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Abstract

Quantization is an effective method for reducing memory footprint and inference
time of Neural Networks. However, ultra low precision quantization could lead to
significant degradation in model accuracy. A promising method to address this is
to perform mixed-precision quantization, where more sensitive layers are kept at
higher precision. However, the search space for a mixed-precision quantization is
exponential in the number of layers. Recent work has proposed a novel Hessian
based framework [9], with the aim of reducing this exponential search space by
using second-order information. While promising, this prior work has three major
limitations: (i) they only use a heuristic metric based on top Hessian eigenvalue as
a measure of sensitivity and do not consider the rest of the Hessian spectrum; (ii)
their approach only provides relative sensitivity of different layers and therefore
requires a manual selection of the mixed-precision setting; and (iii) they do not
consider mixed-precision activation quantization. Here, we present HAWQ-V2
which addresses these shortcomings. For (i), we theoretically prove that the
right sensitivity metric is the average Hessian trace, instead of just top Hessian
eigenvalue. For (ii), we develop a Pareto frontier based method for automatic bit
precision selection of different layers without any manual intervention. For (iii), we
develop the first Hessian based analysis for mixed-precision activation quantization,
which is very beneficial for object detection. We show that HAWQ-V2 achieves
new state-of-the-art results for a wide range of tasks. In particular, we present
quantization results for InceptionV3 (7.57MB with 75.98% accuracy), ResNet50
(7.99MB with 75.92% accuracy), and SqueezeNext (1MB with 68.68% accuracy),
all without any manual bit selection. Furthermore, we present results for object
detection on Microsoft COCO, where we achieve 2.6 higher mAP than direct
uniform quantization and 1.6 higher mAP than the recently proposed method of
FQN, with a smaller model size of 17.9MB.

1 Introduction

Deep convolutional Neural Networks (NNs) have achieved great success in recent years. However,
many of these models, particularly those with state-of-the-art performance, have a high computational
cost and memory footprint. This slows inference and training in the cloud, and prohibits their
deployment on edge devices.

Quantization [1, 6, 15, 36, 34, 17, 35, 8, 32, 33, 29, 9, 10, 5, 7] is a very promising approach to
address this problem by reducing the memory bottleneck, thus allowing the use of lower precision
computational units in hardware. By replacing floating point weights in the model with low precision
fixed-point values, quantization can shrink the model size without changing the original network
architecture. The gains in speed and power consumption directly depend on how aggressively we
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Figure 1: Mixed Precision Illustration of ResNet20. Here we show the network architecture and list
four possible bit precision setting for each layer.

can perform quantization without losing generalization/accuracy of the model. Despite significant
advances, performing ultra low-bit quantization results in non-trivial degradation on accuracy.

Notable recent work on quantization includes using non-uniform quantizers [32, 19], progressive
quantization-aware fine-tuning [34, 9], and mixed-precision quantization [30, 29, 9, 27]. Despite
the use of non-uniform quantization (which is generally difficult for efficient implementation on
hardware), the accuracy degradation is still significant for ultra-low precision. A promising approach
to address this is through mixed-precision quantization, where some layers are kept at higher precision,
and other layers at lower precision. However, a major problem with this approach is that the search
space for determining a good mixed-precision quantization setting is exponentially large in the
number of NN layers. This is schematically shown in Figure 1, where four possible bit settings of
1/2/4/8 are considered for each layer of ResNet20. Finding a mixed-precision setting using these
possible bitwidths, has a search space of size 420 ≈ 1× 1012. It is computationally impossible to test
all of these mixed-precision settings and choose a particular setting with good generalization and
good hardware performance (in terms of latency and power). The recent work of [29] proposed a
reinforcement learning based method to address this. However, this consumes orders of magnitude
larger time for bit precision selection (Table 4). Another notable approach is differentiable neural
architecture search (DNAS) based methods [30]. But these searching methods can require a large
amount of computational resources, and the quality of quantization is very sensitive to the initialization
of their search parameters and therefore unpredictable. This makes the deployment of these methods
in online learning scenarios especially challenging, as in these applications a new model is trained
every few hours and needs to be quantized for efficient inference.

