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AVOIDING COMMUNICATION IN PRIMAL AND DUAL BLOCK
COORDINATE DESCENT METHODS∗
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Abstract. Primal and dual block coordinate descent methods are iterative methods for solving
regularized and unregularized optimization problems. Distributed-memory parallel implementations
of these methods have become popular in analyzing large machine learning datasets. However,
existing implementations communicate at every iteration, which, on modern data center and super-
computing architectures, often dominates the cost of floating-point computation. Recent results on
communication-avoiding Krylov subspace methods suggest that large speedups are possible by re-
organizing iterative algorithms to avoid communication. We show how applying similar algorithmic
transformations can lead to primal and dual block coordinate descent methods that only communi-
cate every s iterations—where s is a tuning parameter—instead of every iteration for the regularized
least-squares problem. We show that the communication-avoiding variants reduce the number of
synchronizations by a factor of s on distributed-memory parallel machines without altering the con-
vergence rate and attain strong scaling speedups of up to 6.1× over the “standard algorithm” on a
Cray XC30 supercomputer.
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1. Introduction. The running time of an algorithm depends on computation,
the number of arithmetic operations (F ), and communication, the cost of data move-
ment. The communication cost includes the “bandwidth cost,” i.e., the number, W,
of words sent either between levels of a memory hierarchy or between processors over
a network, and the “latency cost,” i.e., the number, L, of messages sent, where a
message either consists of a group of contiguous words being sent or is used for in-
terprocess synchronization. On modern computer architectures, communicating data
often takes much longer than performing a floating-point operation, and this gap is
continuing to increase.

Communication-avoiding (CA) algorithms are a new class of algorithms that ex-
hibit large speedups on modern parallel architectures through careful algorithmic
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Table 1
Ops (F), Latency (L), Bandwidth (W), and Memory per processor (M) costs comparison along

the critical path of classical BCD (Theorem 4.1), BDCD (Theorem 4.2) and communication-avoiding
BCD (Theorem 4.6), BDCD (Theorem 4.7) algorithms for 1D-block column and 1D-block row data
partitioning, respectively. H and H′ are the number of iterations, and b and b′ are the block sizes
for BCD and BDCD. We assume that X ∈ Rd×n is sparse with fdn nonzeros that are uniformly
distributed, 0 < f ≤ 1 is the density of X, P is the number of processors, and s is the recurrence
unrolling parameter. We assume that the b×b and b′×b′ Gram matrices computed at each iteration
for BCD and BDCD, respectively, are dense.

Summary of Ops and Memory costs

Algorithm Data layout Ops cost (F) Memory cost (M)

BCD
1D-column

O
(

Hb2fn
P

+Hb3
)

O
(

fdn+n
P

+ b2 + d
)

CA-BCD O
(

Hb2sfn
P

+Hb3
)

O
(

fdn+n
P

+ b2s2 + d
)

BDCD
1D-row

O
(

H′b′2fd
P

+H′b′3
)

O
(

fdn+d
P

+ b′2 + n
)

CA-BDCD O
(

H′b′2sfd
P

+H′b′3
)

O
(

fdn+d
P

+ b′2s2 + n
)

Summary of Communication costs

Algorithm Data layout Latency cost (L) Bandwidth cost (W)

BCD
1D-column

O (H logP ) O
(
Hb2 logP

)
CA-BCD O

(
H
s

logP
)

O
(
Hb2s logP

)
BDCD

1D-row
O (H′ logP ) O

(
H′b′2 logP

)
CA-BDCD O

(
H′

s
logP

)
O

(
H′b′2s logP

)

transformations [2]. Much of numerical linear algebra has been reorganized to avoid
communication and has led to significant performance improvements over existing
state-of-the-art libraries [2, 1, 5, 18, 35, 40]. The results from CA-Krylov subspace
methods [5, 15, 18] are particularly relevant to our work. Demmel, Hoemmen, Mo-
hiyuddin, and others [15, 18, 25, 26] introduced matrix powers kernel optimization,
which reduces the communication cost of the s Krylov basis vector computations by a
factor O(s) for well-partitioned matrices. Their work extended existing s-step Krylov
methods research [38, 11, 12, 20, 39] by combining the matrix powers kernel with
extensively modified s-step Krylov methods to avoid communication [5, 15, 18].

We extend the CA technique to machine learning, where scalable algorithms are
especially important given the enormous amount of data. Block coordinate descent
methods are routinely used in machine learning to solve optimization problems [28,
32, 41]. Given a sparse dataset X ∈ Rd×n where the rows are features of the data and
the columns are data points, the block coordinate descent method can compute the
regularized or unregularized least-squares solution by iteratively solving a subproblem
using a block of b rows of X [28, 32, 41]. This process is repeated until the solution
converges to a desired accuracy or until the number of iterations has reached a user-
defined limit. If X is distributed (in 1D-row or 1D-column layout) across P processors,
then the algorithm communicates at each iteration in order to solve the subproblem.
As a result, the running time for such methods is often dominated by communication
cost, which increases with P .

There are some frameworks and algorithms that attempt to reduce the communi-
cation bottleneck. For example, the CoCoA (communication-efficient distributed dual
coordinate ascent) framework [19] reduces communication by performing coordinate
descent on locally stored data points on each processor and intermittently commu-
nicating by summing or averaging the local solutions. CoCoA communicates fewer
times than coordinate descent, although not provably so, but changes the convergence
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Table 2
Critical path costs of Krylov methods. k is the number of iterations required for Krylov methods

to converge to a desired accuracy. We assume a 1D-block row layout if n < d (1D-block column if
n > d), replicate the min(d, n)-dimensional vectors, and partition the max(d, n)-dimensional vectors.

Ops and Memory costs comparison

Algorithm Ops cost (F) Memory cost (M)

Krylov methods [2] O
(

kfdn
P

)
O

(
fdn
P

+ min(d, n) +
max(d,n)

P

)
Communication costs comparison

Algorithm Latency cost (L) Bandwidth cost (W)
Krylov methods [2] O(k logP ) O (kmin(d, n) logP )

behavior. HOGWILD! [31] is a shared-memory, lock-free approach to stochastic gra-
dient descent (SGD) where each processor selects a data point, computes a gradient
associated with only that data point, and atomically updates the solution without
synchronization. Due to the lack of synchronization (or locks) processors are allowed
to overwrite the solution vector. The main results in HOGWILD! show that if the
solution updates are sparse (i.e., each processor only modifies a part of the solution),
then running without locks does not affect the final solution with high probability on
shared-memory machines.

In contrast, our results reduce the latency cost (at the expense of additional flops
and bandwidth) in the primal and dual block coordinate descent methods by a factor of
s on distributed-memory architectures, for dense and sparse updates without changing
the convergence behavior, in exact arithmetic. Our results show that our CA methods
attain speedups despite the increase in flops and bandwidth costs. Table 1 summarizes
the critical path costs of the algorithms considered in this paper. Hereafter we refer to
the primal method as block coordinate descent (BCD) and the dual method as block
dual coordinate descent (BDCD). There are several variants of BCD and BDCD in
the literature; however, the algorithms we consider can also be referred to as subspace
descent methods [29]. The proofs in this paper assume that X is sparse with fdn

nonzeros, where 0 < f ≤ 1 is the density of X (i.e., f = nnz(X)
dn ). We further assume

that the nonzeros are uniformly distributed between the rows for BCD and columns
for BDCD. Each iteration of BCD samples b rows of X (resp., b′ columns of X for
BDCD), uniformly at random without replacement. The resulting b× n (resp., d× b′
for BDCD) sampled matrix contains fbn (resp., fb′d for BDCD) nonzeros. These
assumptions simplify our analysis and provide insight into scaling behavior for ideal
sparse inputs. We leave extensions of our proofs to general sparse matrices for future
work. Other sparsity models like assuming nnz(X) = ξn where 0 < ξ ≤ d (i.e., ξ
nonzeros per column) or nnz(X) = ωd where 0 < ω ≤ n (i.e., ω nonzeros per row) can
also be utilized for the analysis. However, we use the fdn nonzeros with 0 < f ≤ 1
model since it allows for more interpretable bounds and comparison between the
primal (BCD) and dual (BDCD) algorithms.

