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Abstract. This article characterizes the exact asymptotics of random Fourier
feature (RFF) regression, in the realistic setting where the number of data sam-
ples n, their dimension p, and the dimension of feature space N are all large and
comparable. In this regime, the random RFF Gram matrix no longer converges to
the well-known limiting Gaussian kernel matrix (as it does when N →∞ alone),
but it still has a tractable behavior that is captured by our analysis. This analysis
also provides accurate estimates of training and test regression errors for large
n, p,N . Based on these estimates, a precise characterization of two qualitatively
different phases of learning, including the phase transition between them, is pro-
vided; and the corresponding double descent test error curve is derived from this
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phase transition behavior. These results do not depend on strong assumptions on
the data distribution, and they perfectly match empirical results on real-world
data sets.

Keywords: random matrix theory and extensions, analysis of algorithms,
learning theory, deep learning
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1. Introduction

For a machine learning system having N parameters, trained on a data set of size n,
asymptotic analysis as used in classical statistical learning theory typically either focuses
on the (statistical) population n→∞ limit, for N fixed, or the over-parameterized
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N →∞ limit, for a given n, as in the popular neural tangent kernel (NTK) regime [1].
These two settings are technically more convenient to work with, yet less practical, as
they essentially assume that one of the two dimensions is negligibly small compared
to the other, and this is rarely the case in practice. Indeed, with a factor of 2 or 10
more data, one typically works with a more complex model. This has been highlighted
perhaps most prominently in recent work on neural network models, in which the model
complexity and data size increase together. For this reason, the double asymptotic regime
where n,N →∞, withN/n→ c, a constant, is a particularly interesting (and likely more
realistic) limit, despite being technically more challenging [2–8]. In particular, working
in this regime allows for a finer quantitative assessment of machine learning systems,
as a function of their relative complexity N/n, as well as for a precise description of
the under-to over-parameterized ‘phase transition’ (that does not appear, e.g. in the
N →∞ alone analysis). This transition is largely hidden in the usual style of statistical
learning theory [9], but it is well-known in the statistical mechanics approach to learning
theory [2–5], and empirical signatures of it have received attention recently under the
name ‘double descent’ phenomena [10–12].

This article considers the asymptotics of random Fourier features (RFFs) [13], and
more generally random feature maps, which may be viewed also as a single-hidden-
layer neural network model, in this limit. More precisely, let X = [x1, . . . ,xn] ∈ R

p×n

denote the data matrix of size n with data vectors xi ∈ R
p as column vectors. The ran-

dom feature matrix ΣX of X is generated by pre-multiplying some random matrix
W ∈ R

N×p having i.i.d. entries and then passing through some entry-wise nonlin-
ear function σ(·), i.e. ΣX ≡ σ(WX) ∈ R

N×n. Commonly used random feature tech-
niques such as RFFs [13] and homogeneous kernel maps [14], however, rarely involve
a single non-linearity. The popular RFF maps are built with cosine and sine non-
linearities, so thatΣX ∈ R

2N×n is obtained by cascading the random features of both, i.e.
ΣT

X ≡ [cos (WX)T, sin (WX)T]. Note that, by combining both non-linearities, RFFs
generated from W ∈ R

N×p are of dimension 2N .
The large N asymptotics of random feature maps is closely related to

their limiting kernel matrices KX. In the case of RFF, it was shown in [13]
that entry-wise the Gram matrix ΣT

XΣX/N converges to the Gaussian kernel
matrix KX ≡ {exp(−‖xi − xj‖2/2)}ni,j=1, as N →∞. This follows from 1

N
[ΣT

XΣX]ij =
1
N

∑N
t=1 cos(xT

i wt) cos(w
T
t xj) + sin(xT

i wt) sin(w
T
t xj), for wt independent Gaussian ran-

dom vectors, so that by the strong law of large numbers, for fixed n, p, [ΣT
XΣX/N ]ij

goes to its expectation (with respect to w ∼ N (0, Ip)) almost surely as N →∞, i.e.

[ΣT
XΣX/N ]ij

a.s.→Ew

[
cos(xT

i w) cos(wTxj) + sin(xT
i w) sin(wTxj)

]
≡ Kcos +Ksin, (1)

with

Kcos +Ksin ≡ e−
1
2 (‖xi‖2+‖xj‖2)

(
cosh(xT

i xj) + sinh(xT
i xj)

)
= e−

1
2 (‖xi−xj‖2) ≡ [KX]ij. (2)

(The identification with [KX]ij is easily shown in lemma 1 of appendix A.)
While this result holds in the N →∞ limit, recent advances in random matrix theory

[15, 16] suggest that, in the more practical setting where N is not much larger than n, p
and n, p,N →∞ at the same pace, the situation is more subtle. In particular, the above
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entry-wise convergence remains valid, but the convergence ‖ΣT
XΣX/N −KX‖ → 0 no

longer holds in spectral norm, due to the factor n, now large, in the norm inequality
‖A‖∞ � ‖A‖ � n‖A‖∞ for A ∈ R

n×n and ‖A‖∞ ≡ maxij|Aij|. This implies that, in the

large n, p,N regime, the assessment of the behavior of ΣT
XΣX/N via the limiting kernel

KX may result in a spectral norm error that blows up with n. As a consequence, for
various machine learning algorithms, the performance guarantee offered by the limiting
Gaussian kernel is less likely to agree with empirical observations in real-world large-scale
problems, when n, p are large [17].

1.1. Our main contributions

We consider the RFF model in the more realistic large n, p,N limit. While, in this set-
ting, the RFF empirical Gram matrix does not converge to the Gaussian kernel matrix,
we can characterize its behavior as n, p,N →∞ and provide asymptotic performance
guarantees for RFF on large-scale problems. We also identify a phase transition as a
function of the ratio N/n, including the corresponding double descent phenomenon. In
more detail, our contributions are the following.

(a) We provide a precise characterization of the asymptotics of the RFF empirical
Gram matrix, in the large n, p,N limit (theorem 1). This is accomplished by con-
structing a deterministic equivalent for the resolvent of the RFF Gram matrix.
Based on this, the behavior of the RFF model is (asymptotically) accessible through
a fixed-point equation, that can be interpreted in terms of an angle-like correc-
tion induced by the non-trivial large n, p,N limit (relative to the N →∞ alone
limit).

(b) We derive the asymptotic training and test mean squared errors (MSEs) of RFF
ridge regression, as a function of the ratio N/n, regularization penalty λ, train-
ing as well as test sets (theorems 2 and 3, respectively). We identify precisely the
under-to over-parameterization phase transition, as a function of the relative model
complexity N/n; we prove the existence of a ‘singular’ peak of test error at the
N/n = 1/2 boundary; and we characterize the corresponding double descent behav-
ior. Importantly, our results are valid with almost no specific assumption on the
data distribution. This is a significant improvement over existing double descent
analyses, which fundamentally rely on the knowledge of the data distribution (often
assumed to be multivariate Gaussian for simplicity) [12, 18].

(c) We provide a detailed empirical evaluation of our theoretical results, demonstrat-
ing that the theory closely matches empirical results on a range of real-world data
sets (sections 3 and 4). This includes the correction due to the large n, p,N set-
ting, sharp transitions (as a function of N/n) in the aforementioned angle-like
quantities, and the corresponding double descent test curves. This also includes
an evaluation of the impact of training-test similarity and the effect of different
data sets, thus confirming, as stated in (ii), that (unlike in prior work) the phase
transition and double descent curve hold much more generally with respect to the
data distribution.
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1.2. Related work

Here, we provide a brief review of related previous efforts.
Random features and limiting kernels. In most RFF work [19–22], non-asymptotic

bounds are given, on the number of random features N needed for a predefined approx-
imation error, for a given kernel matrix with fixed n, p. A more recent line of work
[1, 23–25] has focused on the over-parameterized N →∞ limit of large neural networks
by studying the corresponding NTKs. Here, we position ourselves in the more practical
regime where n, p,N are all large and comparable, and we provide asymptotic perfor-
mance guarantees that better fit large-scale problems compared to the large-N -alone
analysis.

Random matrix theory . From a random matrix theory perspective, nonlinear Gram
matrices of the type ΣT

XΣX have recently received an unprecedented research inter-
ests, due to their close connection to neural networks [26–29], with a particular focus
on the associated eigenvalue distribution. Here we propose a deterministic equivalent
[30, 31] analysis for the resolvent matrix that provides access, not only to the eigenvalue
distribution, but also to the regression error of central interest in this article. While most
existing deterministic equivalent analyses are performed on linear models, here we focus
on the nonlinear RFF model. From a technical perspective, the most relevant work is
[12, 15]. We improve their results by considering generic data model on the popular
RFF model.

Statistical mechanics of learning . A long history of connections between statistical
mechanics and machine learning models (such as neural networks) exists, including a
range of techniques to establish generalization bounds [2–5], and recently there has been
renewed interest [7, 8, 32–34]. Their relevance to our results lies in the use of the so-called
thermodynamic limit (akin to the large n, p,N limit), rather than the classical limits
more commonly used in statistical learning theory, in which case uniform convergence
bounds and related techniques can be applied.

Double descent in large-scale learning systems . The large n,N asymptotics of sta-
tistical models has received considerable research interests in the machine learning
community [18, 35], resulting in a (somehow) counterintuitive phenomenon referred
to as the ‘double descent’. Instead of focusing on different ‘phases of learning’ [2–5, 7],
the ‘double descent’ phenomenon focuses on an empirical manifestation of the phase
boundary and refers to the empirical observations of the test error curve as a function
of the model complexity, which differs from the usual textbook description of the bias-
variance tradeoff [10, 11, 36, 37]. Theoretical investigation into this phenomenon mainly
focuses on various regression models [12, 18, 38–41]. In most cases, quite specific (and
rather strong) assumptions are imposed on the input data distribution. In this respect,
our work extends the analysis in [12] to handle the RFF model and its phase structure
on real-world data sets.

