larger-batch training runs more of a chance
to converge by affording them a greater number of iterations
than would normally be allowed under a traditional epoch
budget.

3.2 Hyperparameter Tuning

For both K-FAC and SGD, in order to perform training, we
must deal with hyperparameters, and we describe this here.

For K-FAC, we use the various techniques discussed
in (Osawa et al. 2018). We precondition the Fisher matrix
based on Eqn. (1) according to the methodology presented
in (Grosse and Martens 2016). For hyperparameter tuning
of our CIFAR-10 experiments, we conduct a log-space grid
search over 64 configurations with learning rates ranging
from 10−3 to 2.187, and with damping ranging from 10−4

to 0.2187. We also considered expanding grid search for
cases where the optimal parameters were on the boundary
of this search space. Similarly, for our SVHN experiments,
we conduct a log-space grid search over 64 configurations
with learning rates ranging from 10−5 to 0.02187, and with
damping ranging from 10−4 to 0.2187. The decay rate for
second-order statistics is held constant at 0.9 throughout
training. We use update clipping as in (Ba, Grosse, and
Martens 2017), with a constant parameter of 0.1.

To ensure a fair comparison between methods, we em-
ploy a similarly extensive hyperparameter tuning process
for SGD. In particular, we conduct a similar log-space grid
search over 64 hyperparameter configurations. For CIFAR-
10 experiments, learning rates range from 0.05 to 9.62, and
momentum range from 0.9 to 0.999. For SVHN experi-
ments, learning rates range from 0.005 to 0.962, and mo-

2This schedule can loosely be regarded as a mixture of an
epoch-driven schedule, as in (Hoffer, Hubara, and Soudry 2017),
and an iteration-based schedule, as in (He et al. 2016).

5055

mentum range from 0.9 to 0.999.

3.3 Speedup Ratio

We use speedup ratio (Golmant et al. 2018) to measure the
efficiency of large batch training based on iterations. We de-
fine the convergence rate kc(m) as the fewest number of
iterations to reach a certain criteria c under the batch size
m, where c is defined as attaining a target accuracy or loss
threshold. Here, kc(m) is a minimum, as it is picked across
all configurations of hyperparameters. We then define the
speedup ratio sc(m;m0) as kc(m0)/kc(m), in which we
rely on some small batch size m0 as our reference for con-
vergence rate when comparing to larger batch sizes m >
m0. In an ideal scenario, the batch size has no effect on
the performance increase per training observation, so in such
cases sc(m;m0) =

m
m0

.
It should be noted that for K-FAC speedup we solely mea-

sure the number of iterations and ignore the cost of com-
puting the inversion of the Fisher matrix. In fact the latter
can become very expensive, and multiple approaches such
as stochastic low-rank approximation and/or inexact itera-
tive solves can be used. But for fairness to K-FAC we ig-
nore this cost, since Pytorch does not use the most optimal
method for matrix inversion. However, as we will show, K-
FAC speedup is far from ideal, even when ignoring this cost
of performing more exact computations.

4 Experimental Results

We perform extensive experiments on CIFAR-10 and SVHN
datasets with both K-FAC and SGD with ResNet-20/32 and
AlexNet. Section 4.1 compares the training and test perfor-
mances of K-FAC and SGD resulting from extensive hyper-
parameter tuning for each batch size. Section 4.2 then dis-
cusses the large-batch scaling behaviors of K-FAC and SGD
and compares them to the ideal scaling scenario (Golmant
et al. 2018; Shallue et al. 2018). Finally, Section 4.3 investi-
gates the hyperparameter sensitivity of the K-FAC method.

4.1 Comparing Best Performance of K-FAC and
SGD

We run K-FAC and SGD for multiple batch sizes. The high-
est test accuracy and the lowest training loss achieved for
each batch size are plotted in Fig. 1.

