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Abstract
This paper introduces a new neural network architecture designed to forecast high-dimensional
spatio-temporal data using only sparse measurements. The architecture uses a two-stage
end-to-end framework that combines neural ordinary differential equations (NODEs) with vision
transformers. Initially, our approach models the underlying dynamics of complex systems within a
low-dimensional space; and then it reconstructs the corresponding high-dimensional spatial fields.
Many traditional methods involve decoding high-dimensional spatial fields before modeling the
dynamics, while some other methods use an encoder to transition from high-dimensional
observations to a latent space for dynamic modeling. In contrast, our approach directly uses sparse
measurements to model the dynamics, bypassing the need for an encoder. This direct approach
simplifies the modeling process, reduces computational complexity, and enhances the efficiency
and scalability of the method for large datasets. We demonstrate the effectiveness of our framework
through applications to various spatio-temporal systems, including fluid flows and global weather
patterns. Although sparse measurements have limitations, our experiments reveal that they are
sufficient to forecast system dynamics accurately over long time horizons. Our results also indicate
that the performance of our proposed method remains robust across different sensor placement
strategies, with further improvements as the number of sensors increases. This robustness
underscores the flexibility of our architecture, particularly in real-world scenarios where sensor
data is often sparse and unevenly distributed.

1. Introduction

Understanding and predicting high-dimensional dynamical systems, such as atmospheric-ocean
interactions, fluid dynamics, and seismic activities, is important across various scientific domains [1–3].
These systems are often studied through physics-based numerical simulations that generate complex,
time-varying 2D or 3D spatial fields. However, real-world scenarios are often constrained by the limited
ability to fully observe these high-dimensional fields, due to the sparse coverage of existing sensor
technologies, thus leading to incomplete data acquisition [4]. For example, wave buoys in oceanography
offer limited insights into surface dynamics, and sparse sensor networks in geoscience provide insufficient
data on seismic activities. Consequently, reconstructing and forecasting these spatial fields from partial
measurements is essential yet challenging [5, 6], as it involves solving an ill-posed inverse problem further
complicated by unknown and nonlinear measurement operators.

Problem formulation. Since directly observing high-dimensional spatial fields that evolve over time is either
challenging or costly we often rely on sensors that provide partial measurements of the system at specific
time points. Our goal is to leverage these sparse sensor measurements to predict future spatial fields.
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Specifically, given measurements s(t) ∈ Rd at time t, where d denotes the number of sensors, we aim to
infer the high-dimensional 2D spatial field x(t+∆t) ∈ Rm×n at a future time step t+∆t. Here,m and n
represent the dimensions of the spatial field.

The challenge intensifies as the time step∆t increases, making accurate prediction of x(t+∆t) from the
available measurements s(t) increasingly difficult. We seek to address this problem by developing a model
that can infer the future spatial fields from limited measurements.

Our contributions. In this work, we aim to address this challenge by developing a new model for forecasting
high-dimensional spatio-temporal systems from limited and irregularly distributed sensor measurements.
This model operates at the intersection of two traditionally separate areas: (i) spatial reconstruction from
low-dimensional spaces to high-dimensional fields; and (ii) temporal forecasting from historical data to
future states. While recent works have attempted to combine forecasting and reconstruction (see section 2),
we introduce a new approach.

We propose an end-to-end neural network (NN) architecture designed to forecast high-dimensional
spatio-temporal data using sparse measurements. Our framework involves a two-step process: first, we use
neural ordinary differential equations (NODEs) [7, 8] to model and forecast the system’s dynamics in a
low-dimensional space; and second, we employ vision transformers (ViTs) [9, 10] to reconstruct
high-resolution, high-dimensional spatial fields.

We demonstrate that sparse measurements, despite their limitations, contain sufficient information to
forecast the system’s dynamics over a desired time horizon. Furthermore, we show that these forecasts can be
used to accurately reconstruct future high-dimensional spatial fields. This approach leverages the efficiency
of modeling dynamics in a lower-dimensional space, circumventing the need to directly handle
high-dimensional data. Extensive experiments on various spatio-temporal systems, including fluid flows and
weather data, validate the effectiveness of our approach and suggest that sparse measurements are sufficient
to model the dynamics of complex systems.

Organization. The rest of the paper is organized as follows. We discuss related work on the reconstruction
and forecasting of spatio-temporal systems in section 2. Our methodology for the end-to-end framework for
forecasting and reconstruction is discussed in section 3: we first present details for the NODE model used for
forecasting sparse measurements; and we then provide details on the ViT architecture used for reconstructing
the high-dimensional quantities of interest. Section 4 presents our empirical results for a simple and
challenging fluid flow examples and for real-world weather data; and section 5 provides a brief conclusion.

2. Related work

In the following, we discuss related work on (i) reconstructing spatial fields from limited measurements; (ii)
forecasting spatio-temporal data; and (iii) recent works that simultaneously forecast and reconstruct
spatio-temporal systems.

Spatial reconstruction. Spatial reconstruction is a task that involves recovering spatial fields from partial or
sparse observations, and it is always regarded as a challenging and ill-posed inverse problem. Reconstruction
scenarios include both irregular and regular sampling methods. Conventional techniques are centered
around linear methods, such as basis expansion methods (e.g. POD) [11, 12] and matrix factorization [13].
With advancements of computer vision, this problem has garnered significant attention across various
scientific fields by leveraging the nonlinearity of NNs, e.g. with full-field reconstruction from sparse
sensors [5, 14, 15], super-resolution of scientific data [3, 16–19], and downscaling of global climate data [20].
Specifically, in the context of spatial super-resolution, many researchers leverage state-of-the-art ViTs [21,
22] and diffusion models [23, 24] for scientific data reconstruction.