1.3. Notations and organization of the paper

Throughout this article, we follow the convention of denoting scalars by lowercase, vec-
tors by lowercase boldface, and matrices by uppercase boldface letters. In addition, the
notation (·)T denotes the transpose operator; the norm ‖ · ‖ is the Euclidean norm for

https://doi.org/10.1088/1742-5468/ac3a77 5
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Figure 1. Illustration of an RFF regression model.

vectors and the spectral or operator norm for matrices; and
a.s.→ stands for almost sure

convergence of random variables.
Our main results on the asymptotic behavior of the RFF resolvent matrix, as well

as of the training MSE and testing MSE of RFF ridge regression are presented in
section 2, with detailed proofs deferred to the appendix. In section 3, we provide a
detailed empirical evaluation of our main results; and in section 4, we provide additional
empirical evaluation on real-world data, illustrating the practical effectiveness of the
proposed analysis. Concluding remarks are placed in section 5.

2. Main technical results

In this section, we present our main theoretical results. To investigate the large n, p,N
asymptotics of the RFF model, we position ourselves under the following assumption.

Assumption 1. As n→∞, we have

(a) 0 < lim inf nmin{p/n,N/n} � lim supn max{p/n,N/n} < ∞;or,practically speak-
ing, the ratios p/n and N/n are only moderately large or moderately small.

(b) lim supn‖X‖ < ∞ and lim supn‖y‖∞ < ∞, i.e. the data and targets are both
normalized with respect to n.

Under assumption 1, we consider the RFF regression model as in figure 1.
For training data X ∈ R

p×n of size n, the associated RFFs, ΣX ∈ R
2N×n, are obtained

by computing WX ∈ R
N×n, for standard Gaussian random matrix W ∈ R

N×p, and then
applying entry-wise cosine and sine non-linearities on WX, that is

ΣT
X = [cos (WX)T, sin (WX)T] with Wij ∼ N (0, 1). (3)

Given this setup, the RFF ridge regressor β ∈ R
2N is given by, for λ � 0,

β ≡ 1

n
ΣX

(
1

n
ΣT

XΣX + λIn

)−1

y · 12N>n +

(
1

n
ΣXΣ

T
X + λI2N

)−1
1

n
ΣX y · 12N<n. (4)

The two forms of β in (4) are equivalent for any λ > 0 and minimize the (ridge-
regularized) squared loss 1

n
‖y−ΣT

Xβ‖2 + λ‖β‖2 on the training set (X,y). Our objective

https://doi.org/10.1088/1742-5468/ac3a77 6
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is to characterize the large n, p,N asymptotics of both the training MSE , Etrain, and
the test MSE , Etest, defined respectively as

Etrain =
1

n
‖y−ΣT

Xβ‖2, Etest =
1

n̂
‖ŷ−ΣT

X̂
β‖2, (5)

with ΣT
X̂
≡ [cos (WX̂)T, sin (WX̂)T] ∈ R

n̂×2N on a test set (X̂, ŷ) of size n̂, and from
this to characterize the phase transition behavior (as a function of the model complexity
N/n) as mentioned in section 1. Precisely, in the training phase, the random weight
matrixW is drawn once and kept fixed; and the RFF ridge regressor β is given explicitly
as a function of W and the training set (X,y), as per (4). In the test phase, for β now

fixed, the model takes the test data X̂ as input, and it outputs ΣT
X̂
β that should be

compared to the corresponding target ŷ to measure the model test performance, Etest.

2.1. Asymptotic deterministic equivalent

To start, we observe that the training MSE, Etrain, in (5), can be written as

Etrain =
λ2

n
‖Q(λ)y‖2 = −λ2

n
yT∂Q(λ)y/∂λ, (6)

which depends on the quadratic form yTQ(λ)y of

Q(λ) ≡
(
1

n
ΣT

XΣX + λIn

)−1

∈ R
n×n, (7)

the so-called resolvent of 1
n
ΣT

XΣX (also denoted Q when there is no ambiguity) with

λ > 0. To see this, from (5) we have Etrain =
1
n
‖y− 1

n
ΣT

XΣX(
1
n
ΣT

XΣX + λIn)
−1y‖2 =

λ2

n
‖Q(λ)y‖2 = −λ2

n
yT ∂Q(λ)

∂λ
y, with ∂Q(λ)

∂λ
= −Q2(λ).

In order to assess the asymptotic training MSE, it thus suffices to find a determin-
istic equivalent for Q(λ), that is, a deterministic matrix that captures the asymptotic
behavior of the latter. One possibility is the expectation EW[Q(λ)]. Informally, if the
training MSE Etrain (that is random due to random W for given X,y) is ‘close to’ some
deterministic quantity Ētrain, in the large n, p,N limit, then Ētrain must have the same
limit as EW[Etrain] = −λ2

n
∂yT

EW[Q(λ)]y/∂λ for n, p,N →∞. However, EW[Q] involves
integration (with no closed-form due to the matrix inverse), and it is not a convenient
quantity with which to work. Our objective is to find an asymptotic ‘alternative’ for
EW[Q] that is (i) close to EW[Q] in the large n, p,N →∞ limit and (ii) numerically
more accessible.

In the following theorem, we introduce an asymptotic equivalent for EW[Q]. Instead
of being directly related to the Gaussian kernel KX = Kcos +Ksin as suggested by
(2) in the large-N -only limit, it depends on the two components Kcos,Ksin in a more
involved manner. Importantly, the proposed equivalent Q̄ can be numerically evaluated
by running simple fixed-point iterations involving Kcos and Ksin.

https://doi.org/10.1088/1742-5468/ac3a77 7
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Theorem 1. (Asymptotic equivalent for EW[Q]). Under assumption 1, for Q defined
in (7) and λ > 0, we have, as n→∞

‖EW[Q]− Q̄‖ → 0

for Q̄ ≡
(

N
n
( Kcos

1+δcos
+ Ksin

1+δsin
) + λIn

)−1

, Kcos ≡ Kcos(X,X),Ksin ≡ Ksin(X,X) ∈ R
n×n and

Kcos(X,X′)ij = e−
‖xi‖2+‖x′j‖

2

2 cosh(xT
i x

′
j),

Ksin(X,X′)ij = e−
‖xi‖2+‖x′j‖

2

2 sinh(xT
i x

′
j),

(8)

where (δcos, δsin) is the unique positive solution to

δcos =
1

n
tr(KcosQ̄), δsin =

1

n
tr(KsinQ̄). (9)

Proof. See appendix A. �

Remark 1. (Lower and upper bounds). Since

KX

1 +max(δcos, δsin)

 Kcos

1 + δcos
+

Ksin

1 + δsin

 KX

1 +min(δcos, δsin)
(10)

in the positive definite order, for KX ≡ Kcos +Ksin the Gaussian kernel, Kcos

1+δcos
+ Ksin

1+δsin
is

therefore positive definite, if x1 . . . ,xn are all distinct; see theorem 2.18 in [42].

Remark 2. (Correction to large-N behavior). Taking N/n→∞, one has δcos → 0,
δsin → 0 so that

Kcos

1 + δcos
+

Ksin

1 + δsin
→Kcos +Ksin = KX and Q̄→

(
N

n
KX + λIn

)−1

∼ n

N
K−1

X , (11)

for λ > 0 independent of N ,n, in accordance with the classical large-N -only prediction.
In this sense, the pair (δcos, δsin) introduced in theorem 1 accounts for the ‘correction’
due to the non-trivial n/N , as opposed to the N →∞ alone analysis. Also, when the
number of features N is large (i.e. as N/n→∞), the regularization effect of λ flattens
out and Q̄ behaves like (a scaled version of) the inverse Gaussian kernel matrix K−1

X

(that is well-defined for distinct x1 . . . ,xn).

Remark 3. (Geometric interpretation). Since Q̄ shares the same eigenspace with
Kcos

1+δcos
+ Ksin

1+δsin
, one can geometrically interpret (δcos, δsin) as a sort of ‘angle’ between

the eigenspaces of Kcos,Ksin and that of Kcos

1+δcos
+ Ksin

1+δsin
. For fixed n, as N →∞,

one has 1
N

∑N
t=1 cos(X

Twt) cos(w
T
t X)→Kcos,

1
N

∑N
t=1 sin(X

Twt) sin(w
T
t X)→Ksin, the

eigenspaces of which are ‘orthogonal’ to each other, so that δcos, δsin → 0. On the other
hand, asN ,n→∞, the eigenspaces ofKcos andKsin ‘intersect’ with each other, captured
by the non-trivial (δcos, δsin).

https://doi.org/10.1088/1742-5468/ac3a77 8
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2.2. Asymptotic training performance

Theorem 1 provides an asymptotically more tractable approximation of EW[Q]. Together
with some additional concentration arguments (e.g. from theorem 2 in [15]). this permits
us to provide a complete description of the limiting behavior of the random bilinear
form aTQb, for a,b ∈ R

n of bounded Euclidean norms, in such a way that aTQb−
aTQ̄b

a.s.→ 0, as n, p,N →∞. This, together with the fact that Etrain =
λ2

n
yTQ(λ)2y =

−λ2

n
yT∂Q(λ)y/∂λ, leads to the following result on the asymptotic training error.

Theorem 2. (Asymptotic training performance). Under assumption 1, for a given
training set (X,y) and training MSE, Etrain defined in (5), as n→∞

Etrain − Ētrain
a.s.→ 0, Ētrain =

λ2

n
‖Q̄y‖2 + N

n

λ2

n2

[
tr(Q̄KcosQ̄)

(1 + δcos)2
tr(Q̄KsinQ̄)

(1 + δsin)2

]

×Ω

[
yTQ̄KcosQ̄y
yTQ̄KsinQ̄y

]

for Q̄ defined in theorem 1 and

Ω−1 ≡ I2 −
N

n

⎡
⎢⎢⎣
1

n

tr(Q̄KcosQ̄Kcos)

(1 + δcos)2
1

n

tr(Q̄KcosQ̄Ksin)

(1 + δsin)2

1

n

tr(Q̄KcosQ̄Ksin)

(1 + δcos)2
1

n

tr(Q̄KsinQ̄Ksin)

(1 + δsin)2

⎤
⎥⎥⎦ . (12)

Proof. See appendix B. �

Remark 4. (First- and second-order corrections). Since Etrain =
λ2

n
yTQ2y, we can see

in the expression of Ētrain that there is not only a first-order (large n, p,N) correction in

the first λ2

n
‖Q̄y‖2 term (which is different than λ2

n
‖Qy‖2), but there is also a second-order

correction, appearing in the form of Q̄KσQ̄ or Q̄KσQ̄Kσ for σ ∈ { cos, sin }, as in the
second term. This has a similar interpretation to remark 3, where the pair (δcos, δsin) in
Q̄ is (geometrically) interpreted as the eigenspace ‘intersection’ due to a non-vanishing
n/N . In particular, taking N/n→∞, we have Q̄ ∼ n

N
K−1

X , Ω→ I2 so that Ētrain = 0
and the model interpolates the entire training set, as expected.