1.1. Contributions. We briefly summarize our contributions:
• We present CA algorithms for BCD and BDCD that provably reduce the

latency cost by a factor of s.
• We analyze the operational, communication, and storage costs of the classical

and our new CA algorithms under two data partitioning schemes and describe
their performance tradeoffs.

• We perform numerical experiments to illustrate that the CA algorithms are
numerically stable for all choices of s tested.
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Fig. 1. Comparison of convergence behavior against algorithm costs of Conjugate Gradients
(CG), BCD (with b = 1), and BDCD (with b′ = 1). Convergence is reported in terms of the relative
objective error, and the experiments are performed on the news20 dataset (d = 62061, n = 15935,
nnz(X) = 1272569) obtained from LIBSVM [10]. We fix the number of CG iterations to k = 100,
BCD iterations to H = 100d, and BDCD iterations to H′ = 100n.

• We show performance results to illustrate that the CA algorithms can be up
to 6.1× faster than the standard algorithms on up to 1024 nodes of a Cray
XC30 supercomputer using message passing interface (MPI).

1.2. Organization. The rest of the paper is organized as follows: Section 2
summarizes existing methods for solving the regularized least-squares problem and
the communication cost model used to analyze our algorithms. Section 3 presents
the CA derivations of the BCD and BDCD algorithms. Section 4 analyzes the opera-
tional, communication, and storage costs of the classical and CA algorithms under the
1D-block column and 1D-block row data layouts. Section 5 provides numerical and
performance experiments which show that the CA algorithms are numerically stable
and attain speedups over the standard algorithms. Finally, we conclude in section 6
and describe directions for future work.

2. Background. The regularized least-squares problem can be written as the
following optimization problem:

(1) arg min
w∈Rd

λ

2
‖w‖22 +

1

2n

∥∥XTw − y
∥∥2

2
,

where X ∈ Rd×n is the data matrix, whose rows are features and columns are data
points, y ∈ Rn are the labels, w ∈ Rd are the weights, and λ > 0 is a regularization
parameter. The unregularized (λ = 0) and regularized (λ > 0) least-squares problems
have been well studied in literature from directly solving the normal equations to
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Table 3
Relative objective errors of CG, BDCD (b′ = 1), and BCD (b = 1). We normalize the BDCD

and BCD iterations to match reported CG iterations. If k is the CG iteration, then BCD performs
H = kd and BDCD performs H′ = kn iterations.

Relative objective error comparison

CG iteration CG error BDCD error BCD error
0 6.8735 6.8735 6.8735
1 4.5425 7.8231 1.2826
25 0.5115 0.0441 0.0104
50 0.1326 0.0043 0.0031
75 0.0283 5.0779e-04 0.0016
100 0.0058 1.9346e-04 0.0010

other matrix factorization approaches [14, 3] to Krylov [3, 5, 33] and BCD methods
[4, 19, 34, 36, 41]. Tables 1 and 2 summarize the critical path costs of the iterative
methods just described.

We briefly summarize the difference between the BCD and BDCD algorithms but
defer the derivations to section 3. The BCD algorithm solves the primal minimization
problem (1), whereas the BDCD algorithm solves the dual minimization problem:

arg min
α∈Rn

λ

2

∥∥∥∥ 1

λn
Xα

∥∥∥∥2

2

+
1

2n
‖α− y‖22 ,(2)

where α ∈ Rn is the dual solution vector. The dual problem [34] can be obtained
by deriving the convex conjugate of (1) and has the following primal-dual solution
relationship:

w =
1

λn
Xα.(3)

Figure 1 illustrates the tradeoff between convergence behavior and algorithm costs
of CG, BCD, and BDCD. We plot the sequential flops cost and ignore the logP factor
for latency. We allow each algorithm to make 100 passes over X and plot the relative

objective error,
f(X,wopt,y)−f(X,walg,y)

f(X,wopt,y) , where f(X,w, y) = 1
2n‖X

Tw − y‖22 + λ
2 ‖w‖

2
2.

wopt is computed a priori from CG with a tolerance of 10−15, and walg is the solution
obtained from each iteration of CG, BCD, or BDCD. Since X is not symmetric, CG
requires two matrix-vector products at each iteration (one with X and another with
XT ). Therefore, the flops cost of CG is twice that of BCD or BDCD. We assume that
the two matrix-vector products can be computed with a single pass over X. Table
3 shows a comparison of CG, BDCD, and BCD objective errors after several CG
iterations. We see that BDCD and BCD reduce the objective error faster than CG.

If low accuracy suffices, then BCD and BDCD converge faster in terms of flops
and passes over X. However, CG is more bandwidth-efficient than BCD (but not
BDCD) and is orders of magnitude more latency-efficient than BCD and BDCD. This
suggests that reducing the latency cost of BCD and BDCD is an important step in
making these algorithms competitive.

3. Communication-avoiding primal and dual block coordinate descent.
In this section, we rederive block coordinate descent (BCD) (in section 3.1) and block
dual coordinate descent (BDCD) (in section 3.2) algorithms starting from the respec-
tive minimization problems. The derivations of BCD and BDCD lead to recurrences
which can be unrolled to derive CA versions of BCD and BDCD, which we will refer
to as CA-BCD and CA-BDCD, respectively.
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Algorithm 1 Block Coordinate Descent (BCD) Algorithm.

1: Input: X ∈ Rd×n, y ∈ Rn, H > 1, w0 ∈ Rd, b ∈ Z+ s.t. b ≤ d
2: for h = 1, 2, . . . ,H do
3: choose {im ∈ [d]|m = 1, 2, . . . , b} uniformly at random without replacement

4: Ih = [ei1 , ei2 , . . . , eib ]

5: Γh = 1
n I
T
hXX

T Ih + λITh Ih
6: ∆wh = Γ−1

h

(
−λIThwh−1 − 1

n I
T
hXzh−1 + 1

n I
T
hXy

)
7: wh = wh−1 + Ih∆wh
8: zh = zh−1 +XT Ih∆wh

9: Output wH

3.1. Derivation of block coordinate descent. The minimization problem in
(1) can be solved by BCD with the b-dimensional update

(4) wh = wh−1 + Ih∆wh,

where wh ∈ Rd and Ih =
[
ei1 , ei2 , . . . , eib

]
∈ Rd×b, ∆wh ∈ Rb, and ik ∈ [d] for

k = 1, 2, . . . , b. By substitution in (1) we obtain the minimization problem

arg min
∆wh∈Rb

λ

2
‖wh−1 + Ih∆wh‖22 +

1

2n
‖XTwh−1 +XT Ih∆wh − y‖22,

with the closed-form solution

(5) ∆wh =

(
1

n
IThXXT Ih + λITh Ih

)−1(
−λIThwh−1 −

1

n
IThXXTwh−1 +

1

n
IThXy

)
.

The closed-form solution requires a matrix-vector multiply using the entire data
matrix to compute 1

n I
T
hXX

Twh−1. However, this can be avoided by introducing the
auxiliary variable, zh = XTwh, which, by substituting (4), can be rearranged into a
vector update of the form

zh = XTwh−1 +XT Ih∆wh = zh−1 +XT Ih∆wh,(6)

and the closed-form solution can be written in terms of zh−1,

∆wh =

(
1

n
IThXXT Ih + λITh Ih

)−1(
−λIThwh−1 −

1

n
IThXzh−1 +

1

n
IThXy

)
.(7)

In order to make the CA-BCD derivation easier, let us define

Γh =
1

n
IThXXT Ih + λITh Ih.

Then (7) can be rewritten as

∆wh = Γ−1
h

(
−λIThwh−1 −

1

n
IThXzh−1 +

1

n
IThXy

)
.(8)

This rearrangement leads to the BCD method shown in Algorithm 1. The recurrence
in lines 6, 7, and 8 of Algorithm 1 allows us to unroll the BCD recurrences and avoid
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Algorithm 2 Communication-Avoiding Block Coordinate Descent (CA-BCD) Algo-
rithm.

1: Input: X ∈ Rd×n, y ∈ Rn, H > 1, w0 ∈ Rd, b ∈ Z+ s.t. b ≤ d
2: for k = 0, 1, . . . , Hs do

3: for j = 1, 2, . . . , s do
4: choose {im ∈ [d]|m = 1, 2, . . . , b} uniformly at random without replacement

5: Isk+j = [ei1 , ei2 , . . . , eib ]

6: let Y =
[
Isk+1, Isk+2, . . . , Isk+s

]T
X.

