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Abstract—First-order optimization techniques, such as stochas-
tic gradient descent (SGD) and its variants, are widely used in
machine learning applications due to their simplicity and low
per-iteration costs. However, they often require larger numbers
of iterations, with associated communication costs in distributed
environments. In contrast, Newton-type methods, while having
higher per-iteration computation costs, typically require a signif-
icantly smaller number of iterations, which directly translates to
reduced communication costs.

We present a novel distributed optimizer for classification
problems, which integrates a GPU-accelerated Newton-type
solver with the global consensus formulation of Alternating
Direction of Method Multipliers (ADMM). By leveraging the
communication efficiency of ADMM, a highly efficient GPU-
accelerated inexact-Newton solver, and an effective spectral
penalty parameter selection strategy, we show that our proposed
method (i) yields better generalization performance on several
classification problems; (ii) significantly outperforms state-of-the-
art methods in distributed time to solution; and (iii) offers better
scaling on large distributed platforms.

Index Terms—Second-Order Method, Newton, ADMM, Con-
vex Optimization, Machine Learning, Classification

I. INTRODUCTION

Estimating parameters of a model from a given dataset is

a critical component of a wide variety of machine learning

(ML) applications. The parameter estimation problem often

translates to one of finding a minima of a suitably formulated

objective function. The key challenges in modern “big-data”

problems relate to very large numbers of model parameters

(which translates to high dimensional optimization problems),

large training sets, and learning models with low generaliza-

tion errors. Recognizing the importance of the problem, a

significant amount of research effort has been invested into

addressing these challenges.

The most commonly used optimization technique in ma-

chine learning is gradient descent and its stochastic variant,

stochastic gradient descent (SGD). Gradient descent algo-

rithms, which solely rely on gradient information, are often

referred to as first-order methods. Recent results [3, 18, 24]

have shown that the use of curvature information in the form

of Hessian, or approximations thereof, can lead to significant

improvements over SGD in terms of performance as manifest

in their convergence rate, time, and quality of solutions.

A key challenge in optimization for machine learning prob-

lems is the large, often, distributed nature of the training

dataset. It may be infeasible to collect the entire training set

at a single node and process it serially because of resource

constraints (the training set may be too large for a single

node, or that the associated data transfer overhead may be

large), privacy (data may be constrained to specific locations),

or the need for reducing optimization time. In each of these

cases, there is a need for optimization methods that are suitably

adapted to parallel and distributed computing environments.

Distributed optimization solvers adopt one of two strategies

– (i) executing each operation in conventional solvers (e.g.,

SGD or (quasi) Newton) in a distributed environment [8, 9,

11, 12, 15, 16, 22, 27, 30]; or (ii) executing an ensemble of

local optimization procedures that operate on their own data,

with a coordinating procedure that harmonizes the models over

iterations [29]. The trade-offs between these two methods are

relatively well understood in the context of existing solvers

– namely that the communication overhead of methods in

the first class is higher, whereas, the convergence rate of the

second class of methods is compromised. For this reason,

methods in the first class are generally preferred in tightly

coupled data-center type environments, whereas methods in

the latter class are preferred for wide area deployments. In this
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paper, we present a novel optimization technique that adapts

the second strategy, integrating a novel node optimizer with a

global consensus strategy.
Alternating Direction Method of Multipliers (ADMM), is

a well known method in distributed optimization for solving

consensus problems [5]. To achieve superior convergence

and efficient solution of the corresponding sub-problems, the

choices of penalty parameters associated with global consen-

sus and inner (node-local) sub-problem solver are critical. In

particular, the quality of inner sub-problem solutions dictates

the accuracy of the descent direction computed by ADMM.