One can show that (i) for a given n and λ > 0, Ētrain decreases as the model size N
increases; and (ii) for a given ratio N/n, Ētrain increases as the regularization penalty λ
grows large.

2.3. Asymptotic test performance

Theorem 2 holds without any restriction on the training set, (X,y), except for
assumption 1, since only the randomness of W is involved, and thus one can simply
treat (X,y) as known in this result. This is no longer the case for the test error. Intu-

itively, the test data X̂ cannot be chosen arbitrarily, and one must ensure that the
test data ‘behave’ statistically like the training data, in some ‘well-controlled’ manner,
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so that the test MSE is asymptotically deterministic and bounded as n, n̂, p,N →∞.
Following this intuition, we work under the following assumption.

Assumption 2. (Data as concentrated random vectors [43]). The training data
xi ∈ R

p, i ∈ {1, . . . ,n}, are independently drawn (non-necessarily uniformly) from one
of K > 0 distribution classes4 μ1, . . . , μK . There exist constants C, η, q > 0 such that
for any xi ∼ μk, k ∈ {1, . . . ,K} and any one-Lipschitz function f :Rp → R, we have

P (|f(xi)− E[f(xi)]| � t) � Ce−(t/η)q , t � 0. (13)

The test data x̂i ∼ μk, i ∈ {1, . . . , n̂} are mutually independent, but may depend on

training data X and that ‖E[σ(WX)− σ(WX̂)]‖ = O(
√
n) for σ ∈ { cos, sin }.

To facilitate the discussion of the phase transition and the double descent, we do
not assume independence between training and test data (but we do assume indepen-

dence between different data vectors within X and X̂). In this respect, assumption 2 is
weaker than the classical i.i.d. assumption, and it permits us to illustrate the impact of
training-test similarity on the model performance (section 4.2).

A first example of concentrated random vectors satisfying (13) is the multivari-
ate Gaussian vector N (0, Ip) [44]. Moreover, since the concentration property in (13)
is stable over Lipschitz transformations [43], it holds, for any one-Lipschitz mapping
g :Rd → R

p and z ∼ N (0, Id), that g(z) also satisfies (13). In this respect, assumption
2, although seemingly quite restrictive, represents a large family of ‘generative models’,
including notably the ‘fake images’ generated by modern generative adversarial networks
that are, by construction, Lipschitz transformations of large random Gaussian vectors
[45, 46]. As such, from a practical consideration, assumption 2 provides a more realistic
and flexible statistical model for real-world data.

With assumption 2, we have the following result on the asymptotic test error.

Theorem 3. (Asymptotic test performance). Under assumptions 1 and 2, we have,

for test MSE Etest defined in (5) and test data (X̂, ŷ) satisfying lim supn̂‖X̂‖ < ∞,
lim supn̂‖ŷ‖∞ < ∞ with n̂/n ∈ (0,∞) that, as n→∞

Etest − Ētest
a.s.→ 0, Ētest =

1

n̂
‖ŷ− N

n
Φ̂Q̄y‖2 + N 2

n2n̂

[
Θcos

(1 + δcos)2
Θsin

(1 + δsin)2

]

×Ω

[
yTQ̄KcosQ̄y
yTQ̄KsinQ̄y

]

for Ω defined in (12),

Θσ =
1

N
trKσ(X̂, X̂) +

N

n

1

n
tr Q̄Φ̂TΦ̂Q̄Kσ −

2

n
tr Q̄Φ̂TKσ(X̂,X), σ ∈ {cos, sin},

(14)

and Φ ≡ Kcos

1+δcos
+ Ksin

1+δsin
, Φ̂ ≡ Kcos(X̂,X)

1+δcos
+ Ksin(X̂,X)

1+δsin
, with Kcos(X̂,X),Ksin(X̂,X) ∈ R

n̂×n and

Kcos(X̂, X̂),Ksin(X̂, X̂) ∈ R
n̂×n̂ defined as in (8).

4K � 2 is included to cover multi-class classification problems; and K should remain fixed as n, p→∞.
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Figure 2. Training MSEs of RFF ridge regression on MNIST data (class
3 versus 7), as a function of regression penalty λ, for p = 784, n = 1000,
N = 250, 500, 1000, 2000. Empirical results displayed in blue circles; Gaussian ker-
nel predictions (assuming N →∞ alone) in black dashed lines; and theorem 2 in
red solid lines. Results obtained by averaging over 30 runs.

Figure 3. Behavior of (δcos, δsin) in (15) on MNIST data (class 3 versus
7), as a function of the regularization parameter λ, for p = 784, n = 1000,
N = 250, 1000, 4000, 16 000.

Proof. See appendix C. �
Similar to theorem 2 on Ētrain, here the expression for Ētest is also given as the sum

of first- and second-order corrections. To see this, one can confirm, by taking (X̂, ŷ) =
(X,y), that the first term in Ētest becomes

1

n̂
‖ŷ− N

n
Φ̂Q̄y‖2 = 1

n
‖y− N

n
ΦQ̄y‖2 = λ2

n
‖Q̄y‖2

and is equal to the first term in Ētrain, where we used the fact that N
n
ΦQ̄ = In − λQ̄. The

same also holds for the second term, so that one obtains Ētest = Ētrain, with (X̂, ŷ) =
(X,y), as expected. From this perspective, theorem 3 can be seen as an extension
of theorem 2, with the ‘interaction’ between training and test data (e.g. test-versus-

test Kσ(X̂, X̂) and test-versus-train Kσ(X̂,X) interaction matrices) summarized in the
scalar parameter Θσ defined in (14), for σ ∈ { cos, sin }.

By taking N/n→∞, we have that Q̄ ∼ n
N
K−1, Θσ ∼ N−1, Ω→ I2, and consequently

lim
N/n→∞

Ētest =
1

n̂
‖ŷ−K(X̂,X)K−1

X y‖2.

This is the test MSE of classical Gaussian kernel regression, with K(X̂,X) ≡
Kcos(X̂,X) +Ksin(X̂,X) ∈ R

n̂×n the test-versus-train Gaussian kernel matrix. As

https://doi.org/10.1088/1742-5468/ac3a77 11

https://doi.org/10.1088/1742-5468/ac3a77


J.S
tat.

M
ech.

(2021)
124006

A random matrix analysis of random Fourier features

Figure 4. Behavior of (δcos, δsin) in (15) on MNIST data set (class 3 versus 7), as a
function of the ratio N/n, for p = 784, n = 1000, λ = 10−7, 10−3, 1, 10. The black
dashed line represents the interpolation threshold 2N = n.

Figure 5. Empirical (blue crosses) and theoretical (red dashed lines) test error of
RFF regression as a function of the ratio N/n on MNIST data (class 3 versus 7),
for p = 784, n = 500, λ = 10−7, 10−3, 0.2, 10. The black dashed line represents the
interpolation threshold 2N = n.

opposed to the training MSE discussed in remark 4, here Ētest generally has a non-zero
limit (that is, however, independent of λ) as N/n→∞.

3. Empirical evaluations and practical implications

In this section, we provide a detailed empirical evaluation, including a discussion of the
behavior of the fixed-point equation in theorem 1, and its consequences in theorems 2
and 3.

In particular, we describe the behavior of the pair (δcos, δsin) that characterizes the
necessary correction in the large n, p,N regime, as a function of the regularization
penalty λ and the ratio N/n. This explains: (i) the mismatch between empirical regres-
sion errors from the Gaussian kernel prediction (figure 2); (ii) the behavior of (δcos, δsin)
as a function of λ (figure 3); (iii) the behavior of (δcos, δsin) as a function of N/n, which
clearly indicates two phases of learning and the transition between them (figure 4); and
(iv) the corresponding double descent test error curves (figure 5).

3.1. Correction due to the large n, p, N regime

The RFF Gram matrixΣT
XΣX/N is not close to the classical Gaussian kernel matrix KX

in the large n, p,N regime; and, as a consequence, its resolvent Q, as well the training
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and test MSE, Etrain and Etest (that are functions of Q), behave quite differently from
the Gaussian kernel predictions. As already discussed in remark 2 after theorem 1, for
λ > 0, the pair (δcos, δsin) characterizes the correction when considering n, p,N all large,
compared to the large-N -only asymptotic behavior:

δcos =
1

n
trKcosQ̄, δsin =

1

n
trKsinQ̄, Q̄ =

(
N

n

(
Kcos

1 + δcos
+

Ksin

1 + δsin

)
+ λIn

)−1

. (15)

To start, figure 2 compares the training MSEs of RFF ridge regression to the pre-
dictions from Gaussian kernel regression and to the predictions from our theorem 2, on
the popular MNIST data set [47]. Observe that there is a huge gap between empirical
training errors and the Gaussian kernel predictions, especially when N/n < 1, while our
theory consistently fits empirical observations almost perfectly.