Temporal forecasting. Temporal forecasting is a fundamental problem focused on identifying the underlying
dynamic patterns from observations and establishing a predictive mapping between historical records and
the future states of dynamical systems. The classic autoregressive scheme and state-space models are based on
linear assumptions, offering reliable accuracy for short-term forecasting. Deep learning techniques, such as
recurrent NNs (RNNs) [25, 26] and their variants [27, 28], have shown significant promise in capturing
complex temporal dependencies and nonlinear dynamics. The RNN family can be further extended to
convolutional forms for spatiotemporal forecasting [29, 30]. More recently, NODEs [7, 31] have emerged as a
powerful paradigm for modeling temporal dynamics, as they aim to combine deep learning with
continuous-time dynamical systems. NODEs have improved the interpretability and efficiency of time-series
tools, especially in scenarios involving irregularly sampled data [32] or naturally continuous dynamics [33].
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Furthermore, due to their remarkable representation capabilities, especially in computer vision tasks,
transformers [34–39] and diffusion models [40, 41] have increasingly been explored for time-series
forecasting. These powerful models have been adapted for spatio-temporal forecasting in various domains,
such as weather and climate systems [42–48], highlighting their potential in capturing complex temporal and
spatial dependencies.

Forecasting and Reconstruction.Work that combines reconstruction and forecasting within a unified
framework aims to tackle the challenge of incomplete data and long-horizon predictions. Simultaneous
reconstruction and forecasting aims to introduce a new opportunity to understand complex natural
phenomena. Similar to spatial reconstruction, the methodologies address two types of low-dimensional
spaces: (i) irregular sparse sensor measurements; and (ii) regular low-resolution data. In the context of sparse
measurements, the sequential encoder–decoder model [30] and INR methods have been explored for both
reconstruction and forecasting [49, 50]. Moreover, shallow recurrent decoder networks [51, 52], which can
handle both recurrence and decoding with sparse sensor measurements, have been introduced as a follow-up
to the Shallow Decoder [5]. For scenarios involving regular low-resolution data, spatio-temporal
super-resolution techniques [53, 54] have been considered for augmenting various scientific data. A recent
work [55] combines variational autoencoder and transformer models to capture dynamics in the latent
space, and this has shown great potential for diverse scientific applications, such as weather forecasting and
structural engineering.

3. End-to-end framework for forecasting and reconstruction

We propose to model the temporal evolution and the spatial reconstruction jointly within an end-to-end
framework. Conceptually, as illustrated in figure 1, our framework includes two stages:

• Stage 1: Modelling dynamics. In the first stage, a Gated NODE (GNODE) architecture [56] is used for
forecasting the dynamics given a measurement vector s0 as an initial condition. To be more concrete, the
GNODE models the dynamics as

d

dt
s(t) = F (s(t) ;θ) := g

(
s(t) ,θg

)
⊙ [N (s(t) ;θn)− s(t)] , with s(0) = s0, (1)

whereN is a network parameterized by θn, and g is a gate parameterized by θg. The details can be found in
section 3.1.

• Stage 2: Reconstructing spatial fields. In the second stage, we are concerned with reconstructing the
high-dimensional spatial fields x(t+∆t) from the predicted measurements ŝ(t+∆t) at a future time step
t+∆t as

x̂(t) = G (ŝ(t) ;ϕ) , (2)

where G : Rd → Rm×n is a decodermodule parameterized byϕ. Specifically, we leverage the Swin ViT archi-
tecture [9] in combination with an additional fully-connected up-sample layer, and a pixel shuffle layer [57]
to capture multi-scale features and recover the spatial fields. The details can be found in section 3.2.

To train this framework, we use a standard supervised learning approach to optimize the learnable
parameters ofN and G. To do so, we require sequences with input-output pairs of measurement vectors and
spatial fields {sn,xn}0,...,N, where sn,xn represent s(tn),x(tn) that are discretized along the time points
tn = n∆t for n= 0,1, . . . ,N. Then, we can jointly minimize the dynamics and reconstruction error using the
following objective function for prediction:

N ∗,G∗ = argmin
θ,ϕ

1

N

N−1∑
n=0

[
∥sn+1 − ODEint(F (sn;∆t,θ))∥22 +λ∥xn+1 −G (sn+1;ϕ)∥2F

]
,

where N denotes the number of data points, λ> 0 balances the loss terms, and ODEint(·) denotes a
numerical integration method. Here F denotes a GNODE, and we use a leaky integrator scheme for
discretizing the model for training and inference. In practice, we train the model with a multi-step prediction
loss to improve the forecast horizon during inference time.
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Figure 1. Illustration of the proposed end-to-end architecture for forecasting and reconstructing spatio-temporal data from
sparse measurements. Given a measurement vector st , the Gated NODE model is used for forecasting the dynamics. The
predicted measurement vector ŝt+k is then transformed into a latent image, which in turn is decoded by a vision transformer. A
final pixel shuffle layer is refining the resolution of the reconstructed flow field x̂t+k.

3.1. Stage 1: neural ODEs for modeling dynamics
NODEs are lightweight models that are versatile for a range of applications in machine learning and
science [7, 33, 58–64]. The idea of these models is to use a NNN to parameterize the vector field of an ODE

d

dt
s(t) =N (s(t) ;θ) , (3)

where s denotes the state vector. This formulation is interesting, because it connects NNs with dynamical
systems theory [33].