To address these issues, recent work introduced HAWQ [9], which aims to assign higher bit-precision
to layers that are more sensitive, and lower bit-precision to less sensitive layers. The sensitivity is
measured based on the top Hessian eigenvalue of each layer. This can reduce the exponential search
space for mixed-precision quantization, since a layer with higher Hessian eigenvalues cannot be
assigned lower bits, as compared to another layer with smaller Hessian eigenvalues. However, there
are several shortcomings of this approach: (i) HAWQ uses a heuristic metric based on top Hessian
eigenvalue as a measure of sensitivity, and it ignores the rest of the Hessian spectrum; (ii) HAWQ
only provides relative sensitivity of different layers, and it still requires a manual selection of the
mixed-precision setting; and (iii) HAWQ does not consider mixed-precision activation quantization.

Here, we address these challenges and introduce the HAWQ-V2 method. Our main contributions are
the following.

1. We perform a theoretical analysis (Lemma 1) showing that a better sensitivity metric is the average
Hessian trace, instead of the top eigenvalue heuristic used in HAWQ [9].

2. The HAWQ framework [9] only provides relative sensitivity, and thus it requires manual in-
tervention to select the precise bit-precision setting for each layer. We address this by using
a Pareto-frontier based method to automatically determine the bit precision of different layers
without any manual selection (Figure 4).

3. We implement a fast algorithm to compute the Hessian trace information using Hutchinson’s
algorithm in PyTorch. A common concern with the application of Hessian-based methods is the
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computational cost [31], but we show this is not an issue here. For example, we can compute
Hessian trace for all 54 layers in ResNet50 in less than 30 minutes with 4 GPUs (only 33s per
block on average). This is quite fast compared to manual mixed-precision methods which often
take weeks of tuning.

4. We achieve new state-of-the-art results for a wide range of models. We present quantization results
for InceptionV3, ResNet50, and SqueezeNext (Table 1). Furthermore, we present results for object
detection on the Microsoft COCO dataset, where HAWQ-V2 achieves 2.6 higher mAP than direct
uniform quantization and 1.6 higher mAP than the recently proposed method of FQN [18], with
even smaller model size 17.9MB (Table 2).

5. We develop mixed-precision activation quantization, as described in §2.2. We propose a fast
method for computing Hessian information w.r.t. activations, and we show that mixed-precision
activation can boost the performance of our object detection model to 34.4 mAP (Table 2).

Outline: In § 2, we discuss theoretical analysis and the relationship between the Hessian spectrum and
quantization; and we then discuss the Pareto frontier and our automatic precision selection method.
Then, in § 3, we show the results of the trade-off between speed and convergence in the Hutchinson
algorithm; and we test HAWQ-V2 with various models on both image classification and object
detection tasks. Finally, we provide a conclusion in § 4.

2 Methodology

For a supervised learning framework, the goal is to minimize the empirical risk loss,

L(θ) =
1

N

N∑
i=1

f(xi, yi, θ), (1)

where θ ∈ Rd is the learnable model parameters, and f(x, y, θ) is the loss for a datum (x, y) ∈
(X,Y ). Here, N = |X| is the cardinality of the training set. Assume that the NN can be partitioned
into L layers as {B1, B2, · · · , BL}, with corresponding learnable parameters {W1,W2, · · · ,WL}.
Furthermore, we denote mini-batch gradient of the loss w.r.t. model parameters as g = 1

NB

∑NB

i=1
∂f
∂θ ,

and sub-sampled Hessian w.r.t. parameters as H = 1
NB

∑NB

i=1
∂2f
∂θ2 , where NB is the mini-batch.