Next, from (15) we know that both δcos and δsin are decreasing functions of λ.
(See lemma 7 in appendix D for a proof of this fact.) Figure 3 shows that: (i) over a
range of different N/n, both δcos and δsin decrease monotonically as λ increases; (ii) the
behavior for N/n < 1, which is decreasing from an initial value of δ � 1, is very different
from the behavior for N/n� 1, where an initially flat region is observed for small values
of λ and we have δ < 1 for all values of λ; and (iii) the impact of regularization λ becomes
less significant as the ratio N/n becomes large. This is in accordance with the limiting
behavior of Q̄ 
 n

N
K−1

X in remark 2 that is independent of λ as N/n→∞.
Note also that, while δcos and δsin can be geometrically interpreted as a sort of

weighted ‘angle’ between different kernel matrices, and therefore one might expect to
have δ ∈ [0, 1], this is not the case for the leftmost plot with N/n = 1/4. There, for
small values of λ (say λ � 0.1), both δcos and δsin scale like λ−1, while they are observed
to saturate to a fixed O(1) value for N/n = 1, 4, 16. This corresponds to two different
phases of learning in the ‘ridgeless’ λ→ 0 case. As we shall see in more detail later in
section 4.1, depending on whether we are in the ‘under-parameterized’ (2N < n) or the
‘over-parameterized’ (2N > n) regime, the system behaves fundamentally differently.

3.2. Phase transition and corresponding double descent

Both δcos and δsin in (15) are decreasing functions of N , as depicted in figure 4.
(See lemma 6 in appendix D for a proof.) More importantly, figure 4 also illus-
trates that δcos and δsin exhibit qualitatively different behavior: for λ not too small
(λ = 1 or 10), we observe a rather ‘smooth’ behavior, as a function of the ratio N/n,
and they both decrease smoothly, as N/n grows large. However, for λ relatively small
(λ = 10−3 and 10−7), we observe a sharp ‘phase transition’ on two sides of the interpo-
lation threshold 2N = n. (Note that the scale of the y-axis is very different in different
subfigures.) More precisely, in the leftmost plot with λ = 10−7, the values of δcos and
δsin ‘jumps’ from order O(1) (when 2N > n) to much higher values of the order of λ−1

(when 2N < n). A similar behavior is also observed for λ = 10−3.
As a consequence of this phase transition, different behaviors are expected for train-

ing and test MSEs in the 2N < n and 2N > n regime. Figure 5 depicts the empirical and
theoretical test MSEs with different regularization penalty λ. In particular, for λ = 10−7

and λ = 10−3, a double descent behavior is observed, with a singularity at 2N = n,
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while for larger values of λ(λ = 0.2, 10), a smoother and monotonically decreasing curve
for test error is observed, as a function of N/n. Figure 5 also illustrates that: (i) for
a fixed regularization λ > 0, the minimum test error is always obtained in the over-
parameterization 2N > n regime; and (ii) the global optimal design (over N and λ) is
achieved by highly over-parametrized system with a (problem-dependent) non-vanishing
λ. This is in accordance with the observations in [12] for Gaussian data.

Remark 5. (On ridge regularization). Performing ridge regularization (with λ as a
control parameter) is known to help alleviate the sharp performance drop around 2N = n
[12, 18]. Our theorem 3 can serve as a convenient alternative to evaluate the effect
of small λ around 2N = n, as well as to determine an optimal λ, for not-too-small
n, p,N . In the setup of figure 5, a grid search can be used to find the regularization
that minimizes Ētest. For this choice of λ(λopt ≈ 0.2), no singular peak at 2N = n is
observed.

Remark 6. (Double descent as a consequence of phase transition). While the dou-
ble descent phenomenon has received considerable attention recently, our analysis makes
it clear that in this model (and presumably many others) it is a natural consequence of
the phase transition between two qualitatively different phases of learning [7].

4. Additional discussion and results

In this section, we provide additional discussions and empirical results, to complement
and extend those of section 3. We start, in section 4.1, by discussing in more detail
the two different phases of learning for 2N < n and 2N > n, including the sharp phase
transition at 2N = n, for (δcos, δsin), as well as the asymptotic test MSE, in the ridgeless
λ→ 0 case. Then, in section 4.2, we discuss the impact of training-test similarly on the
test MSE by considering the example of test data X̂ obtained by slightly perturbing
the training data X. Finally, in section 4.3, we present empirical results on additional
real-world data sets to demonstrate the wide applicability of our results.

4.1. Two different learning regimes in the ridgeless limit

We chose to present our theoretical results in section 2 (theorems 1–3) in the same form,
regardless of whether 2N > n or 2N < n. This comes at the cost of requiring a strictly
positive ridge regularization λ > 0, as n, p,N →∞. As discussed in section 3, for small
values of λ, depending on the sign of 2N − n, we observe totally different behaviors for
(δcos, δsin) and thus for the key resolvent Q̄. As a matter of fact, for λ = 0 and 2N < n,
the (random) resolvent Q(λ = 0) in (7) is simply undefined, as it involves inverting
a singular matrix ΣT

XΣX ∈ R
n×n that is of rank at most 2N < n. As a consequence,

we expect to see Q̄ ∼ λ−1 as λ→ 0 for 2N < n, while for 2N > n this is not the
case.

These two phases of learning can be theoretically justified by considering the ridgeless
λ→ 0 limit in theorem 1, with the unified variables γcos and γsin introduced below.
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(a) For 2N < n and λ→ 0, we obtain⎧⎪⎪⎨
⎪⎪⎩
λδcos → γcos ≡

1

n
trKcos

(
N

n

(
Kcos

γcos
+

Ksin

γsin

)
+ In

)−1

λδsin → γsin ≡
1

n
trKsin

(
N

n

(
Kcos

γcos
+

Ksin

γsin

)
+ In

)−1 , (16)

in such as way that δcos, δsin and Q̄ scale like λ−1. We have in particular E[λQ] ∼
λQ̄ ∼

(
N
n

(
Kcos

γcos
+ Ksin

γsin

)
+ In

)−1

with (γcos, γsin) of order O(1).

(b) For 2N > n and λ→ 0, we obtain⎧⎪⎪⎨
⎪⎪⎩
δcos → γcos =

1

N
trKcos

(
Kcos

1 + γcos
+

Ksin

1 + γsin

)−1

δsin → γcos =
1

N
trKsin

(
Kcos

1 + γcos
+

Ksin

1 + γsin

)−1 , (17)

by taking directly λ→ 0 in theorem 1.

As a consequence, in the ridgeless limit λ→ 0, theorem 1 exhibits the following two
learning phases :

(a) Under-parameterized phase: with 2N < n. Here, Q is not well defined (indeed
Q ∼ λ−1) and one must consider instead the properly scaled γcos, γsin and λQ̄ in
(16). Like δcos and δsin, γcos and γsin also decrease as N/n grows large. In particular,
one has γcos, γsin, ‖λQ̄‖ → 0 as 2N − n ↑ 0.

(b) Over-parameterized phase: with 2N > n. Here, one can consider δcos, δsin and ‖Q̄‖.
One has particularly that δcos, δsin, ‖Q̄‖ →∞ as 2N − n ↓ 0 and tend to zero as
N/n→∞.

With this discussion on the two phases of learning, we now understand why:

• in the leftmost plot of figure 3 with 2N < n, δcos and δsin behave rather differently
from other plots and approximately scale as λ−1 for small values of λ; and

• in the first and second leftmost plots of figure 4, a ‘jump’ in the values of δ occurs
at the transition point 2N = n, and the δ’s are numerically of the same order of λ−1

for 2N < n.

To characterize the phase transition from (16) and (17) in the λ→ 0 setting, we
consider the scaled variables{

γσ = λδσ for 2 N < n

γσ = δσ for 2 N > n
, σ ∈ {cos, sin}. (18)

An advantage of using these scaled variables is that they are of order O(1) as n, p,N →∞
and λ→ 0. The behavior of (γcos, γsin) is reported in figure 6, in the same setting as
figure 4. Observe the sharp transition between the 2N < n and 2N > n regime, in
particular for λ = 10−7 and λ = 10−3, and that this transition is smoothed out for λ = 1.
(A ‘transition’ is also seen for λ = 10, but this is potentially misleading. It is true that
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Figure 6. Behavior of (γcos, γsin) in (15) on MNIST data set (class 3 versus 7), as
a function of the ratio N/n, for p = 784, n = 1000, λ = 10−7, 10−3, 1, 10. The black
dashed line represents the interpolation threshold 2N = n.

γcos and γsin do change in this way, as a function of N/n, but unless λ ≈ 0, these
quantities are not solutions of the aforementioned fixed point equations.)

On account of these two different phases of learning (under- and over-parameterized,
in (16) and (17), respectively) and the sharp transition of (γcos, γsin) in figure 6, it is not
surprising to observe a ‘singular’ behavior at 2N = n, when no regularization is applied.
We next examine the asymptotic training and test errors in more detail.

Asymptotic training MSE as λ→ 0. In the under-parameterized regime with 2N < n,
combining (16) we have that both λQ̄ and Q̄

1+δσ
∼ λQ̄

γσ
, σ ∈ {cos, sin} are well-behaved

and are generally not zero. As a consequence, by theorem 2, the asymptotic training
error Ētrain tends to a nonzero limit as λ→ 0, measuring the residual information in
the training set that is not captured by the regressor β ∈ R

2N . As 2N − n ↑ 0, we have
γcos, γsin → 0 and ‖λQ̄‖ → 0 so that Ētrain → 0 and β interpolates the entire training set.
On the other hand, in the over-parameterized 2N > n regime, one always has Ētrain = 0.
This particularly implies the training error is ‘continuous’ around the point 2N = n.

Asymptotic test MSE as λ→ 0. Again, in the under-parameterized regime with
2N < n, now consider the more involved asymptotic test error in theorem 3. In par-
ticular, we will focus here on the case X̂ �= X (or, more precisely, they are suffi-

ciently different from each other in such a way that ‖X− X̂‖ →/ 0 as n, p,N →∞ and

λ→ 0; see further discussion below in section 4.2) so that Kσ(X,X) �= Kσ(X̂,X) and
N
n
Φ̂Q̄ �= In − λQ̄. In this case, the two-by-two matrix Ω in Ētest diverges to infinity at

2N = n in the λ→ 0 limit. (Indeed, the determinant det(Ω−1) scales as λ, per lemma 5.)
As a consequence, we have Ētest →∞ as 2N → n, resulting in a sharp deterioration of
the test performance around 2N = n. (Of course, this holds if no additional regulariza-
tion is applied as discussed in remark 5.) It is also interesting to note that, while Ω also
appears in Ētrain, we still obtain (asymptotically) zero training MSE at 2N = n, despite
the divergence of Ω, again due to the prefactor λ2 in Ētrain. If λ � 1, then det(Ω−1)
exhibits much more regular properties (figure 7), as one would expect.