Given a set of training data and an initial value s(0) = s0, we can learn the parameters θ of the network
via back-propagation by evaluating the following integral equation

sn+1 = sn +

ˆ tn+∆t

tn

N (s(ξ) ; θ) dξ, (4)

where sn = s(tn), and∆t is the discrete timestep. In practice, we use numerical schemes to approximate the
integral. For example, the simple forward Euler discretization scheme leads to sn+1 = sn +∆tN (sn; θ). It is
straightforward to implement this discrete model in any framework for deep learning, which in turn allows
us to learn the parameters through gradient-based algorithms. The particular discretization scheme that is
used to derive the discrete model has a significant impact on the model’s performance [33]. For instance, the
forward Euler method is easy and flexible to implement, but it offers lower accuracy, whereas higher-order
methods (e.g. Runge–Kutta fourth-order) provide greater accuracy and convergence performance. Analyzing
numerical schemes, and the design of novel solvers for ODEs is an active area of research [65–68].

A shortcoming of NODEs is their limited expressiveness for modeling complex dynamics. For instance,
trajectories described by ODEs cannot cross each other, which induces an inductive bias [31]. While this is
favorable in situations where it is known that the underlying dynamics are described by an ODE, it can be
limited in other situations. One approach to improve the expressiveness of NODEs is to augment the vector
space by lifting the state vectors into a higher dimension [31]. Other approaches to improve expressiveness
include gating [56], time delayed feedback [69, 70], and the use of second-order ODE system [71].

In this work, we consider gating as a simple mechanism to improve the expressiveness of a standard
NODE. Gating essentially introduces multiple scales into the model, which enables it to approximate more
complex dynamics [28, 70, 72]. For instance, a single scale could be introduced into equation (3) via a simple
time constant τ ∈ [0,1], leading to the following model

d

dt
s(t) = τ · N (s(t) ;θ) . (5)

Intuitively, this scale will control the dynamics: at one extreme, if τ = 1, the dynamics modeled byN are not
affected; but, on the other hand, if τ = 0, then the dynamics are fully damped.

The idea of a GNODE is to introduce multiple time scales by replacing τ with a d-dimensional vector.
This vector can be assumed to be dependent on s(t). To this end, we introduce a gating function
g : Rd → [0,1]d into equation (3) so that we yield the following continuous-time Gated model

d

dt
s(t) = g

(
s(t) ;θg

)
⊙N (s(t) ;θ) , (6)

4



Mach. Learn.: Sci. Technol. 5 (2024) 045067 J Song et al

Figure 2. (a) illustrates an up-sample layer and the ViT architecture that are used for spatial reconstruction from sparse dynamics.
(b) presents details of the residual swin transformer block.

where⊙ denotes the Hardamard product. The gating function is parameterized by a NN with learnable
weights θg. Again, the simple forward Euler discretization scheme leads to

sn+1 = sn +∆t g
(
sn;θg

)
⊙N (sn; θ) .

The literature also proposes alternative formulations that lead to different discretized models. For
instance, [56] proposed the following GNODE

d

dt
s(t) = F := g

(
s(t) ,θg

)
⊙ [N (s(t) ;θ)− s(t)] . (7)

Setting∆t= 1, and applying the forward Euler scheme yields the following discretized model

sn+1 = (1− g)⊙ sn + g⊙N (sn; θ) ,

where g := g(sn;θg). This model is also known as a leaky integrator [73]. The formulation in equation (7) is
popular in the RNN literature [28, 70, 72], and we found that this formulation outperforms the model stated
in equation (6).

The choice of the nonlinear activation function plays a crucial role in the performance of deep learning
models since it significantly affects the model’s capability to learn complex patterns. In this work, we replace
the traditional ReLU function in the NODE component with a rational activation function [74], as this offers
better flexibility and efficiency. The rational activation function is formulated with trainable parameters ai
and bj,

F(x) =
P(x)

Q(x)
=

∑rP
i=0 ai x

i∑rQ
j=0 bjx

j
, aP ̸= 0, bQ ̸= 0, (8)

where rP and rQ denote the polynomial degrees of the numerator and denominator, respectively. In particular,
this activation function is well-suited for learning non-smooth and highly oscillatory systems. We conduct an
ablation study in section 4.7 to evaluate its effectiveness, compared to the standard ReLU function.

3.2. Stage 2: Transformer-based decoder for reconstructing flow fields
This section introduces a decoder G, based on a Swin ViT architecture [9], for reconstructing the
high-dimensional flow field x(t+∆t), given the predicted variable of sparse dynamics ŝ(t+∆t). The
proposed architecture is illustrated in figure 2(a). Firstly, to leverage a ViT model for our problem, we need
to learn a mapping from the sparse measurement vector ŝ(t+∆t) ∈ Rd to a higher-dimensional latent
variable Z(t+∆t) ∈ Rm′×n ′

with a reshaped dimension ofm ′ × n ′. Specifically, the up-sampling layer is
constructed with multilayer perceptrons (MLPs) to obtain Z.

Then, we create a sequence {z1,z2, . . . ,zM} by splitting the input Z intoM= m ′×n ′

p2 fixed-size patches of

dimension p× p, which we flatten into vectors zi ∈ Rp2 . We subsequently embed each element of the

5



Mach. Learn.: Sci. Technol. 5 (2024) 045067 J Song et al

sequence in a D-dimensional embedding space through a linear mapping z ′i =Wzi ∈ RD, whereW is a
weight matrix. In addition, a positional embedding scheme is used to encode information about the order of
the embedded patches.

