
Empirical Evaluation of Graph Partitioning

Using Spectral Embeddings and Flow

Kevin J. Lang1, Michael W. Mahoney2, and Lorenzo Orecchia3

1 Yahoo! Research, Santa Clara, CA, USA
2 Stanford University, Stanford, CA, USA

3 University of California, Berkeley, CA, USA

Abstract. We present initial results from the first empirical evaluation
of a graph partitioning algorithm inspired by the Arora-Rao-Vazirani
algorithm of [5], which combines spectral and flow methods in a novel
way. We have studied the parameter space of this new algorithm, e.g.,
examining the extent to which different parameter settings interpolate
between a more spectral and a more flow-based approach, and we have
compared results of this algorithm to results from previously known and
optimized algorithms such as Metis.

1 Introduction

Graph partitioning refers to the problem of dividing an input graph into two
large pieces such that the number of edges crossing the partition is minimized.
There are several standard formalizations of this bi-criterion, and in this paper
we focus on minimizing expansion.1 Given an undirected, possibly weighted,
graph G = (V, E), the expansion α(S) of a set of nodes S ⊆ V is defined as:

α(S) =
|E(S, S)|

min{|S|, |S|)} , (1)

where E(S, S) denotes the set of edges having one end in S and one end in the
complement S, and where | · | denotes cardinality (or weight). The expansion of
the graph G is then defined as:

α(G) = min
S⊆V

α(S). (2)

It is well-known that solving (2) exactly is NP-hard. Graph partitioning is, how-
ever, of interest in many applications. For example, it has been used in divide-
and-conquer algorithms; for load balancing in parallel computing applications;
to segment images and, more generally, to cluster data; and to find clusters and
communities in large social and information networks.

Graph partitioning is also a problem for which a wide range of algorithms
have been developed, and the theoretical and/or empirical strengths and weak-
nesses of these algorithms have been extensively studied. Most algorithms that
1 Expansion is sometimes referred to as the quotient cut objective.

J. Vahrenhold (Ed.): SEA 2009, LNCS 5526, pp. 197–208, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

198 K.J. Lang, M.W. Mahoney, and L. Orecchia

have been designed to find good cuts, i.e., low-expansion partitions, employ
one or more of the following four algorithmic ideas: spectral methods ; flow-based
methods; local improvement ; and multi-resolution. Historically, spectral methods
and flow-based methods have dominated the theoretical landscape; and vari-
ants of spectral methods, as well as local improvement techniques, often in a
multi-resolution setting, have dominated applications. In particular, note that
the heuristic Metis [12] is often the method of choice in applications since it
finds good-quality cuts in mesh-like graphs very quickly.

Researchers also noticed that spectral and flow-based methods tend to have
complementary strengths—the worst-case examples for spectral algorithms are
easy graphs for flow-based methods, and vice-versa—which has lead to attempts
to combine spectral and flow into a better graph partitioning algorithm. This was
achieved by Arora, Rao, and Vazirani (ARV) [5], who developed the concept of
“expander flows” and who introduced an algorithm that achieves an O(

√
log n)

worst-case approximation to expansion and several related quantities. The orig-
inal version of ARV [5] yields a polynomial-time algorithm, but one that is too
slow to be practical, as it must solve a large semi-definite program.

The ARV breakthrough was followed by the introduction of several related algo-
rithms exploring the running-time versus quality-of-approximation tradeoff
[3,4,13]. In particular, Orecchia, Schulman, Vazirani, and Vishnoi (OSVV) [16]
developed an algorithm that performs only polylogarithmic single commodity
max-flow computations to achieve an O(log n) approximation. The fastest the-
oretical algorithm for these single commodity flow computations has time com-
plexity Õ(n3/2) [10], but push-relabel methods have been shown to be faster in
practice [7], potentially making the OSVV algorithm useful in applications. OSVV
and other methods inspired by [5] have been reviewed in [6], where the authors of
ARV pose the question of how well they will perform empirically, in particular
with respect to Metis.

In this paper, we report initial results from the first empirical evaluation
of an algorithm from this novel family. We have implemented the algorithm of
OSVV [16], and we have compared it with several implementations of traditional
graph partitioning algorithms, including Metis, on a suite of graphs designed
to highlight the strengths and weaknesses of previously existing algorithms. We
demonstrate that the algorithmic ideas underlying the ARV method can be
implemented on medium-sized graphs to find cuts that are competitive with
those returned by existing algorithms; and we demonstrate a manner in which
different parameter settings interpolate between spectral and flow methods.