7: compute the Gram matrix, G = 1
nY Y

T + λI.
8: for j = 1, 2, . . . , s do
9: Γsk+j are the b× b diagonal blocks of G.

10: ∆wsk+j = Γ−1
sk+j

(
−λITsk+jwsk−λ

∑j−1
t=1

(
ITsk+jIsk+t∆wsk+t

)
− 1
n I
T
sk+jXzsk

− 1
n

∑j−1
t=1

(
ITsk+jXX

T Isk+t∆wsk+t

)
+ 1

n I
T
sk+jXy

)
11: wsk+j = wsk+j−1 + Isk+j∆wsk+j

12: zsk+j = zsk+j−1 +XT Isk+j∆wsk+j

13: Output wH

communication. We begin by changing the loop index from h to sk + j, where k is
the outer loop index, s is the recurrence unrolling parameter, and j is the inner loop
index. Assume that we are at the beginning of iteration sk+ 1 and wsk and zsk were
just computed. Then ∆wsk+1 can be computed by

∆wsk+1 = Γ−1
sk+1

(
−λITsk+1wsk −

1

n
ITsk+1Xzsk +

1

n
ITsk+1Xy

)
.

By unrolling the recurrence for wsk+1 and zsk+1 we can compute ∆wsk+2 in terms of
wsk and zsk:

∆wsk+2 = Γ−1
sk+2

(
− λITsk+2wsk − λITsk+2Isk+1∆wsk+1

− 1

n
ITsk+2Xzsk −

1

n
ITsk+2XX

T Isk+1∆wsk+1 +
1

n
ITsk+2Xy

)
.

By induction we can show that ∆wsk+j can be computed using wsk and zsk:

(9) ∆wsk+j = Γ−1
sk+j

(
− λITsk+jwsk − λ

j−1∑
t=1

(
ITsk+jIsk+t∆wsk+t

)
− 1

n
ITsk+jXzsk −

1

n

j−1∑
t=1

(
ITsk+jXX

T Isk+t∆wsk+t

)
+

1

n
ITsk+jXy

)
for j = 1, 2, . . . , s. Due to the recurrence unrolling we can defer the updates to wsk
and zsk for s steps. Notice that the first summation in (9) computes the intersection
between the coordinates chosen at iteration sk + j and sk + t for t = 1, . . . , j − 1 via
the product ITsk+jIsk+t. Communication can be avoided in this term by initializing
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Algorithm 3 Block Dual Coordinate Descent (BDCD) Algorithm.

1: Input: X = [x1, x2, . . . xn] ∈ Rd×n, y ∈ Rn, H ′ > 1, α0 ∈ Rn, b′ ∈ Z+ s.t. b′ ≤ n
2: Initialize: w0 ← 1

λnXα0

3: for h = 1, 2, . . . ,H ′ do

4: choose {im ∈ [n]|m = 1, 2, . . . , b′} uniformly at random without replacement

5: Ih =
[
ei1 , ei2 , . . . , eib′

]
6: Θh = 1

λn2 IThXTXIh + 1
n I
T
h Ih

7: ∆αh = 1
nΘ−1

h

(
−IThXTwh−1 − IThαh−1 + ITh y

)
8: αh = αh−1 + Ih∆αh
9: wh = wh−1 + 1

λnXIh∆αh

10: Output α′H and w′H

all processors to the same seed for the random number generator. The second sum-
mation in (9) computes the Gram-like matrices ITsk+jXX

T Isk+t for t = 1, . . . , j − 1.
Communication can be avoided in this computation by computing the sb× sb Gram

matrix G = ( 1
n

[
Isk+1, Isk+2, · · · , Isk+s

]T
XXT

[
+Isk+1, Isk+2, · · · , Isk+s

]
+ λI) once

before the inner loop and redundantly storing it on all processors. Finally, at the end
of the s inner loop iterations we can perform the vector updates

wsk+s = wsk +

s∑
t=1

(Isk+t∆wsk+t) ,(10)

zsk+s = zsk +XT
s∑
t=1

(Isk+t∆wsk+t) .(11)

The resulting CA-BCD algorithm is shown in Algorithm 2.

3.2. Derivation of block dual coordinate descent. The solution to the pri-
mal problem (1) can also be obtained by solving the dual minimization problem shown
in (2) with the primal-dual relationship shown in (3). The dual problem (2) can be
solved using BCD, which iteratively solves a subproblem in Rb′ , where 1 ≤ b′ ≤ n is a
tunable block-size parameter. Let us first define the dual vector update for αh ∈ Rn:

αh = αh−1 + Ih∆αh.(12)

Here h is the iteration index, Ih =
[
ei1 , ei2 , . . . eib′

]
∈ Rn×b′ , ik ∈ [n] for k =

1, 2, . . . , b′, and ∆αh ∈ Rb′ . By substitution in (2), ∆αh is the solution to a min-
imization problem in Rb′ as desired:

arg min
∆αh∈Rb′

1

2λn2
‖Xαh−1 +XIh∆αh‖22 +

1

2n
‖αh−1 + Ih∆αh − y‖22 .(13)

Finally, due to (3) we obtain the primal vector update for wh ∈ Rd:

wh = wh−1 +
1

λn
XIh∆αh.(14)

From (12), (13), and (14) we obtain a BCD algorithm which solves the dual mini-
mization problem. Henceforth, we refer to this algorithm as block dual coordinate
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Algorithm 4 Communication-Avoiding Block Dual Coordinate Descent (CA-BDCD)
Algorithm.

1: Input: X = [x1, x2, . . . , xn] ∈ Rd×n, y ∈ Rn, H ′ > 1, α0 ∈ Rn, b′ ∈ Z+ s.t. b′ ≤ n

2: Initialize: w0 ← 1
λnXα0

3: for k = 0, 1, . . . , H
′

s do

4: for j = 1, 2, . . . , s do
5: choose {im ∈ [n]|m = 1, 2, . . . , b′} uniformly at random without replace-

ment

6: Isk+j =
[
ei1 , ei2 , . . . , eib′

]
7: let Y = X [Isk+1, Isk+2, . . . , Isk+s].
8: compute the Gram matrix, G′ = 1

λn2Y
TY + 1

nI.
9: for j = 1, 2, . . . , s do

10: Θsk+j are the b′ × b′ diagonal blocks of G′.

11: ∆αsk+j = 1
nΘ−1

sk+j

(
− ITsk+jX

Twsk − 1
λn

∑j−1
t=1

(
ITsk+jX

TXIsk+t∆αsk+t

)
−ITsk+jαsk −

∑j−1
t=1

(
ITsk+jIsk+t∆αsk+t

)
+ ITsk+jy

)
12: αsk+j = αsk+j−1 + Isk+j∆αsk+j

13: wsk+j = wsk+j−1 + 1
λnXIsk+j∆αsk+j

14: Output αH′ and wH′

descent (BDCD). Note that by setting b′ = 1 we obtain the SDCA (stochastic dual
coordinate ascent) algorithm [34] with the least-squares loss function.

The optimization problem (13) which computes the solution along the chosen
coordinates has the closed form
(15)

∆αh =

(
1

λn2
IThXTXIh +

1

n
ITh Ih

)−1( −1

λn2
IThXTXαh−1 −

1

n
IThαh−1 +

1

n
ITh y
)
.

Let us define Θh ∈ Rb′×b′ such that

Θh =

(
1

λn2
IThXTXIh +

1

n
ITh Ih

)
.

From this we have that at iteration h, we compute the solution along the b′

coordinates of the linear system,

∆αh =
1

n
Θ−1
h

(
−IThXTwh−1 − IThαh−1 + ITh y

)
,(16)

and obtain the BDCD algorithm shown in Algorithm 3. The recurrence in lines
7, 8, and 9 of Algorithm 3 allows us to unroll the BDCD recurrences and avoid
communication. We begin by changing the loop index from h to sk + j, where k is
the outer loop index, s is the recurrence unrolling parameter, and j is the inner loop
index. Assume that we are at the beginning of iteration sk+ 1 and wsk and αsk were
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just computed. Then ∆αsk+1 can be computed by

∆αsk+1 =
1

n
Θ−1
sk+1

(
−ITsk+1X

Twsk − ITsk+1αsk + ITsk+1y
)
.