In this training context, K-FAC minimizes training loss
most effectively for medium-sized batches (around 210). In-
specting the training trajectories, we found that both the
smallest (27) and largest batch sizes (214) needed even more
epochs/iterations to converge. For SGD however, training
loss is minimized prominently at larger batch sizes. When
comparing training trajectories with K-FAC, we found that
SGD made much more progress per-iteration in reducing
loss, allowing it to minimize the objective with a smaller
number of updates, as shown in Fig. 1. A more detailed com-
parison of the per-iteration progress of SGD versus K-FAC
can be found in the following section. For CIFAR-10 ex-
periments, the gap between SGD and K-FAC in large-batch
training loss is also present in their generalization perfor-
mance. SGD’s greater efficiency in maximizing per-iteration

accuracy allows it to attain a higher level of test performance
with the same number of training epochs.

4.2 Large-Batch Scalability of K-FAC and SGD

Training efficiency was measured for each batch size in
terms of iterations to a target training loss or test accuracy
(kc(m)). The speed up versus batch size relations are dis-
played in Fig. 2. Dotted lines denote the ideal scaling re-
lationship between batch size and iterations. We normalize
each method-target line independently, dividing by the itera-
tions at the smallest batch size k(27) so that each of the dot-
ted ideal lines is aligned in the plots, and we take the recipro-
cal to obtain the speedup function s(m; 27) = k(27)/k(m),
where m is a given batch size. To ensure a fair compari-
son between batch sizes, similar to what is done in (Gol-
mant et al. 2018), we select target loss values as follows:
we wish to analyze how quickly using different batch sizes
reach a given threshold. However, not all thresholds are fea-
sible, since large batch sizes may never reach a low train-
ing loss, whereas small batches may reach it easily. Thus,
for speed up comparison purposes, we set thresholds such
that all the batch sizes can reach it. We choose the worst-
performing batch size and method. This selection is made
after loss-based hyperparameter tuning is finished.

We use the resulting target values in Fig. 2. For both K-
FAC and SGD, diminishing return effects are present. In all
examined cases, K-FAC deviates from ideal scaling (dotted
lines) to a greater extent than SGD, as batch size increases.
This difference explains why in Fig. 1 SGD is increasingly
able to outperform K-FAC for large batches, for a fixed
epoch budget. We note that for both SGD and K-FAC, the
linear scaling regime is largely nonexistent, particularly for
the highest-performance targets. Fig. 2 shows that K-FAC
exhibits worse scaling than SGD.

4.3 Hyperparameter Sensitivity of K-FAC

The hyperparameter tuning spaces on all three models for K-
FAC are laid out in Fig. 3, which relates the selected hyper-
parameters for damping and learning rate with test accuracy.
All heatmaps we observe demonstrate a consistent trend in
terms of: (i) A positive correlation between damping and
learning rate. (ii) A shrinking of the high-accuracy region
with increasing batch size. The second point suggests a rela-
tionship between batch size and hyperparameter sensitivity
for K-FAC, which can be measured in terms of the volume
of hyperparameter space corresponding to successful train-
ing. In evaluating hyperparameter sensitivity (or inversely
robustness), we take the approach of (Shallue et al. 2018),
distinguishing between two types of robustness, each corre-
sponding to a different definition of “successful training”:
(i) Epoch-based robustness, in which success is defined by
training to a desired accuracy or loss within a fixed number
of epochs. (ii) Iteration-based robustness, in which success
is defined by training to a desired accuracy or loss within a
fixed number of iterations. It is important to note that a set
of hyperparameters considered to be acceptable to a prac-
titioner under an iteration budget may at the same time be
considered unacceptable to a practitioner operating under an

5056

Figure 1: From left to right: Best test accuracy / training loss versus batch size for SGD and K-FAC with ResNet20 on CIFAR-
10, ResNet32 on CIFAR-10, and AlexNet on SVHN, respectively. Large-batch K-FAC does not achieve higher accuracy or
lower losses than large-batch SGD, given the same number of training epochs.

Figure 2: From left to right: speed up to a target training loss / test accuracy versus batch size for both SGD and K-FAC with
ResNet20 on CIFAR-10, ResNet32 on CIFAR-10 and AlexNet on SVHN, respectively. The diminishing returns effect can be
seen to be more prominent in K-FAC (circles) than in SGD (triangles).

epoch budget. It is for this reason that we make this distinc-
tion.