4.2. Impact of training-test similarity

Continuing our discussion of the RFF performance in the large n, p,N limit, we can see
that the (asymptotic) test error behaves entirely differently, depending on whether X̂

is ‘close to’ X or not. For X̂ = X, one has Ētest = Ētrain that decreases monotonically
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Figure 7. Behavior of det(Ω−1) on MNIST data set (class 3 versus 7), as a function
of N/n, for p = 784, n = 1000 and λ = 10−7, 10−3, 1, 10. The black dashed line
represents the interpolation threshold 2N = n.

as N grows large; while for X̂ ‘sufficiently’ different from X, Ētest diverges to infinity at
2N = n. To have a more quantitative assessment of the influence of training-test data
similarity on the test error, we consider the special case n̂ = n and ŷ = y. In this case,
it follows from theorem 3 that

Θσ =
1

N
tr(Kσ +Kσ(X̂, X̂)− 2Kσ(X̂,X)) +

2

n
tr Q̄ΔΦTΔKσ

+
N

n

1

n
tr Q̄ΔΦTΔΦQ̄Kσ +

n

N

λ2

n
tr Q̄KσQ̄− 2λ

N
tr Q̄ΔKσ −

2λ

n
tr Q̄ΔΦTQ̄Kσ,

for σ ∈ { cos, sin }, ΔKσ = Kσ −Kσ(X̂,X) and ΔΦ ≡ Φ̂−Φ. Since in the ridgeless
λ→ 0 limit the matrix Ω scale as λ−1 (see figure 7), one must have Θσ scaling as λ
so that Ētest does not diverge at 2N = n as λ→ 0. One example is the case where the
test data is a small (additive) perturbation of the training data such that, in the kernel
feature space

Kσ −Kσ(X̂,X) = λΞσ, Kσ(X̂, X̂)−Kσ(X̂,X) = λΞ̂σ

for Ξσ, Ξ̂σ ∈ R
n×n of bounded spectral norms. In this setting, we have Θσ = λ

N
tr(Ξσ +

Ξ̂σ) +O(λ2) so that the asymptotic test error does not diverge to infinity at 2N = n
as λ→ 0. This is supported by figure 8, where the test data are generated by adding
Gaussian white noise of variance σ2 to the training data, i.e. x̂i = xi + σεi, for indepen-
dent εi ∼ N (0, Ip/p). In figure 8, we observe that (i) below the threshold σ2 = λ, test
error coincides with the training error and both are close to zero; and (ii) as soon as
σ2 � λ, the test error diverges from the training error and grows large (but linearly in
σ2) as the noise level increases. Note also from the two rightmost plots of figure 8 that,
the training-to-test ‘transition’ at σ2 ∼ λ is sharp only for relatively small values of λ,
as predicted by our theory.

4.3. Additional real-world data sets

So far, we have presented results in detail for one particular real-world data set, but
we have extensive empirical results demonstrating that similar conclusions hold more
broadly. As an example of these additional results, here we present a numerical eval-
uation of our results on several other real-world image data sets. We consider the
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Figure 8. Empirical training and test errors of RFF ridgeless regression on MNIST
data (class 3 versus 7), when modeling training-test similarity as X̂ = X+ σε, with
ε having i.i.d. N (0, 1/p) entries, as a function of the noise level σ2, for N = 512,
p = 784, n = n̂ = 1024 = 2N , λ = 10−7, 10−3, 1, 10. Results obtained by averaging
over 30 runs.

Figure 9. MSEs of RFF regression on Fashion-MNIST (left two) and Kannada-
MNIST (right two) data (class 5 versus 6), as a function of regression parameter
λ, for p = 784, n = n̂ = 1024, N = 256 and 512. Empirical results displayed in blue
(circles for training and crosses for test); and the asymptotics from theorems 2 and
3 displayed in red (sold lines for training and dashed for test). Results obtained by
averaging over 30 runs.

classification task on another two MNIST-like data sets composed of 28× 28 grayscale
images: the Fashion-MNIST [48] and the Kannada-MNIST [49] data sets. Each image
is represented as a p = 784-dimensional vector and the output targets y, ŷ are taken to
have −1,+1 entries depending on the image class. As a consequence, both the train-
ing and test MSEs in (5) are approximately 1 for N = 0 and significantly small λ, as
observed in figures 5 and 11 below. For each data set, images were jointly centered and
scaled so to fall close to the setting of assumption 1 on X and X̂.

In figure 9, we compare the empirical training and test errors with their limiting
behaviors derived in theorems 2 and 3, as a function of the penalty parameter λ, on
a training set of size n = 1024 (512 images from class 5 and 512 images from class 6)
with feature dimension N = 256 and N = 512, on both data sets. A close fit between
theory and practice is observed, for moderately large values of n, p,N , demonstrating a
wide practical applicability of the proposed asymptotic analyses, particularly compared
to the (limiting) Gaussian kernel predictions per figure 2.

In figure 10, we report the behavior of the pair (δcos, δsin) for small values of λ = 10−7

and 10−3. Similar to the two leftmost plots in figure 4 for MNIST, a jump from the
under-to over-parameterized regime occurs at the interpolation threshold 2N = n, in
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Figure 10. Behavior of (δcos, δsin) in (15), on Fashion-MNIST (left two) and
Kannada-MNIST (right two) data (class 8 versus 9), for p = 784, n = 1000, λ =
10−7 and 10−3. The black dashed line represents the interpolation threshold 2N = n.

Figure 11. Empirical (blue crosses) and theoretical (red dashed lines) test error of
RFF regression, as a function of the ratio N/n, on Fashion-MNIST (left two) and
Kannada-MNIST (right two) data (class 8 versus 9), for p = 784, n = 500, λ = 10−7

and 10−3. The black dashed line represents the interpolation threshold 2N = n.

both Fashion- and Kannada-MNIST data sets, clearly indicating the two phases of
learning and the phase transition between them.

In figure 11, we report the empirical and theoretical test errors as a function of the
ratio N/n, on a training test of size n = 500 (250 images from class 8 and 250 images
from class 9), by varying the feature dimension N . An exceedingly small regularization
λ = 10−7 is applied to mimic the ‘ridgeless’ limiting behavior as λ→ 0. On both data
sets, the corresponding double descent curve is observed where the test errors go down
and up, with a singular peak around 2N = n, and then go down monotonically as N
continues to increase when 2N > n.

5. Conclusion

We have established a precise description of the resolvent of RFF Gram matrices, and
provided asymptotic training and test performance guarantees for RFF ridge regression,
in the limit of n, p,N →∞ at the same pace. We have also discussed the under- and
over-parameterized regimes, where the resolvent behaves dramatically differently. These
observations involve only mild regularity assumptions on the data distribution, yielding
phase transition behavior and corresponding double descent test error curves for RFF
regression that closely match experiments on real-world data. From a technical perspec-
tive, our analysis extends to arbitrary combinations of (Lipschitz) non-linearities, such

https://doi.org/10.1088/1742-5468/ac3a77 19

https://doi.org/10.1088/1742-5468/ac3a77


J.S
tat.

M
ech.

(2021)
124006

A random matrix analysis of random Fourier features

as the more involved homogeneous kernel maps [14]. This opens the door for future
studies of more elaborate random feature structures and models. Extended to a (techni-
cally more involved) multi-layer setting in the more realistic large n, p,N regime, as in
[50], our analysis may shed new light on the theoretical understanding of modern deep
neural nets, beyond the large-N alone NTK limit [1].
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Appendix A. Proof of theorem 1

Our objective is to prove, under assumption 1, the asymptotic equivalence between the
expectation (with respect to W, omitted from now on) E[Q] and

Q̄ ≡
(
N

n

(
Kcos

1 + δcos
+

Ksin

1 + δsin

)
+ λIn

)−1

for Kcos ≡ Kcos(X,X),Ksin ≡ Ksin(X,X) ∈ R
n×n defined in (8), with (δcos, δcos) the

unique positive solution to

δcos =
1

n
tr(KcosQ̄), δsin =

1

n
tr(KsinQ̄).

The existence and uniqueness of the above fixed-point equation is standard in random
matrix literature and can be reached for instance with the standard interference function
framework [51].

The asymptotic equivalence should be announced in the sense that ‖E[Q]− Q̄‖ → 0
as n, p,N →∞ at the same pace. We shall proceed by introducing an intermediary
resolvent Q̃ (see definition in (A.2)) and show subsequently that

‖E[Q]− Q̃‖ → 0, ‖Q̃− Q̄‖ → 0.
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In the sequel, we use o(1) and o‖·‖(1) for scalars or matrices of (almost surely if being
random) vanishing absolute values or operator norms as n, p→∞.

We start by introducing the following lemma.

Lemma 1. (Expectation of σ1(x
T
i w)σ2(w

Txj)). For w ∼ N (0, Ip) and xi,xj ∈ R
p we

have (per definition in (8))

Ew[cos(x
T
i w) cos(wTxj)] = e−

1
2 (‖xi‖2+‖xj‖2) cosh(xT

i xj) ≡ [Kcos(X,X)]ij ≡ [Kcos]ij

Ew[sin(x
T
i w) sin(wTxj)] = e−

1
2 (‖xi‖2+‖xj‖2) sinh(xT

i xj) ≡ [Ksin(X,X)]ij ≡ [Ksin]ij

Ew[cos(x
T
i w) sin(wTxj)] = 0.