Furthermore, by unrolling the recurrences for wsk+1 and αsk+1 we can analogously to
(9) show by induction that

(17) ∆αsk+j =
1

n
Θ−1
sk+j

(
− ITsk+jX

Twsk −
1

λn

j−1∑
t=1

(
ITsk+jX

TXIsk+t∆αsk+t

)
− ITsk+jαsk −

j−1∑
t=1

(
ITsk+jIsk+t∆αsk+t

)
+ ITsk+jy

)
for j = 1, 2, . . . , s. Note that due to unrolling the recurrence we can compute ∆αsk+j

from wsk and αsk which are the primal and dual solution vectors from the previous
outer iteration. Since the solution vector updates require communication, the recur-
rence unrolling allows us to defer those updates for s iterations at the expense of
additional computation. The solution vectors can be updated at the end of the inner
iterations by

wsk+s = wsk +
1

λn
X

s∑
t=1

(Isk+t∆αsk+t) ,(18)

αsk+s = αsk +

s∑
t=1

(Isk+t∆αsk+t) .(19)

The resulting CA-BDCD algorithm is shown in Algorithm 4.

4. Analysis of algorithms. From the derivations in section 3, we can observe
that BCD and BDCD perform computations on XXT and XTX, respectively. This
implies that, along with the convergence rates, the shape of X is a key factor in
choosing between the two methods. Furthermore, the data partitioning scheme used to
distributeX between processors may cause one method to have a lower communication
cost than the other. In this section we analyze the cost of BCD and BDCD under
two data partitioning schemes: 1D-block row (feature partitioning) and 1D-block
column (data point partitioning). In both cases, we derive the associated operational,
storage, and communication costs. We perform a similar analysis of the CA variants
to illustrate that we provably avoid communication and describe tradeoffs. Since
X is sparse, the analysis of the computational cost includes passes over the sparse
data structure instead of just the floating-point operations associated with the sparse
matrix–sparse matrix multiplication (i.e., Gram matrix computation). Therefore, our
analysis gives bounds on the local operations for each processor. We begin in section
4.1 with the analysis of the BCD and BDCD algorithms and then analyze our new, CA
variants in section 4.2. As discussed in section 1, we can use other sparsity models
instead of our fdn nonzeros model. We assume an idealized sparse matrix with
uniform distribution of the nonzeros between rows (for BCD) and between columns
(for BDCD). Due to this assumption, we can easily change from the fdn model to
the nnz = ξn and nnz = ωd models. Replacing fd with ξ (for BCD) and fn with ω
(for BDCD) gives bounds for the different models. We also note that practical values
of b need to be quite small in order to be competitive with Krylov subspace methods
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(see Figure 1). Therefore, we assume that b is small enough that the Gram matrix
is most efficiently computed through the use of dot-products. For large values of b
tighter bounds for the Gram matrix computations can be obtained by analyzing the
matrix-product. The matrix-product bounds have an additional factor of f for the
Gram matrix computations. Since 0 < f ≤ 1, this bound is tighter than the one
obtained by assuming dot-products.

4.1. Classical algorithms. We begin with the analysis of the BCD algorithm
with X stored in a 1D-block column layout and show how to extend this proof to
BDCD with X in a 1D-block row layout.

Theorem 4.1. H iterations of the BCD algorithm with the matrix X ∈ Rd×n
stored in 1D-block column partitions with a block size b on P processors along the
critical path cost

F = O

(
Hb2fn

P
+Hb3

)
ops, M = O

(
fdn+ n

P
+ b2 + d

)
words of memory.

Communication costs

W = O
(
Hb2 logP

)
words moved, L = O (H logP ) messages.

Proof. The BCD algorithm computes a b×b Gram matrix, Γh, solves a b×b linear
system to obtain ∆wh, and updates the vectors wh and zh. Computing the Gram
matrix requires that each processor locally compute a b × b block of inner-products
and then perform an all-reduce (a reduction and broadcast) to sum the partial blocks.
Since the b × n submatrix IThX has bfn nonzeros, the parallel Gram matrix compu-

tation (IThXXT Ih) requires O( b
2fn
P ) operations (there are b2 elements of the Gram

matrix, each of which depends on fn nonzeros) and communicates O
(
b2 logP

)
words,

with O (logP ) messages. In order to solve the subproblem redundantly on all pro-
cessors, a local copy of the residual is required. Computing the residual requires
O( bfnP ) operations and communicates O (b logP ) words, in O (logP ) messages. Once
the residual is computed, the subproblem can be solved redundantly on each processor
in O

(
b3
)

flops. Finally, the vector updates to wh and zh can be computed without

any communication in O(b+ bfn
P ) flops on each processor. The critical path costs of

H iterations of this algorithm are O(Hb
2fn
P + Hb3) flops, O

(
Hb2 logP

)
words, and

O (H logP ) messages. Each processor requires enough memory to store wh, Γh, ∆w,
Ih, 1

P th columns of X, and 1
P th elements of zh and y. Therefore, the memory cost of

each processor is d+ b2 + 2b+ fdn+2n
P = O( fdn+n

P + b2 + d) words per processor.

If fn
P > b, then computing the Gram matrix dominates solving the subproblem.

Furthermore, the storage cost of X dominates the cost of the Gram matrix.

Theorem 4.2. H ′ iterations of the BDCD algorithm with the matrix X ∈ Rd×n
stored in 1D-block row partitions with a block size b′ on P processors along the critical
path cost

F = O

(
H ′b′

2
fd

P
+H ′b′

3

)
ops, M = O

(
fdn+ d

P
+ b′

2
+ n

)
words of memory.

Communication costs

W = O
(
H ′b′

2
logP

)
words moved, L = O (H ′ logP ) messages.
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Proof. The proof is similar to that of Theorem 4.1 with an appropriate change of
variables for BDCD.

If X is stored in a 1D-block row layout, then each processor stores a disjoint
subset of the features of X. Since BCD selects b features at each iteration, 1D-block
row partitioning could lead to load imbalance. In order to avoid load imbalance,
we repartition the chosen b features into a 1D-block column layout and proceed by
using the 1D-block column BCD algorithm. Repartitioning the b features requires
communication, so we begin by bounding the maximum number of features assigned to
a single processor. The bandwidth cost of repartitioning is bounded by the processor
with maximum load (i.e., maximum number of features). These bounds only hold with
high probability since the features are chosen uniformly at random. To attain bounds
on the bandwidth cost, we assume that each sampled row of X has fn nonzeros.

Lemma 4.3. Given a matrix X ∈ Rd×n and P processors such that each processor
stores Θ(

⌊
d
P

⌋
) features, if b features are chosen uniformly at random, then the worst-

case maximum number of features, η(b, P ), assigned to a single processor with high
probability (w.h.p.) is

η(b, P ) =


O

(
b
P +

√
b logP
P

)
if b > P logP,

O
(

log b
log log b

)
if b = P,

O
(

logP
log P

b

)
if b < P

logP .

Proof. This is the well-known generalization of the balls and bins problem intro-
duced by Gonnet [17] and extended by Mitzenmacher [24] and Raab and Steger [30].

A similar result holds for BDCD with X stored in a 1D-block column layout.

Theorem 4.4. H iterations of the BCD algorithm with the matrix X ∈ Rd×n
stored in 1D-block row partitions with a block size b on P processors along the critical
path cost

F = O

(
Hb2fn

P
+Hb3

)
ops, M = O

(
fdn+ n

P
+ b2 + d

)
words of memory.

For small messages, communication costs w.h.p.

W = O
((
b2 + η(b, P )fn

)
H logP

)
words moved, L = O (H logP ) messages.

For large messages, communication costs w.h.p.

W = O
(
Hb2 logP +Hη(b, P )fn

)
words moved, L = O (HP ) messages.