The embedded features are passed through a series of transformer blocks to obtain a final latent
summary which is then used for reconstructing the high-dimensional flow field. A standard transformer
block consists of a self-attention (SA) module [75], an MLP, and several normalization layers [76]. Given the
input matrix Z ∈ RN×D := [z1, . . . ,zi, . . . ,zN]⊤, where the rows are the stacked embedded patches, the SA
module computes a transformed matrix Y ∈ RN×D ′

as follows:

Y= Attention(Q,K,V) := softmax

(
QKT

√
D

)
V. (9)

Here, the query, key, and value matrices Q,K,V ∈ RN×D ′
are calculated from the inputs. Specifically, we

obtain the query, key, and value matrices as:

Q= ZWq, K= ZWk, V= ZWv, (10)

whereWq,Wk,Wv ∈ RD×D ′
are learnable weight matrices. Note that the softmax layer is applied row-wise to

the scaled attention matrix A= QKT ∈ RN×N. It is known that scaling the A prevents small gradients [75].
The output Y of the SA module is a weighted sum of the values V .

While the simple SA mechanism is effective for computer vision tasks, recent studies have demonstrated
that the shifted window (Swin) transformer block [9] is better suited for image restoration tasks [10] and
super-resolution of scientific problems [18]. The swin transformer architecture presents hierarchical, shifted
windows for SA mechanisms, and it helps capture both local and global patterns efficiently. This design not
only mitigates computational challenges associated with processing large images, but it also enhances the
model’s capacity to capture fine-grained features, making it suitable for spatial reconstruction of multi-scale
dynamics.

The success of the swin transformer architecture lies in the swin transformer layers (STLs) and their
variant residual swin transformer blocks (RSTBs). STLs are the fundamental building blocks of the Swin
transformer, and they consist of a local window-based SA layer, a global feature fusion module, and a
feed-forward network. The window-based SA mechanism allows STLs to focus on local relationships
between image patches, reducing computational complexity and improving efficiency. The global feature
fusion module combines features from different window sizes, capturing both local and global contexts,
while the feed-forward network further enhances feature representation.

RSTBs incorporate residual connections in the STL architecture, as illustrated in figure 2(b). This
stabilizes information flow and alleviates the vanishing gradient problem. An RSTB consists of two STLs
connected in a residual manner, where the output of the second STL is added to the input of the first STL.
This residual connection allows for direct propagation of information from the input to the output,
facilitating gradient flow and improving training stability.

Given a decoded low-resolution flow field, we use pixel shuffle [57] to obtain a refined high-resolution
reconstruction. Pixel shuffle, which is based on a sub-pixel convolution layer, rearranges the elements with a
periodic shuffling operator to convert the low-resolution feature maps to a high-resolution output.

4. Numerical examples

In this section, we aim to show the effectiveness of our method in learning spatio-temporal dynamics in the
context of reconstruction and forecasting. To do so, we evaluate our proposed framework on three datasets,
ranging from fluid flows to weather dynamics. We investigate the effects of various sampling methods, and
we show that our method can capture the spatio-temporal dynamics accurately from sparse measurements
with appropriate sensor placement strategies. We also conduct an ablation study on different types of NODE
models and activation functions, which validates the superior performance of GNODEs and the Rational
activation function.

4.1. Sensor placement strategies for sparse measurements
First of all, it is worthwhile to mention that the experimental setup in our paper differs from the standard
encoder–decoder frameworks. Specifically, we assume that only sparse measurement data is accessible during
training and inference. Encoders or sampling methods serve more as preprocessing steps for the datasets,
instead of being one part of the network training itself. In our test, we experiment with two naive sampling
methods, random and uniform;—and we also use a discrete empirical interpolation method (DEIM) [77],
which is an efficient approach for reduced-order modeling of nonlinear dynamical systems [78–80]. With
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Algorithm 1. DEIM [77].

Input: The left singular vectorsW of snapshot matrix A.
Output: S= [ei1 , · · · ,eis ] ∈ Rn×s.
1: [|ρ|, t1] = max{|W1|}
2:W= [W1],S= [ei1 ],
3: for ℓ from 2 to s do
4: Solve STWc= STWℓ for c
5: r=Wℓ−Wc
6: [|ρ|, tℓ] = max{|r|}
7: W← [W Wℓ] ,S← [S eiℓ ]
8: end for
9: return S with the selected indices {i1, . . . , is}.

DEIM, we can approximate these nonlinear terms by considering only a few selected points in the domain,
effectively sampling the high-dimensional states xt . Furthermore, the points selected by DEIM for
interpolation inherently serve as an indication of where the most significant part of the system is observed.
Therefore, these points can be interpreted as optimal sensor or measurement locations in the
reduced-dimensional space. In practice, placing sensors at these locations captures important dynamics of
the original high-dimensional system.

The DEIM sampling method consists of two major steps: (i) constructing a basis for the low-dimensional
space that captures most of the ‘energy’ of the original high dimensional states xt ; and (ii) selecting the index
from the basis matrix with the DEIM algorithm. See algorithm 1. The indices selected from the second step
will serve as the locations of the sensor placement in our work.