In this paper, we present a novel solver that uses the Spectral

Penalty Selection (SPS) method in ADMM [29] for setting

the penalty parameters and a variant of Newton’s method as

sub-problem solver. Our choices are motivated by the obser-

vation that first-order solvers are known to suffer from slow

convergence rates, and are notoriously sensitive to problem ill-

conditioning and the choice of hyper-parameters. In contrast,

Newton-type methods are less sensitive to such adversarial ef-

fects. However, this feature comes with increased per-iteration

computation cost. In our solution, we leverage lower iteration

counts to minimize communication cost and efficient GPU

implementations to address increased computational cost, to

engineer our solver that is over an order of magnitude faster

on many benchmarks.
a) Contributions: Our contributions in this paper can be

summarized as follows:
• We propose a novel distributed, GPU-accelerated Newton-

type method based on an ADMM framework that has low

communication overhead, good per-iteration compute char-

acteristics through effective use of GPU resources, superior

convergence properties, and minimal resource overhead.

• Using a range of real-world datasets (both sparse and

dense), we demonstrate that our proposed method yields

significantly better results compared to a variety of state-of-

the-art distributed optimization methods.

• Our pyTorch implementation is publicly available1. Our

solver can be readily used for practical applications by data

scientists and can be easily integrated with other well-known

tools like Tensoflow.

II. PROBLEM FORMULATION AND ALGORITHM DETAILS

In this section, we describe the optimization problem formu-

lation, and present our proposed Newton-ADMM optimizer.
a) Notation: We use bold lowercase letters to denote

vectors, e.g., v, and bold upper case letters to denote matrices,

e.g., V. ∇f(x) and ∇2f(x) represent the gradient and the

Hessian of function f at x, respectively. The superscript,

e.g., x(k), denotes iteration count, and the subscript, e.g., xi,

denotes the local-value of the vector x at the ith compute

node in a distributed setting. D denotes the input dataset, and

its cardinality is denoted by |D|. Function Fi(x) represents

the objective function, F (x), evaluated at point x using ith−
observation. Function FD(x) represents the objective function

evaluated on the entire dataset D.

1Newton ADMM solver.

A. Problem Formulation

Consider a finite sum optimization problem of the form:

min
x∈Rd

F (x) ,
n
∑

i=1

fi(x) + g(x), (1)

where each fi(x) is a smooth convex function and g(x) is a

(strongly) convex and smooth regularizer. In ML applications,

fi(x) can be viewed as loss (or misfit) corresponding to

the ith observation (or measurement)[4, 14, 25, 26]. In our

study, we choose multi-class classification using soft-max and

cross-entropy loss function, as an important instance of finite

sum minimization problem. Consider a p dimensional feature

vector a, with corresponding labels b, drawn from C classes.

In such a classifier, the probability that a belongs to a class

c ∈ {1, 2, . . . , C} is given by:

Pr (b = c | a,x1, . . . ,xC) =
e〈a,xc〉

∑C

c′=1 e
〈a,x

c′
〉
,

where xc ∈ R
p is the weight vector corresponding to class

c. Recall that there are only C − 1 degrees of freedom,

since probabilities must sum to one. Consequently, for training

data {ai, bi}
n
i=1 ⊂ R

p × {1, 2, . . . , C}, the cross-entropy loss

function for x = [x1;x2; . . . ;xC−1] ∈ R
(C−1)p can be written

as:

F (x) , F (x1,x2, . . . ,xC−1)

=

n
∑

i=1

(

log

(

1 +

C−1
∑

c′=1

e〈ai,xc′
〉

)

−
C−1
∑

c=1

1(bi = c)〈ai,xc〉

)

(2)

=

n
∑

i=1

(

M(ai) + log
(

α(ai)
)

−
C−1
∑

c=1

1(bi = c)〈ai,xc〉

)

,

(3)

where

M(a) = max
{

0, 〈a,x1〉, 〈a,x2〉, . . . , 〈a,xC−1〉
}

, (4)

and

α(a) := e−M(a) +

C−1
∑

c′=1

e〈a,xc′
〉−M(a). (5)

This uses the “Log-Sum-Exp” trick used to avoid over-flow in

the evaluation of exponential functions in (2) [20]. After the

training phase, a new data instance a is classified as:

b = argmax







{

e〈a,xc〉

∑C−1
c′=1 e

〈a,x
c′
〉

}C−1

c=1

, 1−
e〈a,x1〉

∑C

c′=1 e
〈a,x

c′
〉







.