Proof. The 1D-block row partitioning scheme implies that the b×b Gram matrix,
Γh, computation may be load imbalanced. Since we randomly select b rows, some
processors may hold multiple rows while others hold none. In order to balance the
computational load, we perform an all-to-all to convert the b×n sampled matrix into
the 1D-block column layout. The amount of data moved is bounded by the max-
loaded processor, which from Lemma 4.3, stores O (η(b, P )) rows w.h.p. in the worst
case. This requires W = O (η(b, P )fn logP ) and L = O (logP ) for small messages
or W = O (η(b, P )fn) and L = O (HP ) for large messages. The all-to-all requires
additional storage on each processor of M = O( bfnP ) words. Once the sampled matrix
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is converted, the BCD algorithm proceeds as in Theorem 4.1. By combining the cost
of the all-to-all over H iterations and the costs from Theorem 4.1, we obtain the costs
for the BCD algorithm with X stored in a 1D-block row layout.

The additional storage for the all-to-all does not dominate since b < d by defini-
tion.

Theorem 4.5. H ′ iterations of the BDCD algorithm with the matrix X ∈ Rd×n
stored in 1D-block column partitions with a block size b′ on P processors along the
critical path cost w.h.p.

F = O

(
H ′b′

2
fd

P
+H ′b′

3

)
ops, M = O

(
fdn+ d

P
+ b′

2
+ n

)
words of memory.

For small messages, communciation costs w.h.p.

W = O
((
b′

2
+ η(b′, P )fd

)
H ′ logP

)
words moved, L = O (H ′ logP ) messages.

For large messages, communication costs w.h.p.

W = O
(
H ′b′

2
logP +H ′η(b′, P )fd

)
words moved, L = O (H ′P ) messages.

Proof. Cost analysis similar to Theorem 4.4 proves this theorem.

4.2. Communication-avoiding algorithms. In this section, we derive the
computation, storage, and communication costs of our CA-BCD and CA-BDCD al-
gorithms under the 1D-block row and 1D-block column data layouts. In both cases
we show that our algorithms reduce the latency costs by a factor of s but increase
flops and bandwidth by the same factor. Our experimental results will show that this
tradeoff can lead to speedups. We begin with the CA-BCD algorithm in 1D-block
column layout and then show how this proof extends to CA-BDCD in 1D-block row
layout.

Theorem 4.6. H iterations of the CA-BCD algorithm with the matrix X ∈ Rd×n
stored in 1D-block column partitions with a block size b on P processors along the
critical path cost

F = O

(
Hb2sfn

P
+Hb3

)
ops, M = O

(
fdn+ n

P
+ b2s2 + d

)
words of memory.

Communication costs

W = O
(
Hb2s logP

)
words moved, L = O

(
H

s
logP

)
messages.

Proof. The CA-BCD algorithm computes the sb×sb Gram matrix, G = 1
nY Y

T +

λI, where Y =
[
Isk+1, Isk+2, . . . , Isk+s

]T
X, solves s (b× b) linear systems to compute

∆wsk+j , and updates the vectors wsk+s and zsk+s. Computing the Gram matrix
requires that each processor locally compute an sb × sb block of inner-products and
then perform an all-reduce (a reduction and broadcast) to sum the partial blocks.

This operation requires O( b
2s2fn
P ) operations (there are s2b2 elements of the Gram

matrix, each of which depends on fn nonzeros), communicates O
(
s2b2 logP

)
words,

and requires O (logP ) messages. In order to solve the subproblem redundantly on all
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processors, a local copy of the residual is required. Computing the residual requires
O( bsfnP ) flops and communicates O (sb logP ) words in O (logP ) messages. Once the
residual is computed, the subproblem can be solved redundantly on each processor in
O
(
b3s+ b2s2

)
flops. Finally, the vector updates to wsk+s and zsk+s can be computed

without any communication in O(bs+ bsfn
P ) flops on each processor. Since the critical

path occurs every H
s iterations (every outer iteration), the algorithm costs O(Hb

2sfn
P +

Hb3) flops, O
(
Hb2s logP

)
words, and O

(
H
s logP

)
messages. Each processor requires

enough memory to store wsk+j , G, ∆wsk+j , Isk+j ,
1
P th columns of X, and 1

P th
elements of zsk+j and y. Therefore, the memory cost of each processor is d+ s2b2 +

2sb+ fdn+2n
P = O( fdn+n

P + b2s2 + d) words per processor.

Theorem 4.7. H ′ iterations of the CA-BDCD algorithm with the matrix X ∈
Rd×n stored in 1D-block row partitions with a block size b′ on P processors along the
critical path cost

F = O

(
H ′b′

2
sfd

P
+H ′b′

3

)
ops, M = O

(
fdn+ d

P
+ b′

2
s2 + n

)
words of mem.

Communication costs

W = O
(
H ′b′

2
s logP

)
words moved, L = O

(
H ′

s
logP

)
messages.

Proof. The proof is similar to that of Theorem 4.6 with an appropriate change of
variables for CA-BDCD.

Now we analyze the operational and communication costs of CA variants of the
1D-block row BCD and 1D-block column BDCD algorithms.

Theorem 4.8. H iterations of the CA-BCD algorithm with the matrix X ∈ Rd×n
stored in 1D-block row partitions with a block size b on P processors along the critical
path cost

F = O

(
Hb2sfn

P
+Hb3

)
ops, M = O

(
(d+ bs)fn+ n

P
+ b2s2 + d

)
words.

For small messages, communication costs w.h.p.

W = O
((
b2s+ η(sb, P )fn

)
H logP

)
words moved, L = O

(
H

s
logP

)
messages.

For large messages, communication costs w.h.p.

W = O
(
Hb2s logP +Hη(sb, P )fn

)
words moved, L = O

(
H

s
P

)
messages.

Proof. The 1D-block row partitioning scheme implies that the sb× sb Gram ma-
trix computation may be load imbalanced. Since we randomly select sb rows, some
processors may hold multiple chosen rows while some hold none. In order to balance
the computational load, we perform an all-to-all to convert the sb×n sampled matrix
into the 1D-block column layout. The amount of data moved is bounded by the max-
loaded processor, which, from Lemma 4.3, stores O (η(sb, P )) rows w.h.p. in the worst
case. This requires W = O (η(sb, P )fn logP ) and L = O (logP ) for small messages
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Table 4
Properties of the LIBSVM datasets used in our experiments. We report the largest and smallest

singular values (same as the eigenvalues) of XTX.

Summary of datasets

Name Features (d) Data Points (n) NNZ% σmin σmax Source
news20 62, 061 15, 935 0.13 1.7e−6 6.0e+5 LIBSVM [21]
a9a 123 32, 561 11 4.9e−6 2.0e+5 UCI [22]
real-sim 20, 958 72, 309 0.24 1.1e−3 9.2e+2 LIBSVM [23]

or W = O (η(sb, P )fn) and L = O (HP ) for large messages. The all-to-all requires
additional storage on each processor of M = O( bsfnP ) words. Once the sampled ma-
trix is converted, the BCD algorithm proceeds as in Theorem 4.6. By combining the
cost of the all-to-all over H iterations and the costs from Theorem 4.6, we obtain the
costs for the CA-BCD algorithm with X stored in a 1D-block row layout.

Note that the additional storage for the all-to-all may dominate if d < bs. There-
fore, b and s must be chosen carefully.

Theorem 4.9. H iterations of the CA-BDCD algorithm with the matrix X ∈
Rd×n stored in 1D-block column partitions with a block size b′ on P processors along
the critical path cost

F = O

(
H ′b′

2
sfd

P
+H ′b′

3

)
ops,M = O

(
(n+ b′s)fd+ d

P
+ b′

2
s2 + n

)
words.

For small messages, communication costs w.h.p.

W = O
((
b′

2
s+ η(sb′, P )fd

)
H ′ logP

)
words moved, L = O

(
H ′

s
logP

)
msgs.

For large messages, communication costs w.h.p.

W = O
(
H ′b′

2
s logP +H ′η(sb′, P )fd

)
words moved, L = O

(
H ′

s
P

)
messages.

Proof. A similar cost analysis to Theorem 4.8 proves this theorem.

The CA variants that we have derived require a factor of s fewer messages than
their classical counterparts, at the cost of more computation, bandwidth, and memory.
This suggests that s must be chosen carefully to balance the additional costs with the
reduction in the latency cost.