To be more specific, in the offline phase, we collect snapshots of the full-order dynamical system

A= [x1, . . . ,xT] , (11)

where xi ∈ Rn is the ith flattened spatio-temporal snapshot. To determine spatial measurements of interest,
we first use the compact singular value decomposition to factorize the snapshot matrix A ∈ Rn×T. We denote
the top r left-singular vectors byW ∈ Rn×r, where r is the target rank. Then, the DEIM algorithm selects s
distinct rows fromW. Suppose the row indices are I= {i1, . . . , is}. Then the corresponding selection
operator is

S= [ei1 , · · · ,eis ] ∈ Rn×s,

where eij is the ij-th column of the n× n identity matrix. Therefore, S chooses the measurement locations of

state xt , i.e. st = S
Txt (which will serve as the low-dimensional state in the online phase later). Algorithm 1

shows the detailed procedure. Given the columns of matrixW= [W1, . . . ,Wr], DEIM works by determining
the first index i1 ∈ {i1, . . . , is} by selecting the index of the entry with the largest magnitude in the first
columnW1. Then, iteratively, the subsequent indices are selected to maximize the residual between the next
basis vector and the linear combination of the previous basis vectors.

We also tested variants of DEIM, including Q-DEIM [81] (QR factorization based) and R-DEIM [82]
(randomized version). We found that both of them are comparable to the original DEIM within our setting.
Therefore, we will not consider them further in this paper.

4.2. Implementation of our framework
We use the Adam optimizer [83] with the weight decay of 1× 10−6 and the momentum parameter set to
(0.9, 0.999). The Adam algorithm is a stochastic gradient-based optimization scheme widely used in machine
learning. The Exponential learning scheduler is employed with γ= 0.995 over 400 training epochs. The
network hyper-parameters and the training settings are determined empirically and vary across different
numerical cases. The details can be found in table 1. All the numerical implementations are coded in
Pytorch [84] and performed on an NVIDIA A100 GPU card (40G memory) in a standard workstation.

To evaluate the accuracy, we consider the ℓ2 relative error (L2RE) [85], which is formulated as

L2RE=
1

n

n∑
i=1

∥xi − x̂i∥2
∥xi∥2

× 100%,

where xi and x̂i are the ground truth and reconstruction in high-dimensional states, respectively. n is the total
number of spatial grids with a height and width of h×w for each sample.

7
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Table 1. Implementation settings varied by datasets.

Dataset Widths (NODE) Depths (NODE)
Window size
(Decoder) Epochs Learning rate Batch size

Rollout steps
(Training)

Fluid 64 3 2 400 8.5× 10−4 4 15
RBC 256 4 8 400 4× 10−4 16 10
Climate 256 4 9 400 5× 10−5 8 8

4.3. Fluid flow behind the cylinder
In this subsection, we investigate the performance of our model on fluid flow passing a cylinder [86], a
benchmark problem [3, 5] to understand the fluid dynamics. This problem is governed by two-dimensional
incompressible Navier–Stokes (NS) equations, and it exhibits complex and diverse fluid structures, such as
periodically shedding wake patterns. It is formulated as

∇· u= 0,

∂u

∂t
=−u ·∇u−∇p+

1

Re
∇2u, (12)

where u and p denote the velocity field and pressure, respectively. The numerical data is obtained using the
direct numerical simulation at Reynolds number Re= 100 with the immersed boundary projection
method [87, 88]. Similar to the implementation in a Shallow Decoder [5], we select 151 cropped snapshots
with a spatial resolution of 199× 384. This captures numerous vortex-shedding cycles and discards the
spatial sub-domain upstream of the cylinder. The dataset is then split into training and testing sets, with the
first 100 snapshots used for training, and the remaining 51 snapshots for validation. In addition, we apply
mean and-standard deviation normalization to the snapshots to ensure a consistent input scale for the model
across the time span. The snapshots are then padded to dimensions of 200× 384 to meet the window size
l= 2 requirement in the swin transformer decoder, as shown in table 1. Moreover, we set the number of
roll-out steps in training as T= 15 due to the tradeoff between inference performance and the training
stability [89, 90]. A larger T enhances the accuracy and stability during inference for long trajectories but
destabilizes the training process.

First, we study the impact of different sensor placements and varying numbers of chosen sensors in terms
of reconstruction accuracy. Specifically, we consider random, uniform, and DEIM sampling methods for
sensor placements. The number of sensors covers a range of {4,8,16,32}. We show a representative
comparison in figure 3, where the number of sensors ns = 16 and the prediction time step T= 15. The first
row of figure 3 displays the ground truth snapshots and the corresponding sensor placements, where DEIM
shows superior performance in placing the sensors around the critical dynamics, compared with random and
uniform sampling schemes. The second and third rows show the reconstruction and the absolute error
contours between the ground truth and the reconstructed snapshots, respectively. The error contour based
on the DEIM scheme exhibits fewer mismatches distributed in the spatial domain, thanks to its specifically
designed sampling strategy.

Second, we conduct a quantitative analysis of the reconstruction and forecasting accuracy, as shown in
figures 4 and 5. Specifically, figure 4 presents the box plots of reconstruction errors by running five random
seeds. Overall, using more sensors facilitates training convergence and yields more accurate recovered
dynamics for all three sensor placement schemes. For random and uniform sampling methods, the
uncertainty of the reconstructions increases drastically when fewer sensors are chosen, indicating their
unstable performance of learning high-dimensional dynamics from sparse measurements. The DEIM
strategy exhibits the best performance regarding reconstruction errors. It is noteworthy that when the
numbers of sensors are small, far from capturing the rank of the dynamic system, there are fluctuations in the
reconstruction error, i.e. the error is not monotonically decreasing with increasing sensors. Once the number
of sensors approaches the rank of the dynamical system, the error stabilizes, meaning that further increasing
the number of sensors does not lead to significant improvement. The empirical results are consistent with the
theoretical guarantee of DEIM, which is expected to achieve ideal accuracy for handling nonlinear systems.