2 Algorithms

In this section, we describe the algorithms we used in our empirical evaluation.
We compared the algorithm of OSVV [16] with two versions of Metis, two
versions of the spectral method, and one purely flow-based method:

– Metis is a fast heuristic that combines a multi-resolution approach with
local improvement techniques [12].

Empirical Evaluation of Graph Partitioning 199

– MetisRand is a randomized variation of the basic Metis algorithm that
achieves much better results.

– Spectral is the classical spectral method of [1], which uses a sweep cut to
round the eigenvector solution.

– SpecFlow is a variation of Spectral in which the standard sweep-cut
rounding is replaced by a flow-based rounding which is guaranteed to obtain
a better or equally good cut [2].

– LR is a simplified version [14] of the flow-based algorithm by Leighton and
Rao [15].

– OSVV is our implementation of the the algorithm of OSVV [16], which uses
ideas related to the original ARV algorithm [5]. Our implementation closely
follows the theory, and the approximation guarantees of [16] still apply.

Note that our comparison includes both standard versions of the traditional
algorithms (Metis and Spectral), as well as modified versions (MetisRand
and SpecFlow) which in practice find much better cuts.

2.1 The Improve Algorithm

We start by describing a flow-based “improvement” procedure that will be an
important building block for SpecFlow and OSVV. The Improve algorithm
was originally introduced as a post-processing procedure to improve cuts re-
turned by other methods [2]. This algorithm takes as input a bisection (A, A),
and it looks for a cut which optimizes a combination of low expansion and cor-
relation with the starting bisection. The algorithm outputs a cut (T, T) and a
perfect matching M between A and A. If the expansion of (T, T) is α, then M
can be routed2 in G with congestion 1/α. This matching M can then be used
as a certificate that (T, T) has better expansion than all cuts strictly contained
in (A, A). This algorithm can be implemented by a small number of single com-
modity max-flow computations. We used the C++ implementation of [2], which
is based on the max-flow push-relabel program hi pr v.3.4, described in [8].

2.2 The Metis and MetisRand Algorithms

Metis is a heuristic developed by Karypis and Kumar [12] to find good balanced
partitions in graphs. Although it has no theoretical guarantees, in practice it
runs extremely fast. Metis makes many random choices during its execution,
but the standard version of the code has a fixed random seed which makes
the algorithm deterministic; our Metis results were obtained by running the
unmodified pmetis program (version 4.0.1). MetisRand is a modified version
of the basic program in which the random seed is left as an input to the program
2 A weighted graph H can be routed as a flow in a graph G if every edge e = {u, v} ∈

E(H) in H with weight we can be routed on a path from u to v in G such that
the total congestion on every edge of G, i.e., the total weight of H routed across
that edge in G, is less or equal to 1. In this case, we can use H as a certificate of
expansion, since one can show that α(H) ≤ α(G).

200 K.J. Lang, M.W. Mahoney, and L. Orecchia

and the best of 10, 000 runs is returned; in addition to small code changes to
allow different seeds, we changed the matching method from the default “Sorted
Heavy Edge Matching” to “Random Matching.”

2.3 The Spectral and SpecFlow Algorithms

Spectral algorithms compute (exactly or approximately) the second eigenvector
x of the Laplacian3 of the graph, and then approximate the best cut in the
graph by a cut defined by this vector. Recall that this eigenvector assigns to
each vertex v of the graph a value xv, and if we assume that these have been
ordered, this allows one to define n − 1 “sweep cuts” (Si, Si), for 1 ≤ i < n, as:
Si = {v ∈ V : xv < xi}. The eigenvector can be rounded to a cut by picking
the best of these sweep cuts. Our Spectral algorithm computes the smallest
second, third and fourth eigenvectors of the Laplacian, applies the sweep cut
rounding to each of them, and then returns the best cut found.

SpecFlow is a randomized variant of Spectral that was developed by
Andersen and Lang [2] and that differs from Spectral in two respects. First,
rather than using each eigenvector separately, SpecFlow uses a random com-
bination of the lowest three non-zero eigenvectors of the Laplacian of G. This
makes SpecFlow more robust against cuts which may be hidden from a single
eigenvector. Second, SpecFlow replaces the rounding by a sweep cut with a call
to Improve on the bisection (Sn/2, Sn/2). In [2], it is proven that the Improve
rounding procedure is strictly no worse than rounding by a sweep cut, and it is
shown that SpecFlow outperforms Spectral on most graphs.