2.1 Sensitivity Metric

HAWQ uses the top Hessian eigenvalue to determine the relative sensitivity order of different
layers [9]. However, a NN model contains millions of parameters, and thus millions of Hessian
eigenvalues. Therefore, just measuring the top eigenvalue can be sub-optimal. As a simple example,
consider two functions F1(x, y) = 100x2 + y2 and F2(x, y) = 100x2 + 99y2. The top Hessian
eigenvalues of F1 and F2 are the same (i.e., 200). However, it is clear that F2 is more sensitive than
F1 since F2 has much larger function value change along y-axis. Below, we perform a theoretical
analysis and show that a better metric is to compute the average Hessian trace (i.e., average of
all Hessian eigenvalues) instead of just the top eigenvalue, and later in Section 3.4 we perform
an empirical ablation study which supports this finding. Note that in practice the trace and top
eigenvalues can be significantly different, as shown in Figure 6 in Appendix C.

Assumption 1 Assume that:

• The model is twice differentiable and has converged to a local minima such that the first and
second order optimality conditions are satisfied, i.e., the gradient is zero and the Hessian is positive
semi-definite.

• If we denote the Hessian of the ith layer as Hi, and its corresponding orthonormal eigen-
vectors as vi1, v

i
2, ..., v

i
ni

, then the quantization-aware fine-tuning perturbation, ∆W ∗i =
arg minW∗

i +∆W∗
i ∈Q(·)L(W ∗i + ∆W ∗i ), satisfies

∆W ∗
i = αbitv

i
1 + αbitv

i
2 + ...+ αbitv

i
ni
. (2)
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Figure 2: Average Hessian trace of different blocks in InceptionV3 and ResNet50 on ImageNet, along
with the loss landscape of the block 4 and 16 in InceptionV3 (block 1 and 52 in ResNet50). As one
can see, the average Hessian trace is significantly different for different blocks.

Here, ni is the dimension of Wi, W ∗i is the converging point of ith layer, and Q(·) is the quanti-
zation function which maps floating point values to reduced precision values. Note that αbit is a
constant number based on the precision setting and quantization range.1

• The third-order term, ‖ ∇3L
∇W 3

i
‖ ‖∆W ∗i ‖3/6 in the Taylor expansion series is small.

Given this assumption, we establish the following lemma.

Lemma 1 Under Assumption 1, when we quantize two layers (denoted by B1 and B2) with same
amount of perturbation, namely ‖∆W ∗1 ‖22 = ‖∆W ∗2 ‖22, we will have:

L(W ∗
1 + ∆W ∗

1 ,W
∗
2 , · · · ,W ∗

L) ≤ L(W ∗
1 ,W

∗
2 + ∆W ∗

2 ,W
∗
3 , · · · ,W ∗

L), (3)

if
1

n1
Tr(∇2

W1
L(W ∗

1 )) ≤ 1

n2
Tr(∇2

W2
L(W ∗

2 )). (4)

Proof Denote the gradient and Hessian of the first layer as g1 andH1, correspondingly. By Taylor’s expansion
we have:

L(W ∗
1 + ∆W ∗

1 ) = L(W ∗
1 ) + gT1 ∆W ∗

1 +
1

2
∆W ∗

1
T
H1∆W ∗

1 = L(W ∗
1 ) +

1

2
∆W ∗

1
T
H1∆W ∗

1 .

Here, we have used the fact that the gradient at the optimum point is zero and that the loss function
is locally convex. Also note that L(W ∗1 ) = L(W ∗2 ) since the model has the same loss before we
quantize any layer. Based on the assumption, ∆W ∗1 can be decomposed by the eigenvectors of the
Hessian. As a result we have:

∆W ∗
1
T
H1∆W ∗

1 =

n1∑
i=1

α2
bit,1v

1
i
T
H1v

1
i = α2

bit,1

n1∑
i=1

λ1
i ,

where (λ1
i , v

1
i ) is the corresponding eigenvalue and eigenvector of Hessian. Similarly, for the second

layer we will have: ∆W ∗2
TH2∆W ∗2 = α2

bit,2

∑n2

i=1 λ
2
i , where λ2

i is the ith eigenvalue of H2. Since
‖∆W ∗1 ‖2 = ‖∆W ∗2 ‖2, we have

√
n1αbit,1 =

√
n2αbit,2. Therefore, we have:

L(W ∗
2 + ∆W ∗

2 )− L(W ∗
1 + ∆W ∗

1 ) = α2
bit,2n2(

1

n2

n2∑
i=1

λ2
i −

1

n1

n1∑
i=1

λ1
i ) ≥ 0.