B. ADMM Framework

Let N denote the number of nodes (compute elements) in

the distributed environment. Assume that the input dataset D



is split among the N nodes as D = D1 ∪D2 . . .∪DN . Using

this notation, (1) can be written as:

min

N
∑

i=1

∑

j∈Di

fj(xi) + g(z) (6)

s.t. xi − z = 0, i = 1, . . . ,N ,

where z represents a global variable enforcing consensus

among xi’s at all the nodes. In other words, the constraint

enforces a consensus among the nodes so that all the local

variables, xi, agree with global variable z. The formulation (6)

is often referred to as a global consensus problem. ADMM is

based on an augmented Lagrangian framework; it solves the

global consensus problem by alternating iterations on primal/

dual variables. In doing so, it inherits the benefits of the

decomposability of dual ascent and the superior convergence

properties of the method of multipliers.
ADMM methods introduce a penalty parameter ρ, which

is the weight on the measure of disagreement between xi’s
and global consensus variable, z. The most common adaptive
penalty parameter selection is Residual Balancing [5], which
tries to balance the dual norm and residual norm of ADMM.
Recent empirical results using SPS [29], which is based on
the estimation of the local curvature of subproblem on each
node, demonstrate significant improvement in the efficiency
of ADMM. Using the SPS strategy for penalty parameter
selection, ADMM iterates can be written as follows:

x
k+1

i = argmin
xi

fi(xi) +
ρki
2
||zk − xi +

y
k
i

ρki
||22, (7a)

z
k+1 = argmin

z

g(z) +

N∑

i=1

ρki
2
||z− x

k+1

i +
y
k
i

ρki
||22, (7b)

y
k+1

i = y
k
i + ρ

k
i (z

k+1 − x
k+1

i ). (7c)

With ℓ2−regularization, i.e., g(x) = λ‖x‖2/2, (7b) has a

closed-form solution given by

zk+1(λ+

N
∑

i=1

ρki ) =

N
∑

i=1

[

ρki x
k+1
i − yk

i

]

, (8)

where λ is the regularization parameter.

Algorithm 1 presents our proposed method incorporating

the above formulation of ADMM.

Steps 1-2 initialize the multipliers, y, and consensus vectors,

z, to zeros. In each iteration, Single Node Newton method,

Algorithm 2, is run with local xi, yi, and global z vectors.

Upon termination of Algorithm 2 at all nodes, resulting local

Newton directions, xk
i , are gathered at the master node, which

generates the next iterates for vectors y and z using spectral

step sizes described in [29]. These steps are repeated until

convergence. To monitor the convergence of ADMM, we

check the norm of primal and dual residuals, rki and dki , which

are defined as follows:

rki = zk − xk
i , d

k
i = −ρki (z

k − zk−1) (9)

As k → ∞, zk → z∗ and ∀i,xk
i → z∗. Therefore, the norm

of primal and dual residuals converge to zero. For a detailed

discussion, please see [5].

Algorithm 1: ADMM method (outer solver)

Input : x(0) (initial iterate), N (no. of nodes)

Parameters: β, λ and θ < 1
1 Initialize z0 to 0

2 Initialize y0
i to 0 on all nodes.

3 foreach k = 0, 1, 2, . . . do

4 Perform Algorithm 2 with, xk
i , yk

i , and zk on all

nodes

5 Collect all local xk+1
i

6 Evaluate zk+1 and yk+1
i using (7b) and (7c).

88 Distribute zk+1 and yk+1
i to all nodes.

9 Locally, on each node, compute spectral step sizes

and penalty parameters as in [29]
10 end

C. Inexact Newton-CG Solver

The optimization problem (1) is decomposed by ADMM

framework into sub-problems 7a, 7c, and 7b. Among these

sub-problems, only 7a does not have closed form solution.