The computation of the second eigenvector of the Laplacian can be performed
in a number of ways (we computed “exact” eigenvectors with ARPACK), but
most relevant for the subsequent discussion is that it can be performed by con-
sidering exact or approximate random walks on the instance graph G. The idea
underlying this approach is that random walks will mix slowly across cuts con-
taining few edges, and conversely that if a random walk mixes slowly then there
must be some cut which is constraining the spreading of the probability mass.
Moreover, the second eigenvector of the Laplacian defines the slowest mixing
direction, and the second smallest eigenvalue, i.e., the spectral gap λ2, charac-
terizes the mixing time [9]. This highlights the weakness of the spectral method
at finding good cuts: spectral algorithms are sensitive not only to sparse cuts but
also to “large distances” in the graph—a random walk may fail to mix rapidly
either because it takes a long time to overcome a sparse cut or because the
graph has very long paths along which the random walk makes slow progress.
The worst examples for spectral methods are based on this idea [11].

2.4 The LR Algorithm

Flow-based methods provide a very different way to find good cuts in a graph.
They route a certificate graph H in G, and use this routing to provide both
3 The Laplacian of a graph K is L(K) = D(K) − A(K), where D(K) is a diagonal

matrix containing the degree of each vertex and A(K) is the adjacency matrix.

Empirical Evaluation of Graph Partitioning 201

a lower bound on expansion as well as an approximate cut by showing that if
no better lower bound can be proved then by duality a good cut must exist.
Leighton and Rao [15] chose H to be a scaled version of the complete graph
on n vertices, and they chose a linear programming relaxation of the problem
based on multi-commodity flows. The best implementations of this lead to a
theoretical running time of Õ(n2), but in our empirical evaluation we used the
implementation of [14], which runs faster since it only approximately solves the
flow problem. Graphs on which LR is known to perform poorly include constant-
degree expanders [15] and expanders with planted cuts [2].

2.5 The OSVV Algorithm

OSVV and other related algorithms subsequent to that of ARV [5] have a simple
interpretation based on a modification of flow-based ideas: they strengthen the
flow-based approach of Leighton and Rao [15] by removing the limitation that
the graph to be routed in G be a complete graph by instead allowing it to
be any graph with large spectral gap [6]. Here, we are going to give a dual
interpretation of these algorithms as based on a modification of spectral ideas:
OSVV strengthens the standard spectral approach by using flow-based ideas to
modify the instance graph to make it more amenable to spectral methods. It
does so by using the matching returned by Improve to add edges to the input
graph to fix the oversensitivity of spectral methods to large distances.

Before describing the OSVV algorithm, recall that the heat kernel of a graph
K = (V, E) is defined as: Hη

K = exp (−ηL(K)), where L = L(K) is the Laplacian
of K and where η ≥ 0 is a learning rate. The heat kernel can be used in an
alternative version of the standard spectral method to produce an approximate
eigenvector of the Laplacian as follows: take a vector v picked uniformly at
random from {+1,−1}V and consider x = Hη

Kv = exp (−ηL(K))v. As η varies
between 0 and infinity, the vector x becomes a better and better approximation
to the second eigenvector of the Laplacian. Replacing the exact computation of
the second eigenvector of the Laplacian with an approximation based on the
heat kernel with η �= ∞ has two potential advantages. First, the heat kernel
is more robust against cuts hidden from the second eigenvector. Second, the
computation of Hη

Kv is faster than that of the second eigenvector, especially for
graphs with a small spectral gap.

Our OSVV algorithm takes as input a graph G, as well as parameters η, γ,
and stopping condition σ. It then does the following:

1. Let G′ = γG; and t = 0.
2. Approximate the second eigenvector of the Laplacian of G′ by performing a

heat kernel computation on G′.
3. Using the bisection (Sn/2,t, Sn/2,t) from the sweep cut along this approximate

eigenvector, call Improve with G to get a cut (Tt, Tt) and a matching Mt.
4. Let G′ = G′+Mt; and t++. Until the stopping rule is satisfied, goto Step 2.
5. Return as output the cut (Tt, Tt) of minimum expansion found in Step 3.