It is easy to see that the lemma holds since the sum of eigenvalues equals to the trace of the matrix. �

It should be noted that the proof still holds for cases where ||∆W ∗1 ||22 6= ||∆W ∗2 ||22. In such cases,
Eq. 4 becomes:

||∆W ∗
1 ||22

n1
Tr(∇2

W1
L(W ∗

1 )) ≤ ||∆W
∗
2 ||22

n2
Tr(∇2

W2
L(W ∗

2 )), (5)

indicating that Tr(Hi)||∆W ∗i ||22 can be used as a measure of sensitivity.

At first, computing the Hessian trace may seem a prohibitive task, as we do not have direct access
to the elements of the Hessian matrix. Furthermore, forming the Hessian matrix explicitly is not

1We assume αbit a constant for simplicity. It can be relaxed to random coefficients with the same second
moment, i.e., αbit can be random variables for different directions (vi1, vi2, ..., vini

) but with same E[α2
bit].
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Figure 3: Illustration of the structure of Hessian w.r.t to activations (Haj ). It is evident that different
sized inputs xi will produce different sized blocks Haj(xi) which appear on the diagonal of Haj .

computationally feasible. However, it is possible to leverage the extensive literature in Randomized
Numerical Linear Algebra (RandNLA) [22, 23] which address this type of problem. In particular,
the seminar works of [2, 3] have proposed randomized algorithms for fast trace estimation, using
so-called matrix-free methods which do not require the explicit formation of the Hessian operator.
Here, we are interested in the trace of a symmetric matrix H ∈ Rd×d. Then, given a random
vector z ∈ Rd whose component is i.i.d. sampled Gaussian distribution (N(0, 1)) (or Rademacher
distribution), we have:

Tr(H) = Tr(HI) = Tr(H E[zzT ]) = E[Tr(HzzT )] = E[zTHz], (6)

where I is the identity matrix. Based on this, the Hutchinson algorithm [2] can be used to estimate
the Hessian trace:

Tr(H) ≈ 1

m

m∑
i=1

zTi Hzi = TrEst(H). (7)

We show empirically in §3.1 that this algorithm has good convergence properties, resulting in trace
computation being orders of magnitude faster than training the network itself.

We have incorporated the above approach and computed the average Hessian trace for different layers
of InceptionV3 and ResNet50, as shown in Figure 2. As one can see, there is a significant difference
between average Hessian trace for different layers. To better illustrate this, we have also plotted the
loss landscape of InceptionV3 and ResNet50 by perturbing the pre-trained model along the first and
second eigenvectors of the Hessian for each layer. It is clear that different layers have significantly
different “sharpness.” (In Appendix C, we also show the average Hessian trace for different blocks of
SqueezeNext and RetinaNet, as well as their corresponding loss landscape; see Figure 7.)

2.2 Mixed Precision Activation

The above analysis is not restricted to weights, and in fact it can be extended to mixed-precision
activation quantization. In § 3, we will show that this is particularly useful for tasks such as object
detection. The theoretical results remain the same, except that the Hessian here is with respect to
activations instead of model parameters. In the matrix-free Hutchinson algorithm, we need the result
of the following Hessian-vector product to compute the Hessian trace:

zTHaj z = zT
(
∇2

aj

1

N

N∑
i=1

f(xi, yi, θ)

)
z, (8)

where aj is the activations of the jth layer. Here, Haj ∈ R(
∑N

i=1 |aj(xi)|)×(
∑N

i=1 |aj(xi)|), where
|aj(xi)| is the size of the activation of the jth layer for ith input. This is because aj is a concatenation
of aj(xi),∀i. See Figure 3 for illustration of the matrix Haj and its shape. Not only is it prohibitive
to compute Hessian matrix, the Hessian-vector product is also infeasible since even generating
the random vectors z ∈ R

∑N
i=1 |aj(xi)| is prohibitive, let alone computing its product with Haj .