Thus, it is critical to find an iterative method that can produce

high quality solutions with low computation cost. To this end,

we develop an inexact Newton-CG solver for solving sub-

problem 7a. Let the objective in Equation 7a be f̂(x), in each

iteration; the gradient and Hessian are given by:

g(x) ,
∑

j∈D

∇f̂j(x), (10a)

H(x) ,
∑

j∈D

∇2f̂j(x). (10b)

At each iterate x(k), using the corresponding Hessian,

H(x(k)), and the gradient, g(x(k)), we consider inexact

Newton-type iterations of the form:

x(k+1) = x(k) + αkpk, (11a)

where pk is a search direction satisfying:

‖H(x(k))pk + g(x(k))‖ ≤ θ‖g(x(k))‖, (11b)

for some inexactness tolerance 0 < θ < 1 and αk being the

largest α ≤ 1 such that the Armijo–Goldstein condition [21]

is satisfied.

F (x(k) + αpk) ≤ F (x(k)) + αβpT
k g(x

(k)), (11c)

for some β ∈ (0, 1). This examines whether a step-wise

movement from current position x(k) along direction pk to

a new position x(k) + αpk achieves a sufficient decrease in

the objective function F (·). To estimate the step-size, αk, in

eq. (11a), we use a backtracking line search that starts with a

relatively large step size and iteratively decreases it by a factor

γ < 1 until the Armijo–Goldstein condition is satisfied.

Condition (11b) is the θ-relative error approximation of the

exact solution to the linear system:

H(x(k))pk = −g(x(k)), (12)



Note that in (strictly) convex settings, where the Hessian

matrix is symmetric positive definite (SPD), conjugate gradient

(CG) with early stopping can be used to obtain an approximate

solution to (12) satisfying (11b). In [24], it has been shown that

a mild value for θ, in the order of inverse of square-root of the

condition number, is sufficient to ensure that the convergence

properties of the exact Newton’s method are preserved. As a

result, for ill-conditioned problems, an approximate solution

to (12) using CG yields good performance, comparable to

an exact update (see examples in Section III). Putting all of

these together, we obtain Algorithm 2, which is known to be

globally linearly convergent, with problem-independent local

convergence rate [24].

Algorithm 2: Inexact Newton-type Method

Input : x(0)

Parameters: 0 < β, θ < 1
1 foreach k = 0, 1, 2, . . . do

2 Form g(x(k)) and H(x(k)) as in (10)

3 if ‖g(x(k))‖ < ǫ then

4 STOP

5 end

6 Update x(k+1) as in (11)

7 end

D. GPU-accelerated Newton-type Method

Newton-type methods enjoy superior convergence rates and

are less sensitive to ill-conditioned problems. This is largely

attributed to their use of curvature information (e.g., in the

form of the Hessian matrix). However, the computational cost

and memory footprint of each iteration of these methods can

be high, if the Hessian matrix is explicitly formulated and

solved for ((11b)). To this end, we develop a Hessian-free

Newton-type method to solve the ADMM subproblem 7a.

Specifically, given a vector v ∈ R
d, our goal is to compute

the Hessian-vector product Hv without explicitly forming the

Hessian H. Define

h(a,x) :=
e〈a,x〉−M(x)

α(a)
,

V =











〈a1,v1〉 〈a1,v2〉 . . . 〈a1,vC−1〉
〈a2,v1〉 〈a2,v2〉 . . . 〈a2,vC−1〉

...
...

. . .
...

〈an,v1〉 〈an,v2〉 . . . 〈an,v(C−1)〉











n×(C−1)

,

(13)

and

W =











h(a1,x1) h(a1,x2) . . . h(a1,xC−1)
h(a2,x1) h(a2,x2) . . . h(a2,xC−1)

...
...