202 K.J. Lang, M.W. Mahoney, and L. Orecchia

In [16], it is shown that the algorithm takes at most O(log2 n) rounds to achieve
an O(log n) approximation. Our implementation closely follows the theory [16]
and has the following three parameters:

– The learning rate, η, determines how much the spectral computation of the
heat kernel on G′

t is allowed to converge towards the second eigenvector of
G′

t. (For higher values of η, the spectral part of the algorithm is more global,
but it is also the more susceptible to the errors caused by long paths.)

– The initialization coefficient, γ, determines the weight of the instance graph
G in G′. (For higher values of γ, G′ depends relatively more on G, and less
on the feedback matchings output by the Improve algorithm, and thus the
more similar the spectral computation on G′ is to that of G.)

– The stopping condition, σ, is the number of iteration after which, if no
improvement in the best cut found has occurred, the algorithm aborts. (A
higher stopping condition can yield a better solution at the expense of time,
while a lower stopping condition can make the algorithm faster but may
prevent it from achieving its best expansion scores.)

Note that in addition to the instance graph G, OSVV maintains a graph G′,
which starts off equal to a scaled version of G and is progressively modified to be
more suited to spectral methods. At every iteration t, the approximate spectral
computation is performed on the current G′

t and a sweep bisection (Sn/2,t, Sn/2,t)
is obtained from the resulting vector. The Improve algorithm is then applied to
this bisection on the input graph G (since we are interested in cuts on G), and
this will yield a cut (Tt, Tt). Now, either there is a good sweep cut in the original
eigenvector, which would have been found by Improve, or the spectral method
has been fooled by some long paths in G. To fix this problem, OSVV considers
the matching Mt returned by Improve at iteration t. Since the endpoints of
the edges of Mt lie on opposite sides of the bisection (Sn/2,t, Sn/2,t), Mt can be
used to “shortcut” the long paths, and so the algorithm sets G′

t+1 = G′
t + Mt.

Clearly, the matching Mt can be thought as providing iterative feedback to the
spectral method about the quality of the cut found and how to modify G′

t to
explore different cuts and identify better cuts.

Note also that for large values of γ and η, OSVV becomes very spectral in
flavor, as G′ becomes dominated by G and the heat kernel is allowed to converge
closer to the second eigenvector of G. For example, in the first iteration, the
spectral computation performed by OSVV is the multiplication of a random
vector by exp−ηγG. Hence, the higher the product γη, the more the first iteration
of OSVV will look like a second eigenvector computation; and similarly for
subsequent iterations. Conversely, as η and γ decrease, the algorithm performs
a more localized spectral computation and the feedback matchings increase in
weight with respect to G, yielding an algorithm with a stronger flow-based flavor.

3 Graphs Used in Our Empirical Evaluation

In this section, we describe the graphs we used to perform our empirical eval-
uation of the algorithms described in Section 2. Our main testbed consists of

Empirical Evaluation of Graph Partitioning 203

Table 1. Basic statistics for our main testbed of graphs, including information about
the best quotient cut found during our empirical evaluation. The “cutsize” is the num-
ber of edges cut in the best quotient cut found by any method, and “smallside” is the
number of nodes on the small side of the cut, in which case the balance is smallside /
nodes and the quotient cut score (not displayed) would be cutsize / smallside.

graph gm.100.6 plant5k plant6k wing tooth rnd-a a1.i2 a3.i4 a6.i3 a9.i0

nodes 12600 20000 20000 62032 78136 10000 10000 10000 10000 10000
edges 24974 45000 46000 121544 452591 59372 47778 52024 62561 71332

cutsize 100 5000 7055 791 3827 181 622 1723 3508 5301
smallside 6300 10000 9955 31008 39030 4945 4982 4950 4959 5000
balance 0.5000 0.5000 0.4978 0.4999 0.4995 0.4945 0.4982 0.4950 0.4959 0.5000

10 graphs, summarized in Table 1, ranging in size from 10, 000 up to 78, 000
vertices and chosen from the following five classes. These five classes were cho-
sen to highlight the strengths and weaknesses of existing algorithms; existing
graph-partitioning testbeds are less appropriate for this empirical evaluation
since they tend to be easy for spectral methods, since they consist of mesh-like
graphs like wing and tooth. Note, in addition, that the best cuts found are all
very well-balanced.