In figure 5, we present the test reconstruction/forecasting error given an increasing number of prediction
steps under various sampling schemes. We train all the models with the time step T= 15, and we calculate
the forecasting results from prediction step T= 2 to T= 29. The reconstruction error maintains a similar
level from time step T= 2 to T= 15, followed by the increment after time step T= 15.
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Figure 3. Reconstruction results of fluid flow snapshot with random, uniform, and DEIM sampling. The number of sensors ns
and the prediction time step T are set as 16 and 15, respectively. The first row shows the ground truth snapshots and the
corresponding sensor placements. The second and third rows display the reconstructed snapshots and the absolute error
contours. The black dots represent sensors.

Figure 4. Box plots of relative reconstruction error for the models trained on fluid flow data with random, uniform, and DEIM
sampling schemes and with various numbers of sensors. All results are obtained on 5 different random seeds. The reconstruction
errors are plotted on a logarithmic scale.

Figure 5. A representative error propagation of model inference on fluid cylinder dataset. We define 15 steps in the training and
leverage 16 sensors with random, uniform, and DEIM sampling schemes. Each line shows relative forecasting errors with an
increasing number of prediction steps.
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4.4. Rayleigh-Bénard convection (RBC) system
In this subsection, we evaluate our model on a 2D RBC system, known for its nonlinear and chaotic
behavior. The RBC model represents the flow of a fluid heated from below and cooled from above, involving
intricate interactions between velocity, pressure, and temperature. This system has been studied in various
scientific fields, including geophysics, meteorology, and oceanography. Specifically, the RBC system is
described by a set of governing equations, which can be expressed as follows:

∇· u= 0,
∂u

∂t
+(u ·∇)u=−∇p+Tex +R∗∇2u,

∂T

∂t
+(u ·∇)T= P∗∇2T. (13)

The velocity components in the x and y directions are denoted by u= u,v, while p and T represent the
pressure and temperature terms, respectively. The system is characterized by dimensionless Rayleigh (Ra)
and Prandtl (Pr) numbers, given by the expressions gα(∆T)h3/(νκ) and ν/κ. Herein, g,α,∆T,h,ν,κ
represent gravity acceleration, thermal expansion coefficient, the temperature difference between the top and
bottom walls, the length between the plates, the kinematic viscosity, and the heat conductivity coefficient,
respectively. Additionally, R∗ and P∗ are defined as (Pr/Ra)

0.5 and (RaPr)−0.5, respectively. The unit vector in
the x direction is represented by ex. We use the Dedalus solver [91] to simulate the ground truth data. We
define the spatial domain as [0,4]× [0,1], which is discretized into a grid of size 512× 128. The simulation
spans a time period of [0,40] with 4000 time steps. To learn the stabilized dynamics of the system, we extract
the dataset from the later stage of the simulation from the [20,40] time interval. The 2000 time steps are
further separated into two sets, including a training set with the initial 1800 time steps and a testing set with
the remaining 200 steps. The sets are then cropped into the dimension of 128× 128 to ensure that the sensor
placement from the sampling schemes remains in the region of interest. Additionally, we preprocess the data
with mean-standard deviation normalization.

The RBC system presents more complex dynamical behaviors than the fluid flow behind a cylinder.
Therefore, we use relatively more sensors for three sampling schemes to assess the model performance, i.e. we
choose {16,32,64,80}. An illustrative comparison is shown in figure 6, where the numbers of sensors and
roll-out steps are chosen as 64 and 10, respectively. The figure includes the visualizations of sensor placements
based on different sampling strategies and the recovered snapshots. Similar to the observation in section 4.3,
DEIM demonstrates a better sensor placement by effectively capturing system dynamics and achieves less
error compared to random and uniform sampling approaches in this scenario. Furthermore, figure 7 exhibits
a more comprehensive analysis of reconstruction performance across various sensor placement scenarios.
Generally, a larger ns leads to improved reconstruction accuracy and reduced uncertainty. DEIM consistently
outperforms the other sampling methods in minimizing the reconstruction error.

We also evaluate the performance of error propagation on the RBC dataset. All the models are trained
with a time step T= 10 and 64 sensors are sampled across the spatial domain using three distinct strategies.
We test the inference performance of those models by varying the prediction step from T= 5 to T= 23. As
shown in figure 8, the models consistently achieve low forecasting errors within the designated prediction
time step T= 10, while the errors tend to increase when the time step exceeds this set value.

4.5. Weather data
In this subsection, we conduct tests on a high-resolution weather dataset considered in SuperBench [18],
which is specifically modified for data reconstruction tasks from the global climate dataset ERA5 [92]. ERA5
is a reanalysis dataset produced by the European Centre for Medium-Range Weather Forecasts, and it poses
unique challenges for dynamical prediction and spatial upsampling. Its complexity arises from the highly
intricate interactions among various physical processes, such as multi-scale fluid turbulence and
radiation/heat transfer, across the atmosphere, ocean, and land surfaces. The ERA5 dataset considers a global
scale with a spatial resolution of 0.25◦ (25 km) in latitude and longitude, resulting in a 720× 1440 pixel field
when represented on a Cartesian grid. It also provides a broad temporal span, ranging from the year 1979 to
the present day on an hourly basis. The dataset employs advanced data assimilation techniques [93],
integrating diverse observational data with numerical weather prediction models to produce a consistent and
precise historical record of weather conditions. In this example, we focus on the temperature and vapor
variables for evaluation. The spatial resolution of the weather dataset is downsampled to 180× 360 to
facilitate the training process and reduce the computational memory. We select 9-year data (from the year
2005 to the year 2014) and resample the dataset on a daily basis, where the training and testing data is split
with a ratio of 7 : 3. Specifically, we consider the DEIM sampling scheme with 360 sensors for both

10



Mach. Learn.: Sci. Technol. 5 (2024) 045067 J Song et al

Figure 6. Reconstruction results of RBC data snapshot with random, uniform, and DEIM schemes. The number of sensors and
the prediction time step are set as ns = 64 and T= 10, respectively. The first row shows the ground truth snapshots and the
corresponding sensor placements. The second and third rows display the reconstructed snapshots and the absolute error
contours. The white dots represent the placed sensors.