5. Experimental evaluation. We proved in section 4 that the CA-BCD and
CA-BDCD algorithms reduce latency (the dominant cost) at the expense of additional
bandwidth and computation. The recurrence unrolling we propose may also affect the
numerical stability of CA-BCD and CA-BDCD since the sequences of computations
and vector updates are different. In section 5.1 we experimentally show that the CA
variants are numerically stable (in contrast to some CA-Krylov methods [5, 6, 7, 8,
9, 18]), and, in section 5.2, we show that the CA variants can lead to large speedups
on a Cray XC30 supercomputer using MPI.

5.1. Numerical experiments. The algorithm transformations derived in sec-
tion 3 require that CA-BCD and CA-BDCD operate on Gram matrices of size sb× sb



C16 DEVARAKONDA, FOUNTOULAKIS, DEMMEL, AND MAHONEY

0 0.5 1 1.5 2
Iterations (H) 106

10-2

10-1

100

101

re
la

tiv
e 

so
lu

tio
n 

er
ro

r BCD b = 1
BCD b =8
BCD b =16

(a) news20

0 2 4 6 8
Iterations (H) 104

10-4

10-2

100

re
la

tiv
e 

so
lu

tio
n 

er
ro

r BCD b = 1
BCD b =8
BCD b =16

(b) a9a

0 0.5 1 1.5 2 2.5
Iterations (H) 105

10-6

10-4

10-2

100

re
la

tiv
e 

so
lu

tio
n 

er
ro

r BCD b = 1
BCD b =8
BCD b =16

(c) real-sim

100 105

Messages (L)

10-3

10-2

10-1

100

101

re
la

tiv
e 

ob
je

ct
iv

e 
er

ro
r

BCD b = 1
BCD b =8
BCD b =16
tol =0.01

(d) news20

100 105

Messages (L)

10-10

10-5

100

re
la

tiv
e 

ob
je

ct
iv

e 
er

ro
r

BCD b = 1
BCD b =8
BCD b =16
tol =1e-08

(e) a9a

100 102 104 106

Messages (L)

10-10

10-5

100

re
la

tiv
e 

ob
je

ct
iv

e 
er

ro
r

BCD b = 1
BCD b =8
BCD b =16
tol =1e-08

(f) real-sim

Fig. 2. We compare the convergence behavior of BCD for several block sizes, b, such that
1 ≤ b < d on several machine learning datasets. We show relative solution error (top row, Figures
2a–2c) and objective error (bottom row, Figure 2d–2f) convergence plots with λ = 1000σmin. We
fix the objective error tolerance for news20 to 1e−2 and 1e−8 for a9a and real-sim. The x-axis for
Figures 2d–2f show the number of messages required on a log10 scale. The x-axis is also equivalent
to the number of iterations (modulo log10 scale).

instead of size b × b every outer iteration. Due to the larger dimensions, the con-
dition number of the Gram matrix increases and may have an adverse affect on the
convergence behavior. We explore this tradeoff between convergence behavior, flops,
communication, and the choices of b and s for the standard and CA algorithms. All
numerical stability experiments were performed in MATLAB version R2016b on a 2.3
GHz Intel i7 machine with 8GB of RAM with datasets obtained from the LIBSVM
repository [10]. Datasets were chosen so that all algorithms were tested on a range of
shapes, sizes, and condition numbers. Table 4 summarizes the important properties
of the datasets tested. For all experiments, we set the regularization parameter to
λ = 1000σmin. The regularization parameter reduces the condition numbers of the
datasets and allows the BCD and BDCD algorithms to converge faster. In practice,
λ should be chosen based on metrics like prediction accuracy on the test data (or
hold-out data). Smaller values of λ would slow the convergence rate and require more
iterations; therefore, we choose λ so that our experiments have reasonable running
times. We do not explore tradeoffs among λ values, convergence rate, and running
times in this paper. In order to measure convergence behavior, we plot the relative

solution error,
‖wopt−wh‖2
‖wopt‖2 , where wh is the solution obtained from the coordinate

descent algorithms at iteration h and wopt is obtained from conjugate gradients with

tol = 1e−15. We also plot the relative objective error,
f(X,wopt,y)−f(X,wh,y)

f(X,wopt,y) , where

f(X,w, y) = 1
2n‖X

Tw − y‖22 + λ
2 ‖w‖

2
2, the primal objective. We use the primal ob-
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Fig. 3. We compare the convergence behavior of BCD for several block sizes, b, such that
1 ≤ b < d on several machine learning datasets. Flops cost (top row, Figures 3a–3c) and bandwidth
cost (middle row, Figures 3d–3f) versus convergence with λ = 1000σmin.

jective to show convergence behavior for BCD, BDCD, and their CA variants. We
explore the tradeoff between the block sizes, b and b′, and convergence behavior to
test BCD and BDCD stability due to the choice of block sizes. Then, we fix the
block sizes and explore the tradeoff between s, the recurrence unrolling parameter,
and convergence behavior to study the stability of the CA variants. Finally, for both
sets of experiments we also plot the algorithm costs against convergence behavior
to illustrate the theoretical performance tradeoffs due to choice of block sizes and
choice of s. For the latter experiments we assume that the datasets are partitioned in
1D-block column for BCD and 1D-block row for BDCD. We plot the sequential flops
cost for all algorithms, ignore the logP factor for the number of messages, and ignore
constants. We obtain the Gram matrix computation cost from the SuiteSparse [13]
routine ssmultsym.1

5.1.1. Block coordinate descent. Recall that the BCD algorithm computes a
b×b Gram matrix and solves a b-dimensional subproblem at each iteration. Therefore,
one should expect that as b increases the algorithm converges faster but requires more
flops and bandwidth per iteration. So we begin by exploring the block size versus
convergence behavior tradeoff for BCD with 1 ≤ b < d.

Figure 2 shows the convergence behavior of the datasets in Table 4 in terms of
the relative solution error (Figures 2a–2c) and relative objective error (Figures 2d–
2f). The x-axis for the latter figures are on a log10 scale. Note that the number of
messages is equivalent to the number of iterations, since BCD communicates every

1Symbolically executes the sparse matrix–sparse matrix multiplication and reports an estimate
of the flops cost (counting multiplications and additions).
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Fig. 4. We compare the convergence behavior of BCD and CA-BCD with several values of
s. Relative solution error (top row, Figures 4a–4c), relative objective error (middle row, Figures
4d–4f), and statistics of the Gram matrix condition numbers (bottom row, Figures 4g–4i) versus
convergence. The block size for each dataset is set to b = 16. The boxplots (Figures 4g–4i) use
standard MATLAB convention [37].

iteration. We observe that the convergence rates for all datasets improve as the block
sizes increase.

Figure 3 shows the convergence behavior (in terms of the objective error) versus
flops and bandwidth costs for each dataset. From these results, we observe that BCD
with b = 1 is more flops- and bandwidth-efficient, whereas b > 1 is more latency-
efficient (from Figures 2d–2f). This indicates the existence of a tradeoff between
BCD’s convergence rate (which depends on the block size) and hardware-specific
parameters (like flops rate, memory/network bandwidth, and latency).

5.1.2. Communication-avoiding block coordinate descent. Our deriva-
tion of the CA-BCD algorithm showed that by unrolling the vector update recurrences
we can reduce the latency cost of the BCD algorithm by a factor of s. However, this
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Fig. 5. We compare the convergence behavior of BDCD for several block sizes, b′, such that
1 ≤ b′ < n. We show relative solution error (top row, Figures 5a–5c) and objective error (bottom
row, Figures 5d–5f) convergence plots with λ = 1000σmin. The x-axis for Figures 5d–5f shows
the number of messages required on a log10 scale. The x-axis is also equivalent to the number of
iterations (modulo log10 scale). In Figure 5f the unlabeled curve is b′ = 64.

comes at the cost of computing a larger sb×sb Gram matrix whose condition number
is larger than the b × b Gram matrix computed in the BCD algorithm. The larger
condition number implies that the CA-BCD algorithm may not be stable for s > 1
due to round-off error. We begin by experimentally showing the convergence behavior
of the CA-BCD algorithm on the datasets in Table 4 with fixed block sizes of b = 16
for news20, a9a, and real-sim, respectively.