3.1 Guattery-Miller Graph

This graph is based on the construction of Guattery and Miller [11] for worst-case
graphs for eigenvector-based methods. It is the outer product of a double-tree
(two complete binary trees connected by an edge between their roots) and a
path graph; and the minimum expansion cut is obtained by separating the two
trees, but the path can be made long enough so that the slow mixing along it
will cause any given number of eigenvectors to cut the path instead. We include
in our testbed the graph gm.100.6, in which the path has length 100 and each
of the two trees is of depth 6. These parameters have been chosen so that the
first 3 eigenvectors will be given by the first three modes of vibration for the
path, i.e., the path folded over itself once, twice, and three times. The “right”
eigenvector appears in the fourth position, where it cannot be used by Spectral
or SpecFlow, which only use the first 3 non-zero eigenvectors.

3.2 Expanders with Planted Bisections

Expanders with planted bisections (expander-like graphs with a distinctly good
bisection planted at a random location) are known to be a worst-case inputs
for LR, while they can be solved by spectral methods and by various local
improvement algorithms (see, e.g., [2]). We generated a family of 8 graphs each
containing 20, 000 nodes, with planted bisections of size k · 1000, for k = 1
through k = 8, by generating two 10, 000-node degree-4 expanders (each is the
union of 4 disjoint random matchings of the nodes) and connecting them by a
random k-matching.

204 K.J. Lang, M.W. Mahoney, and L. Orecchia

As the size of the planted cut increases, it becomes harder to detect it.
For example, the graph with planted cut of size 1000 is solved optimally by
MetisRand, LR, SpecFlow and all parameter choices of OSVV, while LR
already fails to find the planted cut of size 2000. MetisRand, SpecFlow and
OSVV find the planted cut up through size 5000 and then all fail to find at size
6000 and larger. Thus, we include in our results plant5k and plant6k, the
graphs with planted cut of size 5000 and 6000, respectively.

3.3 Finite Element Meshes

Well-shaped meshes are classic examples of “nice” low-dimensional graphs for
which many graph partitioning methods have been developed. We include the
finite element mesh wing and tooth from the archive [17].

3.4 Random Geometric Graphs

Random geometric graphs have long been standard benchmark graphs [14], and
LR, SpecFlow and MetisRand have been shown to perform well on them.
We include one random geometric graph rnd-a generated by picking 10, 000
random points in the unit two-dimensional disk, adding edges in increasing order
of length, and stopping when the graph becomes connected. We then reduced
the number of edges by removing all pairs in which one end was not among the
50 nearest neighbors of the other.

3.5 Random Geometric Graphs with Random Edges Added

Given the good results obtained by the algorithms on random geometric graphs,
we make them harder by adding a number of completely random edges, as was
done in [2]. Our claim that these graphs are harder than ordinary random ge-
ometric graphs is based on the empirical observation of higher-variance distri-
butions of scores from randomized partitioning algorithms [2]. We do not know
of a theoretical explanation, but intuitively the extra edges seem to cause the
spectral embeddings to get twisted up, making the right answer much less ob-
vious. Similarly, perhaps by increasing the expansion, the extra random edges
also cause problems for LR.

Each graph ax.Iy was obtained by first running the random geometric graph
generator mentioned above. Then, x · 1000 random edges were added (avoiding
the creation of duplicates); the tag y is just an instance number. In our testbed,
we include a selection of random geometric graph with random edges based on
which one or more of the algorithms performs well: a1.i2, on which LR does
particularly well; a3.i4, on which SpecFlow does well; a6.i3, on which OSVV
performs well; and a9.i0, for which MetisRand gave the best results.

4 Results

In this section, we describe the results of our initial empirical evaluation. Our
computations were run on 4 64-bit AMD Opteron Processors, each running at

Empirical Evaluation of Graph Partitioning 205

1795MHz, with 32GB of memory and 1024KB cache. We ran the deterministic
Spectral and Metis algorithms only once, and we report the expansion of the
cut found and the time required. For LR and for each of the parameter choices
of OSVV, we ran 10 trials; for SpecFlow, we ran 1000 iterations; and for
MetisRand, we ran 10, 000 trials. For each of these algorithms, we report the
best cut found over these runs and the total time taken. The number of trials for
each algorithm was chosen in order to obtain total run times of the same order
of magnitude in order to help focus the comparison on just the single criterion
of the best cut found; we discuss this issue in more detail below. Finally, the
timing data omit the time needed to load the description of the graph.