Figure 7. Box plots of relative reconstruction error for the models trained on RBC data with prediction time step T= 10. Three
sampling schemes are implemented with various numbers of sensors. All the results are obtained by running five different
random seeds. The reconstruction errors are plotted on a logarithmic scale.

temperature and vapor data, due to the performance of DEIM for sensor placement, as validated in the above
two fluid cases. The number of sensors is large, compared to sections 4.3 and 4.4, due to the complexity of
this weather dataset. The rollout step in training is set to 8.

Figure 9 visualizes the sensor placements (360 sensors) projected onto the global domain, where the
sensors are distributed in the regions with abruptly changed dynamics or multi-scale features for
temperature and vapor variables. It is evident that DEIM effectively positions sensors to capture the weather
dynamics. Figure 10 illustrates the performance of our proposed framework for learning the spatio-temporal
dynamics of temperature and vapor variables. It can be seen that our model can capture both global and
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Figure 8. A representative error propagation of model inference on the RBC dataset. We define 10 steps in the training and
leverage 64 sensors with random, uniform, and DEIM sampling schemes. Each line shows relative forecasting errors with an
increasing number of prediction steps.

Figure 9. Visualizations of the sensor placements for temperature and vapor variables with the DEIM scheme. We consider 360
sensors (white dots) for the entire global domain.

Figure 10. Reconstruction results for the weather data snapshot projected on the global map, including temperature and vapor
variables. We consider the number of sensors ns = 360 using the DEIM sampling method and the prediction time step T= 8.
Each column, from left to right, shows the ground-truth snapshots, the reconstructed snapshots, and the absolute error contours.

local patterns. Moreover, vapor data exhibits more complex dynamic behaviors compared to temperature
data, and this leads to relatively higher absolute reconstruction errors.

We also analyze the error propagation performance of our models concerning the temperature and vapor
variables, as illustrated in figure 11. Both variables exhibit a moderate change in errors from T= 5 to T= 8.
The errors of temperature data increase mildly but those in vapor variables display a relatively larger growth
after T= 8. This discrepancy is due to the complex and unstable dynamic patterns inherent in vapor data.

4.6. Baseline comparison
In this subsection, we compare different end-to-end frameworks with our proposed approach. Instead of
individual NN components, we incorporate two alternative representative approaches in the context of
dynamics forecasting and reconstruction from sparse data: (i) bicubic interpolation for upsampling and
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Figure 11. The error propagation of the models trained on the temperature and vapor variables. The prediction step is set to 8,
and we choose 360 sensors with the DEIM sampling method.

Figure 12. Ablation studies on different types of NODEs and activation functions. We test the reconstruction performance of each
model on fluid flow behind a cylinder (left) and RBC data (right) with DEIM sampling, with the number of sensors ns as 8 and
80, respectively.

FNO for modeling temporal dynamics; and (ii) masked autoencoder (MAE) for extracting latent features
from sparse sensor measurements, GNODE and swin transformer for temporal and spatial modeling. We
compare our framework to model (i) to show that our proposed framework is effective in handling
forecasting high-dimensional systems from sparse data. When comparing our framework to model (ii), we
show the superiority of our end-to-end method in terms of the sampling techniques at a very sparse level.

4.6.1. Dynamics modeling comparison
Here, we compare our proposed method with the Fourier neural operator (FNO) [94] to assess performance
across three datasets. FNO has demonstrated high relevance and strong performance in handling
super-resolution and forecasting tasks [95,96]. FNO is also widely recognized for its effectiveness in learning
mappings for high-dimensional and complex physical systems, making it suitable for capturing
spatiotemporal dynamics across various scientific machine learning applications. Therefore, we chose the
FNO as the baseline for performance comparison in spatiotemporal dynamics modeling.

Since FNO cannot process sparse measurements directly, we first use the same up-sampling layer as in
our framework, also shown in figure 1, to map the sparse measurements to higher-dimensional latent
variables Z, described in section 3.2. For the fluid flow behind the cylinder and RBC System datasets, we
employ 32 sensors with uniform sampling, while for the Weather data, we use 360 sensors sampled via
DEIM. Following prior work [95], we then use bicubic interpolation to upsample these latent variables to
match the resolution of the high-dimensional outputs, which are 200× 384, 128× 128, and 180× 360 for
fluid flow behind the cylinder, RBC System, and Weather data, respectively. FNO then takes these upsampled
high-resolution inputs and is trained autoregressively to predict future timesteps, matching the same rollout
steps in our numerical examples.

We compare the results of our framework with this FNO-based approach, which first upsamples sparse
measurements and then uses FNO to forecast high-resolution dynamics. This design ensures that both
frameworks perform the same task, enabling a fair comparison. The reconstruction error results presented in
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Figure 13. Comparison reconstruction results for the RBC system with uniform sampling on the proposed method and the FNO
baseline. The number of sensors ns and the prediction time step T are set as 32 and 10, respectively. The white dots represent
sensors.