Proof of Lemma 1. The proof follows the integration tricks in [15, 52]. Note in particular
that the third equality holds in the case of (cos, sin) non-linearity but in general not
true for arbitrary Lipschitz (σ1, σ2). �

Let us focus on the resolvent Q ≡
(
1
n
ΣT

XΣX + λIn
)−1

of 1
n
ΣT

XΣX ∈ R
n×n, for RFF

matrix ΣX ≡
[
cos(WX)
sin(WX)

]
that can be rewritten as

ΣT
X = [cos(XTw1), . . . , cos(X

TwN ), sin(X
Tw1), . . . , sin(X

TwN )] (A.1)

for wi the ith row of W ∈ R
N×p with wi ∼ N (0, Ip), i = 1, . . . ,N , that is at the core of

our analysis. Note from (A.1) that we have

ΣT
XΣX =

N∑
i=1

(
cos(XTwi) cos(w

T
i X) + sin(XTwi) sin(w

T
i X)

)
=

N∑
i=1

UiU
T
i

with Ui =
[
cos(XTwi) sin(XTwi)

]
∈ R

n×2.
Letting

Q̃ ≡
(
N

n

Kcos

1 + αcos
+

N

n

Ksin

1 + αsin
+ λIn

)−1

(A.2)

with

αcos =
1

n
tr(KcosE[Q]), αsin =

1

n
tr(KsinE[Q]) (A.3)
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we have, with the resolvent identity (A−1 −B−1 = A−1(B−A)B−1for invertibleA,B)
that

E[Q]− Q̃ = E

[
Q

(
N

n

Kcos

1 + αcos
+

N

n

Ksin

1 + αsin
− 1

n
ΣT

XΣX

)]
Q̃

= E[Q]
N

n

(
Kcos

1 + αcos
+

Ksin

1 + αsin

)
Q̃− N

n

1

N

N∑
i=1

E[QUiU
T
i ]Q̃

= E[Q]
N

n

(
Kcos

1 + αcos

+
Ksin

1 + αsin

)
Q̃

− N

n

1

N

N∑
i=1

E

[
Q−iUi

(
I2 +

1

n
UT

i Q−iUi

)−1

UT
i

]
Q̃,

for Q−i ≡
(
1
n
ΣT

XΣX − 1
n
UiUi + λIn

)−1
that is independent of Ui (and thus wi), where

we applied the following Woodbury identity.

Lemma 2. (Woodbury). For A,A+UUT ∈ R
p×p both invertible and U ∈ R

p×n, we
have

(A+UUT)−1 = A−1 −A−1U(In +UTA−1U)−1UTA−1

so that in particular (A+UUT)−1U = A−1U(In +UTA−1U)−1.

Consider now the two-by-two matrix

I2 +
1

n
UT

i Q−iUi

=

⎡
⎢⎣1 +

1

n
cos(wT

i X)Q−i cos(X
Twi)

1

n
cos(wT

i X)Q−i sin(X
Twi)

1

n
sin(wT

i X)Q−i cos(X
Twi) 1 +

1

n
sin(wT

i X)Q−i sin(X
Twi)

⎤
⎥⎦

which, according to the following lemma, is expected to be close to

[
1 + αcos 0

0 1 + αsin

]
as defined in (A.3).

Lemma 3. (Concentration of quadratic forms). Under assumption 1, for σ1(·), σ2(·)
two real one-Lipschitz functions, w ∼ N (0, Ip) and A ∈ R

n×n independent of w with
‖A‖ � 1, then
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P

(∣∣∣∣ 1nσa(w
TX)Aσb(X

Tw)− 1

n
tr(AEw[σb(X

Tw)σa(w
TX)])

∣∣∣∣ > t

)
� C e−cnmin(t,t2)

for a, b ∈ {1, 2} and some universal constants C, c > 0.

Proof of Lemma 3. Lemma 3 can be easily extended from lemma 1 in [15], where one
observes the proof actually holds when different types of nonlinear Lipschitz functions
σ1(·), σ2(·) (and in particular cos and sin) are considered. �

For W−i ∈ R
(N−1)×p the random matrix W ∈ R

N×p with its ith row wi removed,
lemma 3, together with the Lipschitz nature of the map W−i �→ 1

n
σa(w

T
i X)Q−iσb(X

Twi)

for Q−i = (1
n
cos (W−iX)T cos(W−iX) + 1

n
sin (W−iX)T sin(W−iX) + λIn)

−1, leads to
the following concentration result

P

(∣∣∣∣ 1nσa(w
T
i X)Q−iσb(X

Twi)−
1

n
tr
(
E[Q−i]E[σb(X

Twi)σa(w
T
i X)]

)∣∣∣∣ > t

)
�C ′ e−c′nmax(t2,t) (A.4)

the proof of which follows the same line of argument of lemma 4 in [15] and is omitted
here.

As a consequence, we continue to write, with again the resolvent identity, that

(
I2 +

1

n
UT

i Q−iUi

)−1

−
[
1 + αcos 0

0 1 + αsin

]−1

=

⎡
⎢⎣1 +

1

n
cos(wT

i X)Q−i cos(X
Twi)

1

n
cos(wT

i X)Q−i sin(X
Twi)

1

n
sin(wT

i X)Q−i cos(X
Twi) 1 +

1

n
sin(wT

i X)Q−i sin(X
Twi)

⎤
⎥⎦

−1

−
[
1 + αcos 0

0 1 + αsin

]−1

=

(
I2 +

1

n
UT

i Q−iUi

)−1

×

⎡
⎢⎣αcos −

1

n
cos(wT

i X)Q−i cos(X
Twi) −1

n
cos(wT

i X)Q−i sin(X
Twi)

−1

n
sin(wT

i X)Q−i cos(X
Twi) αsin −

1

n
sin(wT

i X)Q−i sin(X
Twi)

⎤
⎥⎦

×

⎡
⎢⎣

1

1 + αcos
0

0
1

1 + αsin

⎤
⎥⎦ ≡

(
I2 +

1

n
UT

i Q−iUi

)−1

Di

⎡
⎢⎣

1

1 + αcos
0

0
1

1 + αsin

⎤
⎥⎦ ,
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where we note from (A.4) (and ‖Q−i‖ � λ−1) that the matrix E[Di] = o‖·‖(1) (in fact of

spectral norm of order O(n− 1
2 )). So that

E[Q]− Q̃ = E[Q]
N

n

(
Kcos

1 + αcos

+
Ksin

1 + αsin

)
Q̃

− N

n

1

N

N∑
i=1

E

[
Q−iUi

(
I2 +

1

n
UT

i Q−iUi

)−1

UT
i

]
Q̃

= E[Q]
N

n

(
Kcos

1 + αcos
+

Ksin

1 + αsin

)
Q̃

− N

n

1

N

N∑
i=1

E

⎡
⎢⎣Q−iUi

⎡
⎢⎣

1

1 + αcos
0

0
1

1 + αsin

⎤
⎥⎦UT

i

⎤
⎥⎦ Q̃

− N

n

1

N

N∑
i=1

E

⎡
⎢⎣Q−iUi

(
I2 +

1

n
UT

i Q−iUi

)−1

Di

⎡
⎢⎣

1

1 + αcos
0

0
1

1 + αsin

⎤
⎥⎦UT

i

⎤
⎥⎦ Q̃

=

(
E[Q]− 1

N

N∑
i=1

E[Q−i]

)
N

n

(
Kcos

1 + αcos

+
Ksin

1 + αsin

)
Q̃

− N

n

1

N

N∑
i=1

E

⎡
⎢⎣QUiDi

⎡
⎢⎣

1

1 + αcos
0

0
1

1 + αsin

⎤
⎥⎦UT

i

⎤
⎥⎦ Q̃,

where we used Ewi
[UiU

T
i ] = Kcos +Ksin by lemma 1 and then lemma 2 in reverse for

the last equality. Moreover, since

E[Q]− 1

N

N∑
i=1

E[Q−i] =
1

N

N∑
i=1

E[Q−Q−i]

= −1

n

1

N

N∑
i=1

E

[
QUi

(
I2 +

1

n
UT

i Q−iUi

)−1

UT
i Q

]

so that with the fact 1√
n
‖QΣT

X‖ � ‖
√

Q 1
n
ΣT

XΣXQ‖ � λ− 1
2 we have for the first term

‖E[Q]− 1

N

N∑
i=1

E[Q−i]‖ = O(n−1).

It thus remains to treat the second term, which, with the relation ABT +BAT 

AAT +BBT (in the sense of symmetric matrices), and the same line of arguments as

above, can be shown to have vanishing spectral norm (of order O(n− 1
2 )) as n, p,N →∞.
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We thus have ‖E[Q]− Q̃‖ = O(n− 1
2 ), which concludes the first part of the proof of

theorem 1.
We shall show next that ‖Q̃− Q̄‖ → 0 as n, p,N →∞. First note from previous

derivation that ασ − 1
n
trKσQ̃ = O(n− 1

2 ) for σ = cos, sin. To compare Q̃ and Q̄, it
follows again from the resolvent identity that

Q̃− Q̄ = Q̃

(
N

n

Kcos(αcos − δcos)

(1 + δcos)(1 + αcos)
+

N

n

Ksin(αsin − δsin)

(1 + δsin)(1 + αsin)

)
Q̄

so that the control of ‖Q̃− Q̄‖ boils down to the control of max{|αcos − δcos|, |αsin −
δsin|}. To this end, it suffices to write

αcos − δcos =
1

n
trKcos(E[Q]− Q̄) =

1

n
trKcos(Q̃− Q̄) +O

(
n− 1

2

)

where we used | tr(AB)| � ‖A‖ tr(B) for nonnegative definite B, together with the fact
that 1

n
trKσ is (uniformly) bounded under assumption 1, for σ = cos, sin.

As a consequence, we have

|αcos − δcos| � |αcos − δcos|
N

n

1
n
tr(KcosQ̃KcosQ̄)

(1 + δcos)(1 + αcos)
+ o(1).

It thus remains to show

N

n

1
n
tr(KcosQ̃KcosQ̄)

(1 + δcos)(1 + αcos)
< 1

or alternatively, by the Cauchy–Schwarz inequality, to show

N

n

1
n
tr(KcosQ̃KcosQ̄)

(1 + δcos)(1 + αcos)
�

√
N

n

1
n
tr(KcosQ̄KcosQ̄)

(1 + δcos)2
· N
n

1
n
tr(KcosQ̃KcosQ̃)

(1 + αcos)2
< 1.