We explored a large number of settings of the parameters in preliminary em-
pirical evaluations, and we determined that the interesting region of parameter
space for our graphs is given by the 27 combinations of the following sets of
parameters: η ∈ {1, 10, 100}; γ ∈ {0, 10, 100}; σ ∈ {2, 5, 10}. Many of our con-
clusions may be illustrated by considering only 3 setting of the parameters:
η = 100, γ = 100, σ = 10; η = 10, γ = 10, σ = 10; and η = 1, γ = 0, σ = 10.
(Recall that choices of the parameters for which the product ηγ is larger (resp.
smaller) correspond to a more spectral-like (resp. flow-like) behavior of the al-
gorithm.) Summary statistics for the best cut results and total times for these
3 parameter settings of OSVV, compared with results from each of the other
algorithms, are presented in Table 2 and Table 3.

On plant5k, the more spectral-based choices of parameters find the planted
cut, while it seems that the more flow-based choices encounter problems simi-
lar to (but not as severe as) that of LR and are not able to detect the right
cut. On plant6k, SpecFlow gives the best cut overall (although no algo-
rithm found the planted cut) and the more spectral-like choices of parameters
for OSVV do marginally better than more flow-like choices. Note, though, that
the entire OSVV method seems to be stuck at a quality around 10% worse
than SpecFlow, probably as a result of the constant-degree expander strongly
affecting the performance of the flow part of OSVV. For meshes and ran-
dom geometric graphs, all the methods do comparably. Note, though, that the

Table 2. [Best viewed in color.] Ratio of the best expansion cut score found by multiple
trials of each algorithm to the best expansion cut score found overall. (See the text or
the caption of Table 3 for details on the number of trials for each algorithm, and see
Table 4 for results on varying the number of trials.) First and second place for each
graph are highlighted in red and blue, respectively. Ratios are given to 3 decimal digits.
OSVV parameters are described as OSVV-η.γ.σ.

gm.100.6 plant5k plant6k wing tooth rnd-a a1.i2 a3.i4 a6.i3 a9.i0
OSVV-100.100.10 1.000 1.000 1.098 1.018 1.003 1.024 1.077 1.029 1.009 1.039
OSVV-10.10.10 1.000 1.000 1.102 1.069 1.033 1.001 1.050 1.039 1.000 1.033
OSVV-1.0.10 1.000 1.493 1.119 1.069 1.059 1.003 1.053 1.089 1.414 1.077
MetisRand 1.000 1.000 1.107 1.048 1.019 1.011 1.149 1.068 1.025 1.000
LR 1.000 2.841 2.082 1.069 1.065 1.003 1.000 1.163 1.072 1.075
SpecFlow 1.260 1.000 1.000 1.000 1.000 1.000 1.149 1.000 1.037 1.081
Metis 1.640 1.526 1.130 1.169 1.208 1.322 1.445 1.330 1.190 1.059
Spectral 1.260 1.195 1.207 1.253 1.111 1.517 2.624 1.878 1.414 1.661

206 K.J. Lang, M.W. Mahoney, and L. Orecchia

Table 3. [Best viewed in color.] Total run time in seconds for OSVV-η.γ.σ (10 tri-
als), MetisRand (10000 trials), LR (10 trials), SpecFlow (Eigensolver + 1000 flow
roundings), Metis (1 try), and Spectral (Eigensolver + 3 sweep roundings). Num-
bers are rounded to the nearest second, except for Metis and Spectral, where they
are rounded to the second decimal.

gm.100.6 plant5k plant6k wing tooth rnd-a a1.i2 a3.i4 a6.i3 a9.i0
OSVV-100.100.10 793 367 650 8167 31847 1956 956 735 1315 1013
OSVV-10.10.10 363 304 437 2802 9923 881 401 370 485 851
OSVV-1.0.10 426 2075 3030 4201 11681 602 447 441 85 423
MetisRand 105 681 700 1049 2024 110 111 189 284 328
LR 187 660 658 8521 56378 443 509 699 1173 1637
SpecFlow 209 636 581 4887 13254 688 639 641 724 798
Metis 0.01 0.06 0.07 0.09 0.21 0.01 0.01 0.02 0.02 0.03
Spectral 7.05 3.22 3.27 51.48 96.02 8.98 4.40 3.10 2.32 2.46

traditional mesh wing and tooth slightly favors spectral methods—SpecFlow
does slightly better than other methods, and relatedly the best OSVV results
are given by spectral-like and intermediate choices of parameters. As expected,
on gm.100.6, all choices of parameters for OSVV find the optimal cut.