. . .
...

h(an,x1) h(an,x2) . . . h(an,xC−1)











n×(C−1)

,

(14)

we compute

U = V ⊙W −W ⊙
(

(

(V ⊙W) e
)

eT
)

, (15)

to get

Hv = vec
(

ATU
)

, (16)

where v = [v1;v2; . . . ;vC−1] ∈ R
d, vi ∈ R

p, i =
1, 2, . . . , C − 1, e ∈ R

C−1 is a vector of all 1’s, and each

row of the matrix A ∈ R
n×p is a row vector corresponding to

the ith data point, i.e, AT =
[

a1,a2, . . . ,an
]

. The Hessian-

vector product, Hv, can be efficiently computed using GEn-

eral Matrix to Matrix Multiplication (GEMM) operations, for

which we rely on Pytorch’s Basic Linear Algebra Subprograms

(BLAS) interface to the GPUs.

Note that the memory overhead of our GPU-accelerated

Newton-type method is determined by the dimensions of the

matrices U, V and W, which are determined by the local

dataset size and number of classes in multi-class classification

problem at hand. With reasonably sized GPU clusters this

memory footprint can be easily managed for large datasets.

This enables Newton-type method to scale to large problems

inaccessible to traditional second-order methods.

E. Computational Cost and Overheads of Numerical Schemes

The communication cost, computation cost, and number of

CPU-GPU transfers in each epoch of our proposed Newton-

ADMM scheme and SGD are summarized in Table I.

TABLE I: Complexity measures for the Newton-ADMM and

SGD methods. Ns and Nl denote, respectively, the total

number of iterations for CG and line search; and Cf , Cg , and

CHv denote, respectively, the computation cost of function

evaluation, gradient computation, and Hessian-vector product.

Newton-ADMM SGD

Number of

Communications
1 n

m

Computation Cost
(1 +Nl)× Cf+
Cg +Ns × CHv

n
m

× (Cf + Cg)

Number of

CPU-GPU Memory Transfers
1 n

m

Our Newton-ADMM method has practical advantages over

first order methods. In practice, mini-batch SGD is generally

preferred over full-batch gradient descent methods. However,

SGD often requires a large number of epochs to achieve good

generalization errors. Let n and m represent the number of

samples and batch size, respectively, with n >> 1. SGD

requires n
m

rounds of communication, with the overhead of
nd log(N )

mN in each epoch (recall that N is the number of



workers). On the other hand, in each ADMM iteration only one

round of communication is required (a “gather” and a “scatter”

operation), which can be executed in O(log(N )) time.

The mini-batch update scheme results in significantly lower

GPU occupancy (idle GPU cores because of smaller batch

sizes). The number of CPU-GPU memory transfers per epoch

for mini-batch SGD is n
m

. In contrast, Newton’s method

utilizes the complete dataset for computing the Newton direc-

tion. Therefore, there is only one CPU-GPU memory transfer

for computing the Newton direction, which greatly increases

utilization of the GPU for reasonably sized datasets.

With respect to the computation cost, the main bottleneck

for the Newton-ADMM method is the cost of computing the

Hessian-vector product CHv . However, using carefully formu-

lated Hessian-vector operations, we are able to transform this

computation-heavy kernel into an efficient GPU-accelerated

operation, as discussed in Section 7. The overall computation

overhead of Newton-ADMM is, therefore, lower than SGD.

Specifically, given that Cg is approximately 2 × Cf [7], the

overall computation costs for Newton-ADMM and SGD, are

(3 + Nl) × Cf + Ns × CHv and 3n
m

× Cf , respectively.

Since n >> 1, the number of CG iterations, Ns, and the

number of line search iterations, Nl, are far less than n,

and the computation time of Hessian-vector product CHV

is lower when using GPUs. The gains from using Newton’s

method with ADMM, along with low communication and

high GPU utilization, as compared to first order methods, are

demonstrated in our experimental results.

III. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of Newton-

ADMM as compared with several state-of-the-art alternatives.

TABLE II: Description of the datasets.