Furthermore, note that aj depends on xi, and for many tasks such as object detection on Microsoft
COCO, xi does not have a fixed size. As a result, the activation size of each layer depends on the
input data and is not fixed, which further complicates computing Hessian trace w.r.t. activations.
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Figure 4: Pareto Frontier: The trade-off between model size and the sum of Ω metric (of Eqn. (10))
in InceptionV3. Here, L is the number of blocks in the model, and each point in the figure stands for a
specific bit precision setting. We show the precision setting used in Direct quantization and HAWQ.
To achieve fair comparison, we set constraint on HAWQ-V2 to have the same model size as HAWQ.

However, Haj , has a very interesting structure. As illustrated in Figure 3, it is block diagonal,
with Haj(xi) being the blocks, where Haj(xi) = ∇2

aj(xi)
1
N f(xi, yi, θ). This is due to the fact that

different inputs are independent of each other. As a result, we can compute the Hessian-trace for the
layer’s activations for one input at a time, and then average the resulting Hessian-traces of each block
diagonal part, i.e.,

zTHaj z =
1

N

N∑
i=1

zTi Haj(xi)zi, (9)

where zi is the corresponding components of z w.r.t. the ith input, i.e., xi. We note that usually
this trace computation converges very fast, and it is not necessary to average over the entire dataset.
See Figure 8 in Appendix for more details.

2.3 Automatic Bit Selection

An important limitation of relative sensitivity analysis is that it does not provide the specific bit
precision setting for different layers. This is true even if we use the average Hessian trace, instead of
the top Hessian eigenvalue. For example, we show the average Hessian trace for different blocks of
InceptionV3 in Figure 2. We can clearly see that block 1 to block 4 have the largest average Hessian
trace, and block 9 or block 16 have orders of magnitude smaller average Hessian trace. However,
although we know the first four blocks are more sensitive, we still cannot determine whether to assign
8-bit or 4-bit for these layers.

Denote by B the set of all admissible bit precision settings that satisfy the relative sensitivity analysis
based on the average Hessian trace discussed above. Compared to the original exponential search
space, applying the sensitivity constraint makes the cardinality (size) of B significantly smaller. As an
example, the original mixed-precision search space for ResNet50 is 450 ≈ 1.3×1030 if bit-precisions
are chosen among {1, 2, 4, 8}. Using the Hessian-trace sensitivity constraint significantly reduces
this search space to |B| = 2.3 × 104 (details on how to calculate the size of |B| are included in
Appendix B). However, this search space is still prohibitively large, especially for deeper models
such as ResNet152. In the HAWQ paper [9], the authors manually chose the bit precision among this
reduced search space, but this manual selection is undesirable.

We found that this problem can be efficiently addressed using a Pareto frontier approach. The main
idea is to sort each candidate bit-precision setting in B based on the total second-order perturbation
that they cause, according to the following metric:

Ω =

L∑
i=1

Ωi =

L∑
i=1

Tr(Hi) · ‖Q(Wi)−Wi‖22, (10)

6



where i refers to the ith layer, L is the number of layers in the model, Tr(Hi) is the average
Hessian trace, and ‖Q(Wi) −Wi‖2 is the L2 norm of quantization perturbation. The intuition is
that a bit precision setting with minimal second-order perturbation to the model should lead to good
generalization after quantization-aware fine-tuning. Given a target model size, we sort the elements
of B based on their Ω value, and we choose the bit precision setting with minimal Ω. While this
approach cannot theoretically guarantee the best possible performance, we have found that in practice
it can generate bit precision settings that exceed current state-of-the-art results with a small time
cost (as shown in Section 3.1). An important benefit of this approach is that it removes the manual
precision selection process used in our previous work on HAWQ [9].