For random geometric graphs with added random edges, intermediate and
flow-like parameter choices for OSVV tend to perform well for a1.i2 (chosen
since LR performed well on it), and the more spectral-like choices perform better
for a3.i4 (chosen since SpecFlow performed well). Interestingly, for a6.i3, pa-
rameters intermediate between spectral and flow decisively beat other parameter
choices and all other algorithms. A similar result is seen with a9.i0, for which
the intermediate parameter choices nearly tie the best cut found by MetisRand
and improve on the expansion found by SpecFlow and LR by around 5%.

With respect to the stopping condition σ, (data not presented indicate that)
computations behaved in expected ways, but we noticed that variations in the
stopping condition seemed to impact more the quality of the score for more flow-
based algorithms. Our intuition for this is that more flow-based algorithms are
less aggressive in their search for sparse cuts and require more time to explore
the cut space to provide their best results, while more spectral runs can achieve
very good scores already in their first runs, especially if the graph is suited to
the spectral method. In generally, of course, the stopping condition could be
adjusted based on the relative importance of cut quality and time in the context
in which the algorithm is used.

With respect to the running time, Table 3 (and data not presented) indicates
that more extreme choices of parameters η and γ seem to require more running
time. This is likely due to two different reasons. On the one hand, for the more
spectral-like parameter settings, a larger fraction of time is spent in computing
the heat kernel vector, which becomes harder as η and γ grow. On the other hand,
for more flow-like parameter settings, the longer time is usually due to a larger
number of iterations within the algorithm, again a result of the more conser-
vative approach of these parameter settings. In general, if some information on
the graph is available in terms of suitability to spectral or flow methods, the
choice of parameters could be adjusted accordingly.

Empirical Evaluation of Graph Partitioning 207

Table 4. Varying the number of trials for MetisRand and SpecFlow. Presented is
the ratio of the expansion cut score for MetisRand and SpecFlow (as a function of
the number of trials) to the best overall score. For MetisRand 10000 and SpecFlow
1000, the score is the minimum found over all our trials, while for other number of trials,
the score is an estimate of the average best score using the empirical distribution from
our experiment and assuming sampling with replacement.

Trials gm.100.6 plant5k plant6k wing tooth rnd-a a1.i2 a3.i4 a6.i3 a9.i0
MetisRand 10 1.343 1.313 1.121 1.099 1.075 1.137 1.362 1.197 1.106 1.072
MetisRand 100 1.020 1.028 1.116 1.076 1.043 1.058 1.253 1.143 1.071 1.042
MetisRand 1000 1.000 1.000 1.111 1.063 1.028 1.026 1.175 1.102 1.046 1.020
MetisRand 10000 1.000 1.000 1.107 1.048 1.019 1.011 1.149 1.068 1.025 1.000
SpecFlow 1 1.913 1.402 1.100 1.082 1.161 1.278 1.325 1.150 1.108 1.171
SpecFlow 10 1.284 1.066 1.052 1.040 1.045 1.027 1.218 1.059 1.060 1.106
SpecFlow 100 1.260 1.000 1.011 1.006 1.015 1.002 1.167 1.023 1.044 1.089
SpecFlow 1000 1.260 1.000 1.000 1.000 1.000 1.000 1.149 1.000 1.037 1.081

A graph by graph inspection seems to confirm the expected behavior of the
parameters of OSVV as toggling between spectral and flow methods. In addi-
tion, the results suggest that OSVV is quite robust and tends to be within 5%
of the best, which is much more consistent performance than the other meth-
ods. In particular, that the performance of the intermediate choice of parameters
η = 10, γ = 10, σ = 10 appears as a good global setting, performing optimally
or near-optimally for all graphs except plant6k, for which more spectral-based
methods are preferable.

Finally, we should note that Table 4 demonstrates that for MetisRand and
SpecFlow the number of trials (and thus the run time) can be decreased by a
factor of 10, or in some cases 100, while still finding cuts that are only moderately
worse than those found in the larger number of trials. A larger study (currently
in progress) with a finer tuning of parameters, more comprehensively chosen
graphs, and a more sophisticated implementation of OSVV will be necessary to
fully explore these issues and validate our initial observations.