To treat the first right-hand side term (the second can be done similarly), it unfolds
from | tr(AB)| � ‖A‖ · tr(B) for nonnegative definite B that

N

n

1
n
tr(KcosQ̄KcosQ̄)

(1 + δcos)2
�
∥∥∥∥Nn KcosQ̄

1 + δcos

∥∥∥∥ 1
n
tr(KcosQ̄)

1 + δcos
=

∥∥∥∥Nn KcosQ̄

1 + δcos

∥∥∥∥ γcos
1 + δcos

� γcos
1 + δcos

< 1

where we used the fact that N
n

KcosQ̄
1+δcos

= In − N
n

KsinQ̄
1+δsin

− λQ̄. This concludes the proof of
theorem 1. �
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Appendix B. Proof of theorem 2

To prove theorem 2, it indeed suffices to prove the following lemma.

Lemma 4. (Asymptotic behavior of E[QAQ]). Under assumption 1, for Q defined in
(7) and symmetric nonnegative definite A ∈ R

n×n of bounded spectral norm, we have

∥∥∥∥E[QAQ]−
(
Q̄AQ̄+

N

n

[
1
n
tr(Q̄AQ̄Kcos)

(1 + δcos)2

1
n
tr(Q̄AQ̄Ksin)

(1 + δsin)2

]
Ω

[
Q̄KcosQ̄
Q̄KsinQ̄

])∥∥∥∥→ 0

almost surely as n→∞, with Ω−1 ≡ I2 − N
n

⎡
⎢⎢⎢⎣

1
n
tr(Q̄KcosQ̄Kcos)

(1 + δcos)2

1
n
tr(Q̄KcosQ̄Ksin)

(1 + δsin)2

1
n
tr(Q̄KcosQ̄Ksin)

(1 + δcos)2

1
n
tr(Q̄KsinQ̄Ksin)

(1 + δsin)2

⎤
⎥⎥⎥⎦.

In particular, we have

∥∥∥∥E
[
QKcosQ
QKsinQ

]
−Ω

[
Q̄KcosQ̄
Q̄KsinQ̄

]∥∥∥∥→ 0.

Proof of Lemma 4. The proof of lemma 4 essentially follows the same line of arguments
as that of theorem 1. Writing

E[QAQ] = E[Q̄AQ] + E[(Q− Q̄)AQ]


 Q̄AQ̄+ E

[
Q

(
N

n

Kcos

1 + δcos
+

N

n

Ksin

1 + δsin
− 1

n
ΣT

XΣX

)
Q̄AQ

]

= Q̄AQ̄+
N

n
E[QΦQ̄AQ]− 1

n

N∑
i=1

E[QUiU
T
i Q̄AQ]

where we note 
 by ignoring matrices with vanishing spectral norm (i.e. o‖·‖(1)) in the

n, , p,N →∞ limit and recall the shortcut Φ ≡ Kcos

1+δcos
+ Ksin

1+δsin
. Developing rightmost term

with lemma 2 as

E[QUiU
T
i Q̄AQ] = E

[
Q−iUi

(
I2 +

1

n
UT

i Q−iUi

)−1

UT
i Q̄AQ

]

= E

[
Q−iUi

(
I2 +

1

n
UT

i Q−iUi

)−1

UT
i Q̄AQ−i

]

− 1

n
E

[
Q−iUi

(
I2 +

1

n
UT

i Q−iUi

)−1

UT
i Q̄AQ−iUi

×
(
I2 +

1

n
UT

i Q−iUi

)−1

UT
i Q−i

]

 E[Q−iΦQ̄AQ−i]
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− E

⎡
⎢⎣Q−iUi

⎡
⎢⎣

1

1 + δcos
0

0
1

1 + δsin

⎤
⎥⎦

×

⎡
⎢⎣
1

n
tr(Q̄AQ̄Kcos) 0

0
1

n
tr(Q̄AQ̄Ksin)

⎤
⎥⎦

×

⎡
⎢⎣

1

1 + δcos
0

0
1

1 + δsin

⎤
⎥⎦UT

i Q−i

⎤
⎥⎦

so that

E[QAQ] 
 Q̄AQ̄+
N

n
E

[
Q

(
1
n
tr(Q̄AQ̄Kcos)

(1 + δcos)2
Kcos +

1
n
tr(Q̄AQ̄Ksin)

(1 + δsin)2
Ksin

)
Q

]

= Q̄AQ̄+
N

n

[
1
n
tr(Q̄AQ̄Kcos)

(1 + δcos)2

1
n
tr(Q̄AQ̄Ksin)

(1 + δsin)2

]
E

[
QKcosQ
QKsinQ

]
(B.1)

by taking A = Kcos or Ksin, we result in

E[QKcosQ] 
 c

ac− bd
Q̄KcosQ̄+

b

ac− bd
Q̄KsinQ̄

E[QKsinQ] 
 a

ac− bd
Q̄KsinQ̄+

d

ac− bd
Q̄KcosQ̄

with a = 1− N
n

1
n tr(Q̄KcosQ̄Kcos)

(1+δcos)2
, b = N

n

1
n tr(Q̄KcosQ̄Ksin)

(1+δsin)2
, c = 1− N

n

1
n tr(Q̄KsinQ̄Ksin)

(1+δsin)2
and d =

N
n

1
n tr(Q̄KsinQ̄Kcos)

(1+δcos)2
such that (1 + δsin)

2b = (1 + δcos)
2d.

E

[
QKcosQ
QKsinQ

]


[
a −b
−d c

]−1 [
Q̄KcosQ̄
Q̄KsinQ̄

]
≡ Ω

[
Q̄KcosQ̄
Q̄KsinQ̄

]

for Ω ≡
[
a −b
−d c

]−1

. Plugging back into (B.1) we conclude the proof of lemma 4. �

Theorem 2 can be achieved by considering the concentration of (the bilinear form)
1
n
yTQ2y around its expectation 1

n
yT

E[Q2]y (with for instance lemma 3 in [15]), together
with lemma 4. This concludes the proof of theorem 2. �
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Appendix C. Proof of theorem 3

Recall the definition of Etest =
1
n̂
‖ŷ−ΣT

X̂
β‖2 from (5) with ΣX̂ =

[
cos(WX̂)

sin(WX̂)

]
∈ R

2N×n̂

on a test set (X̂, ŷ) of size n̂, and first focus on the case 2N > n where β = 1
n
ΣXQy as

per (4). By (A.1), we have

Etest =
1

n̂

∥∥∥∥ŷ− 1

n
ΣT

X̂
ΣXQy

∥∥∥∥
2

=
1

n̂

∥∥∥∥∥ŷ− 1

n

N∑
i=1

ÛiU
T
i Qy

∥∥∥∥∥
2

where, similar to the notation Ui =
[
cos(XTwi) sin(XTwi)

]
∈ R

n×2 as in the proof of
theorem 1, we denote

Ûi ≡
[
cos(X̂Twi) sin(X̂Twi)

]
∈ R

n̂×2.

As a consequence, we further get

E[Etest] =
1

n̂
‖ŷ‖2 − 2

nn̂

N∑
i=1

ŷT
E[ÛiU

T
i Q]y+

1

n2n̂

N∑
i,j=1

yT
E[QUiÛ

T
i ÛjU

T
j Q]y

=
1

n̂
‖ŷ‖2 − 2

nn̂

N∑
i=1

ŷT
E

[
Ûi

(
I2 +

1

n
UT

i Q−iUi

)−1

UT
i Q−i

]
y

+
1

n2n̂

N∑
i,j=1

yT
E[QUiÛ

T
i ÛjU

T
j Q]y


 1

n̂
‖ŷ‖2 − 2

nn̂

N∑
i=1

ŷT
E

⎡
⎢⎣Ûi

⎡
⎢⎣

1

1 + δcos
0

0
1

1 + δsin

⎤
⎥⎦UT

i Q−i

⎤
⎥⎦y

+
1

n2n̂

N∑
i,j=1

yT
E[QUiÛ

T
i ÛjU

T
j Q]y


 1

n̂
‖ŷ‖2 − 2

n̂
ŷT

(
N

n

Kcos(X̂,X)

1 + δcos
+

N

n

Ksin(X̂,X)

1 + δsin

)
Q̄y

+
1

n2n̂

N∑
i,j=1

yT
E[QUiÛ

T
i ÛjU

T
j Q]y
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where we similarly denote

Kcos(X̂,X) ≡
{
e−

1
2 (‖x̂i‖2+‖xj‖2) cosh(x̂T

i xj)
}n̂,n

i,j=1

Ksin(X̂,X) ≡
{
e−

1
2 (‖x̂i‖2+‖xj‖2) sinh(x̂T

i xj)
}n̂,n

i,j=1
∈ R

n̂×n.