Classes Dataset Train Size Test Size Dims

2 HIGGS 10,000,000 1,000,000 28
10 MNIST 60,000 10,000 784
10 CIFAR-10 50,000 10,000 3,072
20 E18 1,300,128 6,000 279,998

a) Experimental Setup and Data:: All algorithms are

implemented in PyTorch/0.3.0.post4 with Message Passing

Interface (MPI) backend. We test performance of the methods

on two hardware platforms. The first platform is a server with

Intel Xeon Platinum 8168 processors and 8 Tesla P100 GPU

cards. The second platform is a CentOS 7 cluster with 15

nodes with 100 Gbps Infiniband interconnect. Each node has

96GB RAM, two 12-Core Intel Xeon Gold processors, and

3 Tesla P100 GPU cards. We validate our proposed method

using real-world datasets, described in Table II, and compare

with state-of-the-art first-order and second-order optimizers.

These datasets are chosen to cover a wide range of problem

characteristics (problem-conditioning, features, problem-size).

MNIST is a widely used dataset for validation – it is relatively

well-conditioned. CIFAR-10 is 3.9x larger than MNIST and

is relatively ill-conditioned. HIGGS[1] is a low-dimensional

dataset, however it is the largest (in terms of problem size).

This dataset is easy to solve for our method, but is harder for

first-order variants because of high communication overhead.

The largest data set, E18 2 , in terms of dimension and number

of samples, is used to highlight the scalability of our proposed

method.

b) Algorithms Parameter Settings:: We generated all the

experiment results using the following settings:

• SGD : we tune the step size from 10−4 to 104 and select

the best result to report.

• Newton-ADMM : We used 10 CG iterations along with

10−4 CG tolerance to compute Newton direction at each

compute node. The step size was chosen by line search with

10 iterations.

• GIANT : The configurations for CG and linesearch are the

same as the configurations use in Newton-ADMM.

• Inexact DANE : we use learning rate η = 1.0 and regular-

ization term µ = 0.0 for solving subproblems as prescribed

in [11]. We set SVRG iterations to 100 and update frequency

as 2n, where n is the number of local sample points. We run

SVRG step size from the set 10−4 to 104 in increments of 10

and select the best value to report.

• AIDE : The configurations for SVRG is the same as the

configurations used in Inexact DANE. As to the additional

hyper-parameter introduced in AIDE, τ , we also run τ from

the set 10−4 to 104 and select the best to report.

• Regularization parameter λ : we used λ = 10−5 for all the

experiments.

c) Newton-type method as a highly efficient subprob-

lem solver for ADMM.: We establish our (GPU-accelerated)

Newton-type optimizer as a highly efficient inner solver for

ADMM by comparing its performance against an ADMM-L-

BFGS solver. The per-iteration computation cost and memory

footprint of L-BFGS is lower than our Newton-type method

because of the rank-2 approximation of the Hessian matrix.

This, however, comes at the cost of a worse convergence rate

for L-BFGS. While Newton-type methods compute matrix

vector products with the full Hessian, we use a Conjugate

Gradient method with early stopping to solve the linear system,

Hx = −g. In our experiments we use no more than 10

CG iterations and a tolerance level of 10−3. The resulting

Inexact Newton-type method is GPU-accelerated, with an

efficient implementation of Hessian-vector product. We show

that, in practice, ADMM method suitably aided by efficient

implementation of Newton-type subproblem solvers, yields

significantly better results compared to the state-of-the-art.

Furthermore, the use of true Hessian in our inexact solver,

a second-order method, makes it resilient to problem ill-

conditioning and immune to hyper-parameter tuning. These

results are shown in Figure 1. We clearly notice that the

performance gap between L-BFGS and Inexact Newton-type

method becomes larger when number of compute nodes is

increased. The only exception is on HIGGS dataset. This is

because the dimension of the HIGGS datasets is only 28 and it

is a binary classification problem. Consequently, the dimension

2 E18 data set source.





TABLE III: Table IIIa and Table IIIb compare the CPU time (ms), GPU time (ms), and communication time (ms) per epoch

on strong scaling and weak scaling cases for Newton-ADMM and SGD algorithms.