Table 2. A summary of baseline comparison across all datasets. FNO and GNODE denote the baseline model and our method,
respectively. We evaluate the model performance using L2RE.

Dataset FNO (%) GNODE (%)

Fluid 2.015 1.033
RBC 11.595 10.160
Climate 9.962 6.006

table 2 demonstrate that our proposed method excels the baseline model in dynamics forecasting and
reconstruction from sparse measurements.

In figure 13, we compare the snapshot between our proposed method that used the swin transformer [9]
and the FNO baseline on the RBC dataset. We can observe, especially from the top-left corner and the edge
area, that swin transformer excels at capturing local details, compared to the FNO baseline. This comparison
demonstrates swin transformer’s ability to preserve multi-scale features from its hierarchical architecture
design with a shifted windowing scheme.

4.6.2. Sampling methods comparison
Here, we compare our sampling methods to the masked autoencoder (MAE) [96] for sparse measurements.
MAE has shown robust performance in reconstructing missing data and representation learning, attracting
increasing attention in scientific machine learning [97, 98]. MAE learns data representations by masking
portions of the input data and reconstructing the masked sections during training, an approach which aligns
well with the data compression and reconstruction challenges in our study. The encoder of the MAE can
process the visible portions of the input data effectively and robustly. Hence, we include MAE in our
comparisons for sparse measurement sampling, due to its flexibility to achieve a similar sparsity level to that
in our framework.

We apply random masks to the high-resolution data to match the sparsity of our approach. For example,
each high-resolution RBC snapshot (128× 128) is randomly reduced to 32 (nsensors) visible pixels while the
other (128 · 128− nsensors) pixels are masked. The masked snapshots are then passed into a standard ViT
encoder [99]. During MAE training, the loss is computed only on the masked pixels. We increase the learning
rate to 1× 10−3 while keeping the other experimental conditions identical.

14



Mach. Learn.: Sci. Technol. 5 (2024) 045067 J Song et al

Table 3. Reconstruction error comparison between our method and MAE model on RBC data. We evaluate the model performance
using L2RE.

Dataset MAE (%) GNODE (%)

RBC 37.575 10.160

Figure 14. Comparison reconstruction results of the RBC system with uniform sampling on the proposed method and the MAE
model. The number of sensors ns and the prediction time step T are set as 32 and 10, respectively. The white dots on the proposed
method represent sensors.

Table 3 compares the reconstruction error between our method and the MAE model, both using 32
visible measurements for each snapshot. We attribute the poor performance of the MAE model to the
significant sparsity of the input, making effective learning challenging. The original MAE paper applies the
mask after patch embedding by reducing the sequence lengths. However, solely reducing the sequence length,
or increasing the mask ratio, cannot achieve comparable sparsity as in our experiment setups. Figure 14
further illustrates that the MAE model struggles to accurately reconstruct the dynamics due to the significant
information loss caused by the high-ratio masks.

4.7. Ablation study
We conduct an ablation study on activation functions and different types of NODEs to validate the
effectiveness of our proposed pipeline. To be more concrete, we investigate the potential of two NODE
modules (i.e. the vanilla and GNODEs) for learning dynamics and two activation functions (i.e. rational and
ReLU). We use fluid flow behind a cylinder and RBC data as two illustrative examples. The DEIM sampling is
leveraged for testing the performance of each model. We use {4,8,16,32} and {16,32,64,80} sensors, as well
as 15 and 10 steps, for fluid cylinder and RBC datasets, respectively. We run the experiments with 3 different
random seeds. Generally, the rational activation function consistently outperforms the ReLU function. By
using the rational function, we observe that the GNODE model presents superior performance on the fluid
cylinder with fewer sensors (4 and 8) and the RBC dataset with relatively more sensors (64 and 80). This
reflects that the GNODE model is capable of learning complex dynamics well with a reasonable sensor
placement that approximates the rank of a specific dynamical system, as demonstrated in figure 12.

Although rational NNs have shown competitive performance in learning complex systems, they also have
certain potential limitations. The inclusion of additional trainable parameters in the activation function
generally increases training time and memory usage. Moreover, the higher model complexity may lead to
numerical instabilities if the model is not properly initialized or constrained.
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5. Conclusion

In this work, we proposed a new architecture for forecasting and reconstructing high-dimensional
spatio-temporal data from sparse measurements. Our model combines a GNODE for modeling the
dynamics, and a ViT backbone for reconstructing high-dimensional spatial fields.

This approach is an alternative to other methods that typically decode high-dimensional spatial fields
before modeling the dynamics. Although several existing techniques model dynamics in a latent space, they
require the preliminary step of learning an encoder. Our method bypasses this step by using a sparse set of
measurements directly, thereby reducing computational complexity. We show that the performance of our
method remains robust across various sensor placement strategies, especially as the number of sensors
increases. This consistent performance across different sensor arrangements shows the flexibility of our
architecture in real-world scenarios, where sensor data is frequently sparse and unevenly distributed.

In comparison to traditional physics-based methods [23, 100–106], our approach offers several
advantages. While physics-based methods provide a strong foundation for reconstructing spatial fields, they
are often limited by the complexity of the phenomena and the computational resources required. Moreover,
traditional methods often struggle with the non-linearities and high dimensionality of the data.

Data availability statement

The code for the implementation of our proposed model is available at https://github.com/jsong2333333/
neuralode_reconstruction under the MIT License.
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