Through this lens, the robustness behavior of K-FAC with
ResNet20 on CIFAR-10 is exhibited in Fig. 4. Distributions
of training accuracy across hyperparameters are represented
by box plots composed from the 64 hyperparameter configu-
rations (8 damping parameters, 8 learning rate parameters).
In Fig. 4a and 4d, we show the distributions of test accu-
racies and training losses for each batch size at the end of
training under the adjusted epoch budget. The greater spread
of accuracies observed for larger batch sizes indicates that
given this budget we should consider batch sizes from 212 to
214 as more sensitive to hyperparameter tuning than batch

sizes from 28 to 211. Informally, if we draw a horizontal line
at a desired test accuracy of, e.g., 0.8, then the batch sizes
with boxplots containing the majority of their hyperparame-
ter distribution above the 0.8 line should be favored as being
more robust.

We can simulate stopping of training in terms of epochs
and iterations to extract insight about robustness for other
types of budgets than our own. Regardless of the stopping
criteria, we expect that longer training will yield greater ro-
bustness (although at the cost of significantly higher compu-
tational/budget overhead). Figure 4b and 4e shows how the
hyperparameter robustness of different batch sizes changes
as a function of stopping epoch. Each group along the X-

5057

Figure 3: From top to bottom: accuracy at end of training under adjusted-epoch budget versus damping and learning rate for
batch sizes 128, 1,024 and 16,384 for CIFAR-10 with ResNet20, CIFAR-10 with ResNet-32, SVHN with AlexNet, respectively.
A positive correlation between damping and learning rate is exhibited, as well as a shrinking of the high-accuracy region for
large batch sizes.

axis corresponds to a hypothetical epoch budget. The rela-
tionship demonstrates that for K-FAC, robustness increases
with amount of training, but more interestingly it decreases
with batch size. This can be observed by noting that for any
fixed epoch, the distributions of accuracies corresponding to
larger batch sizes fall lower than their smaller-batch coun-
terparts, meaning fewer hyperparameter configurations will
fall above a desired accuracy threshold. A similar robustness
trend is observed with the distributions of training losses. We
perform a similar analysis for iteration budgets in Fig. 4c
and 4f, and we find as expected that robustness increases
with training. Unlike the case of an epoch budget however,
we find that for iteration budgets robustness increases with
larger batch size. This is observed by noting that the distri-
butions corresponding to large batch are more concentrated
towards higher accuracy and lower loss, although the effect
is not as pronounced as in the fixed epoch case.

Together, the results show that (i): epoch-based robustness
is inversely related to batch size, and (ii): iteration-based ro-
bustness is directly related to batch size. This is analogous
to the findings of (Shallue et al. 2018) for SGD.

5 Conclusions

Despite a number of work claiming record training times
of ImageNet using large batch size training, an often over-
looked cost is additional hyper-parameter tuning for large
batch training. In this work, we performed extensive ex-
perimentation and on both CIFAR-10 and SVHN datasets,
and find that both K-FAC and SGD exhibit diminishing re-
turns with large batch training. We considered more than 512
hyperparmater values per experiment by considering three
models of ResNet20, ResNet32 and AlexNet. We find that
K-FAC does not have better training or testing performance
than SGD given the same level of training and tuning. This
is the case even though we ignored the cost of matrix inver-
sion in K-FAC. Comparing the scalability behaviors of the
two methods, we find that K-FAC exhibits a smaller regime
of ideal scaling than SGD, suggesting that K-FAC’s scalabil-
ity to large batch training is not better than SGD. Finally, we
find that K-FAC exhibits a similar relationship between bud-
get and robustness as SGD, in which K-FAC is less robust to
tuning under epoch budgets, but more robust to tuning under
iteration budgets, mirroring the findings of similar work in
literature for SGD (Shallue et al. 2018).

Taken as a whole, our results suggest that, although K-

5058

(a) (b) (c)

(d) (e) (f)

Figure 4: (a)(d): Test accuracy / training loss distribution vs. batch size for K-FAC at the end of training under an adjusted
epoch budget. Larger batch sizes result in lower accuracies and higher training losses that are more sensitive to hyperparameter
choice. (b)(e): Comparison of test accuracy / training loss distributions over various epochs. Smaller batch sizes provide better
solutions that are less sensitive to choice of hyperparameters. (c)(f): Comparison of test accuracy / training loss distributions
over various iteration numbers. Large batch sizes exhibit a trend of providing better solutions that are less sensitive to choice of
hyperparameters.