(a) Table IIIa presents the CPU time, GPU time, and communication time per epoch for Newton-ADMM and SGD algorithms on MNIST,
CIFAR-10, and HIGGS datasets for strong-scaling cases.

S1 S2

MNIST CPU Time GPU Time Comm. Time Train. Obj. MNIST CPU Time GPU Time Comm. Time Train. Obj.

Newton-ADMM 3676.00 66.90 0.081 0.22 Newton-ADMM 1462.36 36.54 0.28 0.23
SGD 461.62 1034.63 18.97 0.24 SGD 229.16 530.92 23.84 0.23

CIFAR-10 CIFAR-10

Newton-ADMM 11419.11 176.64 0.59 1.63 Newton-ADMM 5321.67 99.28 0.85 1.63
SGD 883.16 1280.91 43.76 1.67 SGD 443.71 663.99 54.28 1.65

HIGGS HIGGS

Newton-ADMM 23098.02 2159.53 0.08 0.64 Newton-ADMM 12356.39 1107.97 0.24 0.64
SGD 36791.37 125935.64 1739.15 0.65 SGD 18305.36 61597.04 1237.57 0.65

S4 S8

MNIST CPU Time GPU Time Comm. Time Train. Obj. MNIST CPU Time GPU Time Comm. Time Train. Obj.

Newton-ADMM 787.38 26.29 0.39 0.24 Newton-ADMM 260.71 18.19 0.72 0.24
SGD 115.88 26751 39.31 0.26 SGD 61.63 138.30 28.82 0.28

CIFAR-10 CIFAR-10

Newton-ADMM 2482.32 48.48 1.480 1.66 Newton-ADMM 1227.98 33.20 2.67 1.68
SGD 217.714 331.17 88.62 1.65 SGD 109.68 168.61 60.80 1.67

HIGGS HIGGS

Newton-ADMM 3784.05 443.10 0.22 0.64 Newton-ADMM 1581.05 215.86 0.12 0.64
SGD 9018.30 29904.36 1523.00 0.65 SGD 4629.18 16157.91 666.69 0.65

(b) Table IIIb presents the CPU time, GPU time, and communication time per epoch for Newton-ADMM and SGD algorithms on MNIST,
CIFAR-10, HIGGS, and E18 datasets for weak-scaling cases.

W1 W2

MNIST CPU Time GPU Time Comm. Time Train. Obj. MNIST CPU Time GPU Time Comm. Time Train. Obj.

Newton-ADMM 322.15 20.20 0.25 0.06 Newton-ADMM 310.03 17.85 0.31 0.178
SGD 60.58 133.94 8.67 0.09 SGD 61.03 152.75 10.75 0.16

CIFAR-10 CIFAR-10

Newton-ADMM 1268.43 33.80 0.63 1.29 Newton-ADMM 1223.65 33.12 0.941 1.59
SGD 106.06 173.09 15.87 1.40 SGD 110.52 169.17 22.99 1.55

HIGGS HIGGS

Newton-ADMM 1612.71 226.69 0.07 0.64 Newton-ADMM 1740.02 202.35 0.07 0.64
SGD 4484.31 16169.06 220.46 0.65 SGD 4539.78 16437.12 297.99 0.65
E18 E18

Newton-ADMM 60644.96 907.57 15.917 0.006 Newton-ADMM 84793.51 1003.51 19.66 0.007
SGD 10534.14 8084.51 1723.16 0.03 SGD 11433.75 8101.65 2366.56 0.058

W4 W8

MNIST CPU Time GPU Time Comm. Time Train. Obj. MNIST CPU Time GPU Time Comm. Time Train. Obj.