We show the process for choosing the exact bit precision setting of InceptionV3 in Figure 4 (details in
Appendix E). Each red dot denotes a specific bit precision setting for different blocks of InceptionV3.
For each target model size, HAWQ-V2 chooses the bit precision setting with minimal Ω value.
With green triangles, we have also denoted the bit precision setting that was manually selected in
the HAWQ paper [9]. The automatic bit precision setting of HAWQ-V2 exceeds the accuracy of
HAWQ, as will be discussed in the next section.

3 Empirical Results
3.1 Hutchinson’s Method for Trace Estimation

In Figure 5, we show the convergence plot for the Hutchinson’s algorithm as we increase the number of
iterations used for the Hessian trace estimation. It can be clearly seen that the trace converges rapidly
as we increase the number of data points over 512, over which the sub-sampled Hessian is computed.
We can see that 50 Hutchinson iterations are sufficient to achieve an accurate approximation with
low variance. Based on the convergence analysis, we are able to calculate all the average Hessian
traces, shown in Figure 2, corresponding to 54 blocks in a ResNet50 model, within 30 minutes (33s
per block on average) using 4 GPUs. The Hutchinson algorithm, in addition to the automatic bit
precision selection, makes HAWQ-V2 a significantly faster algorithm than previous searching based
algorithms [29] (up to 120× faster as shown in Table 4 in Appendix C).
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Figure 5: Relationship between the convergence of Hutchinson and the number of data points (Left)
as well as the number of steps (Right) used for trace estimation on block 21 in ResNet50.

3.2 ImageNet

As shown in Table 1, we first apply HAWQ-V2 on ResNet50 [14], and compare HAWQ-V2 with
other popular quantization methods [35, 8, 32, 13, 29, 9]. It should be noted that [35, 8, 32, 13]
followed traditional quantization rules which set the precision of the first and last layers to 8-bit,
and quantized other layers to an identical precision. Both [29, 9] are mixed-precision quantization
methods. Also, [29] uses reinforcement learning methods to search for a good precision setting, while
HAWQ uses second-order information to guide the precision selection as well as the block-wise
fine-tuning. HAWQ achieves 75.48% with a 7.96MB model size. Keeping model size the same,
HAWQ-V2 can achieve 75.92% accuracy without any heuristic knowledge or manual efforts.

We then show results on InceptionV3 [28]. Direct quantization of InceptionV3 (i.e., without use of
second-order information), results in 7.69% accuracy degradation. Using the approach proposed
in [16] results in more than 2% accuracy drop, even though it uses higher bit precision. HAWQ [9]
results in a 2% accuracy gap with a compression ratio of 12.04×. HAWQ-V2 automatically
generates the exact precision setting for the whole network, and still achieves better accuracy than the
manual method of HAWQ.
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Table 1: Quantization results on ImageNet. We abbreviate quantization bits used for weights as “w-
bits,” quantization bits used for activations as “a-bits,” top-1 testing accuracy as “Top-1,” and weight
compression ratio as “W-Comp.” Furthermore, we compare HAWQ-V2 with direct quantization
method of [9] (“Direct”) and other state-of-the-art quantization methods. Here “MP” refers to
mixed-precision quantization, and we show the lowest bit-precision used in a mixed-precision setting.
Compared to [16, 25], we achieve higher compression ratio with higher testing accuracy.

(a) ResNet50 on ImageNet.
Method w-bits a-bits Top-1 W-Comp Size(MB)

Baseline 32 32 77.39 1.00× 97.8

Dorefa [35] 2 2 67.10 16.00× 6.11
Dorefa [35] 3 3 69.90 10.67× 9.17
PACT [8] 2 2 72.20 16.00× 6.11
PACT [8] 3 3 75.30 10.67× 9.17
LQ-Nets [32] 3 3 74.20 10.67× 9.17
Deep Comp. [13] 3 MP 75.10 10.41× 9.36
HAQ [29] MP MP 75.30 10.57× 9.22
HAWQ [9] 2 MP 4 MP 75.48 12.28× 7.96