FAC has been applied to large batch training scenarios, it en-
counters the same large-batch issues to an equal or greater
extent as SGD, and that the problem of large batch train-
ing is still largely unresolved. It remains to be seen whether
other variants of sub-sampled Newton methods (Roosta-
Khorasani and Mahoney 2016a; 2016b) can lead to im-
proved results or whether this is a more ubiquitous aspect
of stochastic optimization algorithms applied to non-convex
optimization problems of interest in machine learning.

We believe that it is important for every work to state its
limitations (in general, but in particular in this area). We
were particularly careful to perform extensive experiments
and did some initial testing for each dataset to choose the
right hyper-parameters that were not tuned. For the two hy-
perparameters that we tuned, we considered the same range
for all batch sizes. It is possible to augment this search
space using rules for large batch training such as scaling
learning rate. However, we found that for large batch size
this technique sometimes leads to divergence and poor re-

sults as compared to our fixed-grid search space. Here we
solely looked at pure SGD and K-FAC, and did not consider
other approaches such as LARS (You, Gitman, and Ginsburg
2017), or adaptive batch size methods (Smith et al. 2017;
Devarakonda, Naumov, and Garland 2017; Yao et al. 2018a;
Mu et al. 2018). We leave this as part of future work.

References

Amari, S.-I. 1998. Natural gradient works efficiently in
learning. Neural computation 10(2):251–276.
Ba, J.; Grosse, R.; and Martens, J. 2017. Distributed second-
order optimization using Kronecker-factored Approxima-
tions. In International Conference on Learning Represen-
tations.
Devarakonda, A.; Naumov, M.; and Garland, M. 2017. Ad-
abatch: Adaptive batch sizes for training deep neural net-
works. arXiv preprint arXiv:1712.02029.
Gholami, A.; Azad, A.; Jin, P.; Keutzer, K.; and Buluc, A.

5059

2018. Integrated model, batch and domain parallelism in
training neural networks. ACM Symposium on Parallelism
in Algorithms and Architectures(SPAA’18).
Ginsburg, B.; Gitman, I.; and You, Y. 2018. Large batch
training of convolutional networks with layer-wise adaptive
rate scaling.
Golmant, N.; Vemuri, N.; Yao, Z.; Feinberg, V.; Gholami,
A.; Rothauge, K.; Mahoney, M. W.; and Gonzalez, J. 2018.
On the computational inefficiency of large batch sizes for
stochastic gradient descent. CoRR abs/1811.12941.
Goyal, P.; Dollár, P.; Girshick, R.; Noordhuis, P.;
Wesolowski, L.; Kyrola, A.; Tulloch, A.; Jia, Y.; and He, K.
2017a. Accurate, large minibatch sgd: Training imagenet in
1 hour. arXiv preprint arXiv:1706.02677.
Goyal, P.; Dollár, P.; Girshick, R. B.; Noordhuis, P.;
Wesolowski, L.; Kyrola, A.; Tulloch, A.; Jia, Y.; and He, K.
2017b. Accurate, large minibatch SGD: Training imagenet
in 1 hour. CoRR abs/1706.02677.
Grosse, R., and Martens, J. 2016. A Kronecker-factored
Approximate Fisher matrix for convolution layers. In Inter-
national Conference on Machine Learning, 573–582.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep resid-
ual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, 770–778.
Hoffer, E.; Hubara, I.; and Soudry, D. 2017. Train longer,
generalize better: Closing the generalization gap in large
batch training of neural networks. In Advances in Neural
Information Processing Systems, 1731–1741.
Iandola, F. N.; Moskewicz, M. W.; Ashraf, K.; and Keutzer,
K. 2016. Firecaffe: near-linear acceleration of deep neural
network training on compute clusters. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2592–2600.
Jia, X.; Song, S.; He, W.; Wang, Y.; Rong, H.; Zhou,
F.; Xie, L.; Guo, Z.; Yang, Y.; Yu, L.; et al. 2018.
Highly scalable deep learning training system with mixed-
precision: Training imagenet in four minutes. arXiv preprint
arXiv:1807.11205.
Keskar, N. S.; Mudigere, D.; Nocedal, J.; Smelyanskiy, M.;
and Tang, P. T. P. 2016. On large-batch training for
deep learning: Generalization gap and sharp minima. arXiv
preprint arXiv:1609.04836.
Krizhevsky, A., and Hinton, G. 2009. Learning multiple lay-
ers of features from tiny images. Technical report, Citeseer.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012.
Imagenet classification with deep convolutional neural net-
works. In Advances in neural information processing sys-
tems, 1097–1105.
Ma, S.; Bassily, R.; and Belkin, M. 2017. The power
of interpolation: Understanding the effectiveness of SGD
in modern over-parametrized learning. arXiv preprint
arXiv:1712.06559.
Martens, J., and Grosse, R. B. 2015. Optimizing neural
networks with Kronecker-factored Approximate Curvature.
CoRR abs/1503.05671.