Figure 4 compares the convergence behavior of BCD and CA-BCD for s > 1. We
plot the relative solution error, relative objective error, and statistics of the Gram
matrix condition numbers. The convergence plots indicate that CA-BCD shows al-
most no deviation from the BCD convergence. While the Gram matrix condition
numbers increase with s for CA-BCD, those condition numbers are not so large as to
significantly alter the numerical stability. Figures 4e and 4f show that the objective
error converges very close to εmach. The well-conditioning of the real-sim dataset in
addition to the regularization and small block size (relative to d) makes the Gram
matrices almost perfectly conditioned. Based on these results, it is likely that the
factor of s increase in flops and bandwidth will be the primary bottleneck.

5.1.3. Block dual coordinate descent. The BDCD algorithm solves the dual
of the regularized least-squares problem by computing a b′×b′ Gram matrix obtained
from the columns of X (instead of the rows of X for BCD) and solves a b′-dimensional
subproblem at each iteration. Similar to BCD, we expect that as b′ increases, the
BDCD algorithm converges faster at the cost of more flops and bandwidth. We
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Fig. 6. We compare the convergence behavior of BDCD for several block sizes, b′, such that
1 ≤ b′ < n. Flops cost (top row, Figures 6a–6c) and bandwidth cost (middle row, Figures 6d–6f)
versus convergence with λ = 1000σmin.

explore this tradeoff space by comparing the convergence behavior (solution error and
objective error) and algorithm costs for BDCD with 1 ≤ b′ < n.

Figure 5 shows the convergence behavior on the datasets in Table 4 for vari-
ous block sizes and measures the relative solution error (Figures 5a–5c) and relative
objective error (Figures 5d–5f). Similar to BCD, as the block sizes increase the con-
vergence rates of each dataset improve. However, unlike BCD, the objective error
does not immediately decrease for some datasets (news20 and a9a). This is expected
behavior since BDCD minimizes the dual objective (see section 3.2) and obtains the
primal solution vector, wh, by taking linear combinations of b′ columns of X and
wh−1. This also accounts for the nonmonotonic decrease in the primal objective and
primal solution errors.

Figure 6 shows the convergence behavior (in terms of the objective error) versus
flops and bandwidth costs of BDCD for the datasets and block sizes tested in Figure 5.
We see that small block sizes are more flops- and bandwidth-efficient, while large block
sizes are latency-efficient (from Figures 5d–5f). Due to this tradeoff, it important to
select block sizes that balance these costs based on machine-specific parameters.

5.1.4. Communication-avoiding block dual coordinate descent. The CA-
BDCD algorithm avoids communication in the dual problem by unrolling the vector
update recurrences by a factor of s. This allows us to reduce the latency cost by
computing a larger sb′ × sb′ Gram matrix instead of a b′ × b′ Gram matrix in the
BDCD algorithm. The larger condition number implies that the CA-BDCD algorithm
may not be stable, so we begin by experimentally showing the convergence behavior
of the CA-BCD algorithm on the datasets in Table 4.



COMMUNICATION-AVOIDING MACHINE LEARNING C21

0 1 2 3 4
Iterations (H) 104

10-3

10-2

10-1

100

re
la

tiv
e 

so
lu

tio
n 

er
ro

r BDCD
CA-BDCD s =5
CA-BDCD s =20
CA-BDCD s =100

(a) news20

0 1 2 3 4
Iterations (H) 104

10-10

10-5

100

re
la

tiv
e 

so
lu

tio
n 

er
ro

r BDCD
CA-BDCD s =5
CA-BDCD s =20
CA-BDCD s =100

(b) a9a

0 0.5 1 1.5 2
Iterations (H) 104

10-10

10-5

100

re
la

tiv
e 

so
lu

tio
n 

er
ro

r

BDCD
CA-BDCD s =5
CA-BDCD s =20
CA-BDCD s =100

(c) real-sim

0 1 2 3 4
Iterations (H) 104

10-4

10-2

100

re
la

tiv
e 

ob
je

ct
iv

e 
er

ro
r BDCD

CA-BDCD s =5
CA-BDCD s =20
CA-BDCD s =100

(d) news20

0 1 2 3 4
Iterations (H) 104

10-10

100

re
la

tiv
e 

ob
je

ct
iv

e 
er

ro
r BDCD

CA-BDCD s =5
CA-BDCD s =20
CA-BDCD s =100

mach

(e) a9a

0 0.5 1 1.5 2
Iterations (H) 104

10-10

100

re
la

tiv
e 

ob
je

ct
iv

e 
er

ro
r BDCD

CA-BDCD s =5
CA-BDCD s =20
CA-BDCD s =100

mach

(f) real-sim

BDCD s =5 s =20 s =100

0

0.5

1

1.5

2

2.5

3

(G
)

104

(g) news20

BDCD s =5 s =20 s =100
0

20

40

60

80

100

120

(G
)

(h) a9a

BDCD s =5 s =20 s =100
1

1.0002

1.0004

1.0006

1.0008

1.001

(G
)

(i) real-sim

Fig. 7. We compare the convergence behavior of BDCD and CA-BDCD with several values of
s. Relative solution error (top row, Figures 7a–7c), relative objective error (middle row, Figures
7d–7f), and statistics of the Gram matrix condition numbers (bottom row, Figures 7g–7i) versus
convergence. The block sizes for each dataset are news20 with b′ = 64, a9a with b′ = 16, and
real-sim with b′ = 64.

Figure 7 compares the convergence behavior of BDCD and CA-BDCD for s > 1
with block sizes of b′ = 64, 16, and 64 for the news20, a9a, and real-sim datasets,
respectively. The results indicate that CA-BDCD is numerically stable for all tested
values of s on all datasets. While the condition numbers of the Gram matrices increase
with s, the numerical stability is not significantly affected. The well-conditioning of
the real-sim dataset in addition to the regularization and small block size (relative to
n) make the Gram matrices almost perfectly conditioned.

5.2. Performance experiments. In section 5.1 we showed tradeoffs between
convergence behavior and algorithm costs for several datasets. In this section, we
explore the performance tradeoffs of standard versus CA variants on datasets obtained
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Table 5
LIBSVM datasets used in our performance experiments.

Algorithm Name Features (d) Data Points (n) NNZ% residual tolerance (tol)

BCD
a9a 123 32561 11 1e-2

covtype 54 581012 22 1e-1
mnist8m 784 8100000 25 1e-1

BDCD
news20 62061 15935 0.13 1e-2
e2006 150360 3308 0.93 1e-2
rcv1 47236 3000 0.17 1e-3

from LIBSVM [10]. We implemented these algorithms in C/C++ using Intel MKL
for (sparse and dense) BLAS routines and MPI [16] for parallel processing. While
sections 4 and 5.1 assumed dense data for the theoretical analysis and numerical
experiments, our parallel implementation stores the data in compressed sparse row
(CSR) format. We used a Cray XC30 supercomputer (“Edison”) at NERSC [27]
to run our experiments on the datasets shown in Table 5. We used a 1D-column
layout for datasets with n > d and a 1D-row layout for n < d. We ensured that
the parallel file I/O was load-balanced (i.e., each processor read roughly equal bytes)
and found that the nonzero entries were reasonably well balanced.2 We constrain the
running time of (CA-)BCD and (CA-)BDCD by fixing the residual tolerance for each
dataset to the values described in Table 5. We ran many of these datasets for smaller
tolerances of 1e− 8 and found that our conclusions did not significantly change.

Section 5.2.1 compares the strong scaling behavior of the standard BCD and
BDCD algorithms against their CA variants, section 5.2.2 shows the running time
breakdown to illustrate the flops versus communication tradeoff, and section 5.2.3
compares the speedups attained as a function of the number of processors, block size,
and recurrence unrolling parameter, s.