Newton-ADMM 326.67 18.64 0.44 0.19 Newton-ADMM 260.71 18.19 0.72 0.24
SGD 57.63 142.86 15.39 0.20 SGD 61.63 138.30 28.82 0.28

CIFAR-10 CIFAR-10

Newton-ADMM 1251.88 33.17 1.86 1.65 Newton-ADMM 1227.98 33.20 2.67 1.68
SGD 110.59 171.48 34.53 1.63 SGD 109.68 168.61 60.80 1.67

HIGGS HIGGS

Newton-ADMM 1444.01 212.38 0.08 0.64 Newton-ADMM 1581.05 215.86 0.12 0.64
SGD 4574.42 16272.24 445.67 0.65 SGD 4629.18 16157.91 666.69 0.65
E18 E18

Newton-ADMM 74356.35 1015.58 55.03 0.05 Newton-ADMM 79368.43 1003.86 94.43 0.09
SGD 9442.47 6195.97 6317.41 0.08 SGD 9558.39 5882.13 6611.72 0.10

for weak scaling, the number of the training samples per node

is kept constant. We observe that both average CPU time and

GPU time for each epoch reduce by roughly half when the

number of nodes double in strong scaling cases. The average

CPU time and GPU time remain roughly the same when

the number of nodes double in weak scaling cases. In both

strong scaling and weak scaling cases, we observe that SGD

has significantly higher communication overhead compared to

Newton-ADMM for all datasets. In all cases, Newton-ADMM

outperforms SGD, and is able to use GPU resources efficiently.

In contrast, SGD achieves meaningful speedup from GPUs

only for the largest dataset, E18.

e) Comparison with Distributed Second-order Meth-

ods.: We compare Newton-ADMM against DANE [11], AIDE

[22], and GIANT [27], which have been shown in recent

results to perform well. In each iteration, DANE [11] requires

an exact solution of its corresponding subproblem at each

node. This constraint is relaxed in an inexact version of DANE,

called InexactDANE [22], which uses SVRG [17] to approx-

imately solve the subproblems. Another version of DANE,

called Accelerated Inexact DanE (AIDE), proposes techniques

for accelerating convergence, while still using InexactDANE

to solve individual subproblems [22]. However, using SVRG

to solve subproblems is computationally inefficient due to its

double loop formulation, with the outer loop requiring full gra-







16] are classified as first-order methods. Although they incur

low computational overhead, they have higher communication

costs due to a large number of messages exchanged per mini-

batch and high total iteration counts. Second-order variants

[9, 11, 22, 27, 30] are designed to improve convergence

rate, as well as to reduce communication costs. DANE [11],

and the accelerated scheme AIDE [22] use SVRG [17] as

the subproblem solver to approximate the Newton direction.

These methods are often sensitive to the fine-tuning of SVRG.

DiSCO [30] uses distributed preconditioned conjugate gradient

(PCG) to approximate the Newton direction. The number of

communications across nodes per PCG call is proportional

to the number of PCG iterations. In contrast to DiSCO,

GIANT [27] executes CG at each node and approximates the

Newton direction by averaging the solution from each CG

call. Empirical results have shown that GIANT outperforms

DANE, AIDE, and DiSCO. The solver of Dunner et al. [13]

is shown to outperform GIANT, however, it is constrained

to sparse datasets. A recently developed variant, DINGO [9],

can be applied to a class of non-convex functions, namely

invex [10], which includes convexity as a special sub-class.

However, in the absence of invexity, the method can converge

to undesirable stationary points.
A popular choice in distributed settings is ADMM [5],

which combines dual ascent method and the method of multi-

pliers. ADMM only requires one round of communication per

iteration. However, ADMM’s performance is greatly affected

by the selection of the penalty parameter [29] as well as the

choice of local subproblem solvers.

V. CONCLUSIONS

We have developed a novel distributed Inexact Newton

method based on a global consensus ADMM formulation.

We compare our method with state-of-the-art optimization

methods and show that our method has much lower dis-

tributed computing overhead, achieves superior generalization

errors, and has significantly lower epoch-times on standard

benchmarks. We have also shown that our method can handle

large datasets, while delivering sub-second epoch times –

establishing desirable scalability characteristics of our method.

Our work can be effectively extended to non-convex problems

arising from deep neural networks by incorporating serial non-

convex solvers into our distributed framework[19, 23].
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