5 Conclusion

We have reported initial results from the first empirical evaluation of an al-
gorithm from the novel family of algorithms inspired by the recent theoretical
work of ARV [5]. It is important to emphasize that, prior to performing this
empirical evaluation, we had no idea whether any algorithm from this family
of algorithms would be at all practical in finding even moderately good cuts on
graphs of any size. Thus, our primary conclusion is that a simple implementation
of the algorithm of OSVV [16] performs competitively with state-of-the-art im-
plementations of existing graph partitioning algorithms at finding good cuts on a
suite of medium-sized graphs chosen to illustrate the strengths and weaknesses of
these existing algorithms. Our secondary conclusion is that, as suggested by the-
ory, different parameter choices in this algorithm can be interpreted as toggling
between a more spectral-like approach and a more flow-like approach. Clearly,
our initial results suggest that these methods might be a viable alternative to the

208 K.J. Lang, M.W. Mahoney, and L. Orecchia

classical spectral and flow methods in practical applications in large-scale data
analysis and machine learning, arguing for a more comprehensive evaluation on
a larger suite of larger and more realistic graphs.

References

1. Alon, N., Milman, V.: λ1, isoperimetric inequalities for graphs and superconcen-
trators. J. Combin. Theory B 38, 73–88 (1985)

2. Andersen, R., Lang, K.: An algorithm for improving graph partitions. In: SODA
2008: Proceedings of the 19th ACM-SIAM Symposium on Discrete Algorithms, pp.
651–660 (2008)

3. Arora, S., Hazan, E., Kale, S.: O(
√

log n) approximation to sparsest cut in Õ(n2)
time. In: FOCS 2004: Proceedings of the 45th Annual Symposium on Foundations
of Computer Science, pp. 238–247 (2004)

4. Arora, S., Kale, S.: A combinatorial, primal-dual approach to semidefinite pro-
grams. In: STOC 2007: Proceedings of the 39th Annual ACM Symposium on The-
ory of Computing, pp. 227–236 (2007)

5. Arora, S., Rao, S., Vazirani, U.: Expander flows, geometric embeddings and graph
partitioning. In: STOC 2004: Proceedings of the 36th Annual ACM Symposium
on Theory of Computing, pp. 222–231 (2004)

6. Arora, S., Rao, S., Vazirani, U.: Geometry, flows, and graph-partitioning algo-
rithms. Communications of the ACM 51(10), 96–105 (2008)

7. Cherkassky, B., Goldberg, A., Martin, P., Setubal, J., Stolfi, J.: Augment or push:
a computational study of bipartite matching and unit-capacity flow algorithms.
Journal of Experimental Algorithmics 3, Article 8 (1998)

8. Cherkassky, B., Goldberg, A.V.: On implementing push-relabel method for the
maximum flow problem. Algorithmica 19, 390–410 (1997)

9. Chung, F.: Spectral graph theory. CBMS Regional Conference Series in Mathe-
matics, vol. 92. American Mathematical Society, Providence (1997)

10. Goldberg, A., Rao, S.: Beyond the flow decomposition barrier. Journal of the
ACM 45, 783–797 (1998)

11. Guattery, S., Miller, G.: On the quality of spectral separators. SIAM Journal on
Matrix Analysis and Applications 19, 701–719 (1998)

12. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM Journal on Scientific Computing 20, 359–392 (1998)

13. Khandekar, R., Rao, S., Vazirani, U.: Graph partitioning using single commodity
flows. In: STOC 2006: Proceedings of the 38th Annual ACM Symposium on Theory
of Computing, pp. 385–390 (2006)

14. Lang, K., Rao, S.: Finding near-optimal cuts: an empirical evaluation. In: SODA
1993: Proceedings of the 4th Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 212–221 (1993)

15. Leighton, T., Rao, S.: Multicommodity max-flow min-cut theorems and their use
in designing approximation algorithms. Journal of the ACM 46(6), 787–832 (1999)

16. Orecchia, L., Schulman, L., Vazirani, U., Vishnoi, N.: On partitioning graphs via
single commodity flows. In: STOC 2008: Proceedings of the 40th Annual ACM
Symposium on Theory of Computing, pp. 461–470 (2008)

17. Walshaw, C., Cross, M.: Mesh partitioning: a multilevel balancing and refinement
algorithm. SIAM Journal on Scientific Computing 22(1), 63–80 (2000)

	Empirical Evaluation of Graph Partitioning Using Spectral Embeddings and Flow
	Introduction
	Algorithms
	The Improve Algorithm
	The Metis and MetisRand Algorithms
	The Spectral and SpecFlow Algorithms
	The LR Algorithm
	The OSVV Algorithm

	Graphs Used in Our Empirical Evaluation
	Guattery-Miller Graph
	Expanders with Planted Bisections
	Finite Element Meshes
	Random Geometric Graphs
	Random Geometric Graphs with Random Edges Added

	Results
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