Martin, C. H., and Mahoney, M. W. 2018. Implicit self-
regularization in deep neural networks: Evidence from ran-
dom matrix theory and implications for learning. arXiv
preprint arXiv:1810.01075.
Martin, C. H., and Mahoney, M. W. 2019. Traditional and
heavy-tailed self regularization in neural network models.
In Proceedings of the 36th International Conference on Ma-
chine Learning, 4284–4293.
McCandlish, S.; Kaplan, J.; Amodei, D.; and Team, O. D.
2018. An empirical model of large-batch training. CoRR
abs/1812.06162.
Mu, N.; Yao, Z.; Gholami, A.; Keutzer, K.; and Mahoney,
M. W. 2018. Parameter re-initialization through cyclical
batch size schedules. arXiv preprint arXiv:1812.01216.
Netzer, Y.; Wang, T.; Coates, A.; Bissacco, A.; Wu, B.; and
Ng, A. Y. 2011. Reading digits in natural images with un-
supervised feature learning.
Osawa, K.; Tsuji, Y.; Ueno, Y.; Naruse, A.; Yokota, R.; and
Matsuoka, S. 2018. Second-order optimization method
for large mini-batch: Training resnet-50 on imagenet in 35
epochs. arXiv preprint arXiv:1811.12019.
Roosta-Khorasani, F., and Mahoney, M. W. 2016a. Sub-
sampled Newton methods I: globally convergent algorithms.
arXiv preprint arXiv:1601.04737.
Roosta-Khorasani, F., and Mahoney, M. W. 2016b. Sub-
sampled Newton methods II: Local convergence rates. arXiv
preprint arXiv:1601.04738.
Shallue, C. J.; Lee, J.; Antognini, J. M.; Sohl-Dickstein,
J.; Frostig, R.; and Dahl, G. E. 2018. Measuring the ef-
fects of data parallelism on neural network training. CoRR
abs/1811.03600.
Smith, S. L.; Kindermans, P.-J.; Ying, C.; and Le, Q. V.
2017. Don’t decay the learning rate, increase the batch size.
arXiv preprint arXiv:1711.00489.
Yamazaki, M.; Kasagi, A.; Tabuchi, A.; Honda, T.; Miwa,
M.; Fukumoto, N.; Tabaru, T.; Ike, A.; and Nakashima, K.
2019. Yet another accelerated sgd: Resnet-50 training on
imagenet in 74.7 seconds. arXiv preprint arXiv:1903.12650.
Yao, Z.; Gholami, A.; Keutzer, K.; and Mahoney, M. W.
2018a. Large batch size training of neural networks with
adversarial training and second-order information. arXiv
preprint arXiv:1810.01021.
Yao, Z.; Gholami, A.; Lei, Q.; Keutzer, K.; and Mahoney,
M. W. 2018b. Hessian-based analysis of large batch
training and robustness to adversaries. arXiv preprint
arXiv:1802.08241.
You, Y.; Zhang, Z.; Hsieh, C.; and Demmel, J. 2017. 100-
epoch imagenet training with alexnet in 24 minutes. CoRR
abs/1709.05011.
You, Y.; Gitman, I.; and Ginsburg, B. 2017. Scaling SGD
batch size to 32k for ImageNet training. arXiv preprint
arXiv:1708.03888.
Zhang, G.; Wang, C.; Xu, B.; and Grosse, R. 2019. Three
mechanisms of weight decay regularization. In International
Conference on Learning Representations.

5060