HAWQ-V2 2 MP 4 MP 75.92 12.24× 7.99

(b) InceptionV3 on ImageNet
Method w-bits a-bits Top-1 W-Comp Size(MB)

Baseline 32 32 77.45 1.00× 91.2

IntOnly [16] 8 8 75.40 4.00× 22.8
RVQ [25] 3 MP 3 MP 74.14 10.67× 8.55
Direct [9] 2 MP 4 MP 69.76 15.88× 5.74
HAWQ [9] 2 MP 4 MP 75.52 12.04× 7.57

HAWQ-V2 2 MP 4 MP 75.98 12.04× 7.57

(c) SqueezeNext on ImageNet
Method w-bits a-bits Top-1 W-Comp Size(MB)

Baseline 32 32 69.38 1.00× 10.1

Direct [9] 3 MP 8 65.39 9.04× 1.12
HAWQ [9] 3 MP 8 68.02 9.26× 1.09
HAWQ-V2 3 MP 8 68.68 9.40× 1.07

We also apply HAWQ-V2 to quantize deep and highly compact models such as SqueezeNext [11].
We choose the wider SqueezeNext model which has a baseline accuracy of 69.38% with 2.5 million
parameters (10.1MB in single precision). We can see from Table 1 that direct quantization of
SqueezeNext (i.e., without use of second-order information), results in 3.98% accuracy degradation.
HAWQ results in a 1MB model size, with 1.36% top-1 accuracy drop. By applying HAWQ-V2
on SqueezeNext, we can achieve a 68.68% accuracy with an unprecedented model size of 1.07MB.
Furthermore, in Table 4 we show the timing of HAWQ-V2 as compared to [29]. As one can see,
despite using second order information, HAWQ-V2 is orders of magnitude faster and results in
significantly more accurate models.

3.3 Microsoft COCO

In order to show the generalization capability of HAWQ-V2, we also test object detection task
Microsoft COCO 2017 [21]. RetinaNet [20] is a single stage detector that can achieve state-of-the-art
mAP with a very simple network architecture. As shown in Table 2, we use the pretrained RetinaNet
with ResNet50 backbone as our baseline model, which can achieve 35.6 mAP with 145MB model
size. We first show the result of direct quantization where no Hessian information is used. Even
with quantization-aware fine-tuning and channel-wise quantization of weights, directly quantizing
weights and activations in RetinaNet to 4-bit causes a significant 4.1 mAP degradation. FQN [18] is
a recently proposed quantization method which reduces this accuracy gap to 3.1 mAP with the same
compression ratio as Direct method. We implement HAWQ to perform mixed-precision quantization,
which results in 33.5 mAP. However, using HAWQ-V2 achieves a state-of-the-art performance of
34.1 mAP, which is 0.6 mAP higher than [9] and 1.6 mAP higher than [18] with an even smaller
model size.

It should also be noted that we found the activation quantization to be sensitive for object detection
models. For instance, increasing activation quantization bit precision to 6-bit, can results in a 34.8
mAP. One might argue that using 6-bit for activation leads to higher activation memory, which can be
a problem for extreme cases such as on micro-controllers where every bit counts. For these situations,
we can use mixed-precision activation as discussed in §2.2, with the same automatic bit-precision
selection method using Pareto optimal curve. As can be seen in Table 2, mixed-precision activation
quantization can achieve very good trade-off between accuracy and compression. With only marginal
change to activation compression ratio, it can achieve 34.4 mAP, which significantly outperforms
uniform 4-bit activation, and is even close to a uniform 6-bit activation quantization.
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Table 2: Quantization results of RetinaNet-ResNet50 on Microsoft COCO 2017. We show results
of direct quantization, mixed-precision quantization [9], as well as a state-of-the-art quantization
method for object detection [18]. HAWQ-V2 can outperform previous results by a large margin. We
also show that HAWQ-V2 with mixed-precision activations can achieve even better mAP, with a
slightly lower activation compression ratio.