5.2.1. Strong scaling. All strong scaling experiments were conducted with one
MPI process per processor (flat-MPI) with one warm-up run and three timed runs.
Each data point in Figure 8 represents the maximum running time over all processors
averaged over the three timed runs. For each dataset in Figure 8 we plot the BCD
running times, the fastest CA-BCD running times for s ∈ {2, 4, 8, 16, 32}, and the
ideal scaling behavior. We show the scaling behavior of all datasets for b ∈ {1, 8}
to illustrate how the CA-BCD speedups are affected by the choice of block size, b.
When the BCD algorithm is entirely latency dominated (i.e., Figure 8a), CA-BCD
attains speedups of 3.6× (mnist8m), 4.5× (a9a), and 6.1× (covtype). When the
BCD algorithm is flops and bandwidth dominated (i.e., Figure 8b), CA-BCD attains
modest speedups of 1.2× (a9a), 1.8× (mnist8m), and 1.9× (covtype). The strong
scaling behavior of the BDCD and CA-BDCD algorithms is shown in Figures 8c and
8d. CA-BDCD attains speedups of 1.6× (news20), 2.2× (rcv1), and 2.9× (e2006)
when latency dominates and 1.1× (news20), 1.2× (rcv1), and 3.4× (e2006) when
flops and bandwidth dominate. The e2006 dataset achieves greater speedup for b = 8
than b = 1. This is due to machine noise, which caused larger latency times for b = 8.

While we did not experiment with weak scaling, we can observe from our analysis
(in section 4) that the BCD and BDCD algorithms achieve perfect weak scaling (in
theory). It is likely that the CA-BCD and CA-BDCD algorithms would attain weak
scaling speedups by reducing the latency cost by a factor of s, if latency dominates.

2For datasets with highly irregular sparsity structure, additional load balancing is likely required,
but we leave this for future work.
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Fig. 8. Strong scaling results for (CA-)BCD (top row, Figures 8a–8b) and (CA-)BDCD (bottom
row, Figures 8c–8d). Ideal strong scaling behavior for BCD and BDCD to illustrate the performance
improvements of the CA-variants.

5.2.2. Running time breakdown. Figure 9 shows the running time break-
down of BCD and CA-BCD for s ∈ {2, 4, 8, 16, 32} on the mnist8m dataset. We
plot the breakdowns for b ∈ {1, 8} at scales of 64 nodes and 1024 nodes to illus-
trate CA-BCD tradeoffs for different flops versus communication ratios. Figures 9a
and 9b show the running time breakdown at 64 nodes for b = 1 and b = 8, respec-
tively. In both cases flops dominate and speedup for CA-BCD is from faster flops.
CA-BCD with s > 1 increases the computational intensity and achieves higher flops
performance through the use of BLAS-3 GEMM operations. Flops scaling continues
until CA-BCD becomes CPU-bound. For b = 8, memory-bandwidth is saturated at
s < 8. For s ≥ 8 CA-BCD becomes CPU-bound and does not attain any speedup
over BCD. Since communication is more bandwidth dominated, less communication
speedup is expected. On 1024 nodes (Figures 9c and 9d), where latency costs are
more dominant, CA-BCD attains larger communication and overall speedups. These
experiments suggest that appropriately chosen values of s can attain large speedups
when latency dominates.

5.2.3. Speedup comparison. Figure 10 summarized the speedups attainable
on the mnist8m dataset at 64 nodes and 1024 nodes for several combinations of block
sizes (b) and recurrence unrolling values (s). We normalize the speedups to BCD
with b = 1. At small scale (Figure 10a) we see speedups of 1.95× to 2.91× since flops
and bandwidth are the dominant costs. The speedup for larger block sizes is due to
faster convergence (i.e., fewer iterations and messages) and due to the use of BLAS-3
matrix-matrix operations. At large scale, when latency dominates (Figure 10b), we
observe greater speedups of 3.62× to 5.98×. Overall, CA-BCD is fastest for all block
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Fig. 9. Running time breakdown for the mnist8m dataset for b ∈ {1, 8} at scales of 64 and
1, 024 nodes. We plot the fastest timed run for each algorithm and setting.
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Fig. 10. Speedups achieved for CA-BCD on mnist8m for various settings of b and s. We show
speedups for 64 and 1, 024 nodes.

sizes and at all scales tested.

6. Conclusion and future work. In this paper, we have shown how to extend
the communication-avoiding technique of CA-Krylov subspace methods to block co-
ordinate descent and block dual coordinate descent algorithms in machine learning.
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We showed that in some settings, BCD and BDCD methods may converge faster
than traditional Krylov methods—especially when the solution does not require high
accuracy. We analyzed the computation, communication, and storage costs of the
classical and communication-avoiding variants under two partitioning schemes. Our
experiments showed that CA-BCD and CA-BDCD are numerically stable algorithms
for all values of s tested and experimentally showed the tradeoff between algorithm
parameters and convergence. Finally, we showed that the communication-avoiding
variants can attain large speedups of up to 6.1× on a Cray XC30 supercomputer
using MPI.

While CA-BCD and CA-BDCD appear to be stable, numerical analysis of these
methods would be interesting directions for future work. Extending the CA technique
to other algorithms (SGD, L-BFGS, Newton’s method, etc.), regularization (LASSO,
Elastic-net, etc.), and loss functions (SVM, logistic, etc.) would be particularly inter-
esting.
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[36] M. Takáč, P. Richtárik, and N. Srebro, Distributed Mini-Batch SDCA, preprint, https:
//arxiv.org/abs/1507.08322, 2015.

[37] The MathWorks, Box Plots, https://www.mathworks.com/help/stats/box-plots.html.
[38] J. Van Rosendale, Minimizing Inner Product Data Dependencies in Conjugate Gradient It-

eration, IEEE Computer Society, Los Alamitos, CA, 1983.
[39] H. F. Walker, Implementation of the GMRES method using Householder transformations,

SIAM J. Sci. Statist. Comput., 9 (1988), pp. 152–163, https://doi.org/10.1137/0909010.

https://doi.org/10.1145/322248.322254
https://doi.org/10.1016/0377-0427(92)90085-C
https://doi.org/10.1016/0377-0427(92)90085-C
https://doi.org/10.1016/B978-1-55860-377-6.50048-7
https://doi.org/10.1016/B978-1-55860-377-6.50048-7
http://archive.ics.uci.edu/ml
https://people.cs.umass.edu/~mccallum/data.html
https://people.cs.umass.edu/~mccallum/data.html
https://doi.org/10.1145/1654059.1654096
https://doi.org/10.1145/1654059.1654096
http://www.nersc.gov/users/computational-systems/edison/configuration/
http://www.nersc.gov/users/computational-systems/edison/configuration/
https://doi.org/10.1137/100802001
http://dl.acm.org/citation.cfm?id=3045390.3045583
http://dl.acm.org/citation.cfm?id=3045390.3045583
https://doi.org/10.1007/3-540-49543-6_13
https://doi.org/10.1007/s10107-012-0614-z
https://doi.org/10.1137/1.9780898718003
https://doi.org/10.1137/1.9780898718003
https://arxiv.org/abs/1507.08322
https://arxiv.org/abs/1507.08322
https://www.mathworks.com/help/stats/box-plots.html
https://doi.org/10.1137/0909010


COMMUNICATION-AVOIDING MACHINE LEARNING C27

[40] S. Williams, M. Lijewski, A. Almgren, B. Van Straalen, E. Carson, N. Knight, and
J. Demmel, s-step Krylov subspace methods as bottom solvers for geometric multigrid, in
Proceedings of the International Parallel and Distributed Processing Symposium, Phoenix,
AZ, 2014, pp. 1149–1158, https://doi.org/10.1109/IPDPS.2014.119.

[41] S. J. Wright, Coordinate descent algorithms, Math. Program., 151 (2015), pp. 3–34, https:
//doi.org/10.1007/s10107-015-0892-3.

https://doi.org/10.1109/IPDPS.2014.119
https://doi.org/10.1007/s10107-015-0892-3
https://doi.org/10.1007/s10107-015-0892-3

	Introduction
	Contributions
	Organization

	Background
	Communication-avoiding primal and dual block coordinate descent
	Derivation of block coordinate descent
	Derivation of block dual coordinate descent

	Analysis of algorithms
	Classical algorithms
	Communication-avoiding algorithms

	Experimental evaluation
	Numerical experiments
	Block coordinate descent
	Communication-avoiding block coordinate descent
	Block dual coordinate descent
	Communication-avoiding block dual coordinate descent

	Performance experiments
	Strong scaling
	Running time breakdown
	Speedup comparison


	Conclusion and future work
	References