Method w-bits a-bits mAP W-Comp A-Comp Size(MB)

Baseline 32 32 35.6 1.00× 1.00× 145

Direct 4 4 31.5 8.00× 8.00× 18.13
FQN [18] 4 4 32.5 8.00× 8.00× 18.13
HAWQ 3 MP 4 33.5 8.10× 8.00× 17.90
HAWQ-V2 3 MP 4 34.1 8.10× 8.00× 17.90

HAWQ-V2 3 MP 4 MP 34.4 8.10× 7.62× 17.90
HAWQ-V2 3 MP 6 34.8 8.10× 5.33× 17.90

3.4 Ablation Study

Here, we perform three ablation studies. First, we show why it is important to choose the bit-precision
setting that results in the smallest model perturbation as done in Figure 4. The results are shown
in Table 3(a), where the ablation row uses a bit precision setting with large model perturbation.
As one can see, the HAWQ-V2 approach achieves more than 1% higher accuracy with a smaller
model size.

Second, we measure the importance of using the Hessian trace to weight the sensitivity Ωi =
Tr(Hi)‖∆Wi‖22 in Eq. 10. The results are shown in Table 3(b), where we compare with using only
parameter perturbation as the sensitivity metric Ωi = ‖∆Wi‖22. As we can see, HAWQ-V2 with
average Hessian trace is 0.85% better than L2-Sensitivity, while achieving a smaller model size.

Finally, we also compare HAWQ-V2 with a sensitivity that is weighted by Top-1 Hessian eigenvalue.
The results are shown in Table 5 in Appendix D. As expected, the trace-weighted metric in HAWQ-
V2 achieves higher accuracy.

Table 3: The effectiveness of metric in Eq. 10. Experiments are for SqueezeNext on ImageNet.

(a) Accuracy v.s. Total Perturbation
Method w-bits a-bits Top-1 Size(MB) Perturb.

Baseline 32 32 69.38 10.1 0

Large Perturbation 3 MP 8 67.46 1.09 3.2(Ablation)
Min Perturbation
(HAWQ-V2) 3 MP 8 68.68 1.07 1.1

(b) Tr(Hi)‖∆Wi‖22 v.s. ‖∆Wi‖22
Method w-bits a-bits Top-1 W-Comp Size(MB)

Baseline 32 32 69.38 1.00× 10.1

L2-Sensitivity 3 MP 8 67.83 9.18× 1.10(Ablation)
Trace-Sensitivity
(HAWQ-V2) 3 MP 8 68.68 9.40× 1.07

4 Conclusions

In this work, we performed a theoretical analysis showing that a better sensitivity metric is the average
Hessian trace, instead of the top Hessian eigenvalue heuristic used in HAWQ [9], and we presented
an automatic mixed-precision quantization method to avoid the manual bit selection. Moreover,
we developed mixed-precision activation, and we proposed a very efficient method for computing
the Hessian trace by using matrix-free algorithms. HAWQ-V2 achieves state-of-the-art results
on image classification for InceptionV3, ResNet50 and SqueezeNext, and on object detection for
RetinaNet-ResNet50. As part of future work, one could consider co-designing quantization for a
particular hardware and include not only the Hessian but also hardware-specific metrics such as
latency/power consumption [29]. Another direction is to avoid using any floating point number, which
is typically used to perform arithmetic on hardware with existing methods [16]. Furthermore, one
could explore to make training more efficient by incorporating Hessian to adjust precision throughout
training [24], or use it to compress communication in distributed training [26, 12].
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Broader Impact

Deep learning models are rapidly increasing in size and this has created a challenge for deploying
these models in practice. Our work addresses this problem by developing a novel compression
method with minimal impact on accuracy. Our work is applicable to a wide range of NN models, as
depicted in our empirical evaluation. Furthermore, our method can help reduce both the computation
and the memory bottleneck, so that state-of-the-art neural network models can be deployed even
onto edge devices. This helps to realize wider applications of technology, especially in area such
as deep learning based daily applications on smart phones, or basic and always-on applications on
embedded chips.
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