Note that, different from the proof of theorems 1 and 2 where we constantly use the
fact that ‖Q‖ � λ−1 and

1

n
ΣT

XΣXQ = In − λQ

so that ‖ 1
n
ΣT

XΣXQ‖ � 1, we do not have in general a simple control for ‖ 1
n
ΣT

X̂
ΣXQ‖,

when arbitrary X̂ is considered. Intuitively speaking, this is due to the loss-of-control
for ‖ 1

n
(ΣX̂ −ΣX)

TΣXQ‖ when X̂ can be chosen arbitrarily with respect to X. It was
remarked in [15] (remark 1) that in general only a O(

√
n) upper bound can be derived

for ‖ 1√
n
ΣX‖ or ‖ 1√

n
ΣX̂‖. Nonetheless, this problem can be resolved with the additional

assumption 2.
More precisely, note that

‖ 1
n
ΣT

X̂
ΣXQ‖ � 1

n
‖ΣT

XΣXQ‖+ 1

n
‖(ΣX̂ −ΣX)

TΣXQ‖

� 1 +
1√
n
‖ΣX̂ −ΣX‖ ·

1√
n
‖ΣXQ‖ (C.1)

it remains to show that ‖ΣX −ΣX̂‖ = O(
√
n) under assumption 2 to establish

‖ 1
n
ΣT

X̂
ΣXQ‖ = O(1), that is, to show that

‖σ(WX)− σ(WX̂)‖ = O(
√
n) (C.2)

for σ ∈ { cos, sin }. Note this cannot be achieved using only the Lipschitz nature of σ(·)
and the fact that ‖X− X̂‖ � ‖X‖+ ‖X̂‖ = O(1) under assumption 1 by writing

‖σ(WX)− σ(WX̂)‖ � ‖σ(WX)− σ(WX̂)‖F � ‖W‖F · ‖X− X̂‖ = O(n). (C.3)

where we recall that ‖W‖ = O(
√
n) and ‖W‖F = O(n). Nonetheless, from proposition

B.1 in [43] we have that the product WX, and thus σ(WX), strongly concentrates
around its expectation in the sense of (13), so that

‖σ(WX)− σ(WX̂)‖ � ‖σ(WX)− E[σ(WX)]‖+ ‖E[σ(WX)− σ(WX̂)]‖

+ ‖σ(WX̂)− E[σ(WX̂)]‖ = O(
√
n)

under assumption 2. As a results, we are allowed to control 1
n
ΣT

X̂
ΣXQ and similarly

1
n
ΣT

X̂
ΣX̂Q in the same vein as 1

n
ΣT

XΣXQ in the proof of theorems 1 and 2 in appendices
A and B, respectively.
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It thus remains to handle the last term (noted Z) as follows

Z ≡ 1

n2n̂

N∑
i,j=1

yT
E[QUiÛ

T
i ÛjU

T
j Q]y =

1

n2n̂

N∑
i=1

yT
E[QUiÛ

T
i ÛiU

T
i Q]y

+
1

n2n̂

N∑
i=1

∑
j �=i

yT
E[QUiÛ

T
i ÛjU

T
j Q]y = Z1 + Z2

where Z1 term can be treated as

Z1 ≡
1

n2n̂

N∑
i=1

yT
E[QUiÛ

T
i ÛiU

T
i Q]y

=
1

nn̂

N∑
i=1

yT
E

[
Q−iUi

(
I2 +

1

n
UT

i Q−iUi

)−1
1

n
ÛT

i Ûi

×
(
I2 +

1

n
UT

i Q−iUi

)−1

UT
i Q−i

]
y


 1

nn̂

N∑
i=1

yT
E

⎡
⎢⎣Q−iUi

⎡
⎢⎣

1

1 + δcos
0

0
1

1 + δsin

⎤
⎥⎦
⎡
⎢⎣
1

n
tr
ˆ̂
Kcos 0

0
1

n
tr
ˆ̂
Ksin

⎤
⎥⎦

×

⎡
⎢⎣

1

1 + δcos
0

0
1

1 + δsin

⎤
⎥⎦UT

i Q−i

⎤
⎥⎦y


 N

n

1

n̂
yT

E

[
Q

(
1
n
trKcos(X̂, X̂)

(1 + δcos)2
Kcos +

1
n
trKsin(X̂, X̂)

(1 + δsin)2
Ksin

)
Q

]
y


 N

n

1

n̂

[
1
n
trKcos(X̂, X̂)

(1 + δcos)2

1
n
tr 1

n
trKsin(X̂, X̂)

(1 + δsin)2

]
Ω

[
yTQ̄KcosQ̄y
yTQ̄KsinQ̄y

]

where we apply lemma 4 and recall

Kcos(X̂, X̂) ≡
{
e−

1
2 (‖x̂i‖2+‖x̂j‖2) cosh(x̂T

i x̂j)
}n̂

i,j=1
,

Ksin(X̂, X̂) ≡
{
e−

1
2 (‖x̂i‖2+‖x̂j‖2) sinh(x̂T

i x̂j)
}n̂

i,j=1
.
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Moving on to Z2 and we write

Z2 ≡
1

n2n̂
E

N∑
i=1

∑
j �=i

yTQUiÛ
T
i ÛjU

T
j Qy

=
1

n2n̂
E

N∑
i=1

∑
j �=i

yTQ−jUiÛ
T
i Ûj

(
I2 +

1

n
UT

j Q−jUj

)−1

UT
j Q−jy

− 1

n2n̂
E

N∑
i=1

∑
j �=i

yTQ−jUj

(
I2 +

1

n
UT

j Q−jUj

)−1

×UT
j Q−jUiÛ

T
i Ûj

(
I2 +

1

n
UT

j Q−jUj

)−1

UT
j Q−jy


 1

nn̂
E

N∑
i=1

∑
j �=i

yTQ−jUiÛ
T
i

(
Kcos(X̂,X)

1 + δcos
+

Ksin(X̂,X)

1 + δsin

)
Q−jy

− 1

n2n̂
E

N∑
i=1

∑
j �=i

yTQ−jUj

⎡
⎢⎣

1

1 + δcos
0

0
1

1 + δsin

⎤
⎥⎦

×

⎡
⎢⎣
1

n
tr(Q−jUiÛ

T
i Kcos(X̂,X)) 0

0
1

n
tr(Q−jUiÛ

T
i Ksin(X̂,X))

⎤
⎥⎦

×

⎡
⎢⎣

1

1 + δcos
0

0
1

1 + δsin

⎤
⎥⎦UT

j Q−jy ≡ Z21 − Z22.

For the term Z21, note that Q−j 
 Q and depends on Ui (and Ûi), such that

Z21 ≡
1

n2n̂
E

N∑
i=1

∑
j �=i

yTQ−jUiÛ
T
i

(
Kcos(X̂,X)

1 + δcos
+

Ksin(X̂,X)

1 + δsin

)
Q−jy


 N

n

1

nn̂
E

N∑
i=1

yTQUiÛ
T
i

(
Kcos(X̂,X)

1 + δcos
+

Ksin(X̂,X)

1 + δsin

)
Qy

=
N

n

1

nn̂
E

N∑
i=1

yTQ−iUi

(
I2 +

1

n
UT

i Q−iUi

)−1

ÛT
i Φ̂Q−iy

− N

n

1

nn̂
E

N∑
i=1

yTQ−iUi

(
I2 +

1

n
UT

i Q−iUi

)−1
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× ÛT
i Φ̂Q−iUi

(
I2 +

1

n
UT

i Q−iUi

)−1

UT
i Q−iy


 N

n

1

nn̂
E

N∑
i=1

yTQ−i

(
Kcos(X̂,X)

1 + δcos
+

Ksin(X̂,X)

1 + δsin

)T

Φ̂Q−iy

− N

n

1

n̂
E

N∑
i=1

yTQ−iUi

⎡
⎢⎣

1

1 + δcos
0

0
1

1 + δsin

⎤
⎥⎦ 1

n
ÛT

i Φ̂Q−iUi

×

⎡
⎢⎣

1

1 + δcos
0

0
1

1 + δsin

⎤
⎥⎦UT

i Q−iy

where we recall the shortcut Φ ≡ Kcos

1+δcos
+ Ksin

1+δsin
and similarly Φ̂ ≡ Kcos(X̂,X)

1+δcos
+ Ksin(X̂,X)

1+δsin
∈

R
n̂×n. As a consequence, we further have, with lemma 4 that

Z21 

(
N

n

)2
1

n̂
yT

E

[
QΦ̂TΦ̂Q

]
y− N

n

1

n̂
E

N∑
i=1

yTQ−iUi

⎡
⎢⎣

1

1 + δcos
0

0
1

1 + δsin

⎤
⎥⎦

×

⎡
⎢⎣
1

n
tr(Φ̂Q̄Kcos(X̂,X)T) 0

0
1

n
tr(Φ̂Q̄Ksin(X̂,X)T)

⎤
⎥⎦

×

⎡
⎢⎣

1

1 + δcos
0

0
1

1 + δsin

⎤
⎥⎦UT

i Q−iy 

(
N

n

)2
1

n̂
yT

E

[
QΦ̂TΦ̂Q

]
y

−
(
N

n

)2
1

n̂
EyTQ

(
1

n
tr(Φ̂Q̄Kcos(X̂,X)T)

Kcos

(1 + δcos)2

+
1

n
tr(Φ̂Q̄Ksin(X̂,X)T)

Ksin

(1 + δsin)2

)
Qy



(
N

n

)2
1

n̂
yT

E

[
QΦ̂TΦ̂Q

]
y−

(
N

n

)2
1

n̂
yT

×
([

1
n tr(Φ̂Q̄Kcos(X̂,X)T)

(1 + δcos)2

1
n tr(Φ̂Q̄Ksin(X̂,X)T)

(1 + δsin)2

]
E

[
QKcosQ
QKsinQ

])
y



(
N

n

)2
1

n̂
yTQ̄ΦTΦ̂Q̄y+

(
N

n

)2

× 1

n̂

[
1
n trQ̄

N
n Φ̂

TΦ̂Q̄Kcos − 1
n trQ̄Φ̂Kcos(X̂,X)

(1 + δcos)2

1
n trQ̄

N
n Φ̂

TΦ̂Q̄Ksin − 1
n trQ̄Φ̂TKsin(X̂,X)

(1 + δsin)2

]

×Ω

[
yTQ̄KcosQ̄y
yTQ̄KsinQ̄y

]
.
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The last term Z22 can be similarly treated as

Z22 

1

n2n̂
E

N∑
i=1

∑
j �=i

yTQ−jUj

×

⎡
⎢⎢⎣

1
n
tr(QUiÛ

T
i Kcos(X̂,X))

(1 + δcos)2
0

0
1
n
tr(QUiÛ

T
i Ksin(X̂,X))

(1 + δsin)2

⎤
⎥⎥⎦UT

j Q−jy

where by lemma 2 we deduce

1

n
tr(QUiÛ

T
i Kcos(X̂,X)) 
 1

n
tr
(
Q−iUi(I2 +UT

i Q−iUi)
−1ÛT

i Kcos(X̂,X)
)


 1

n
tr

⎛
⎜⎝Q−iUi

⎡
⎢⎣

1

1 + δcos
0

0
1

1 + δsin

⎤
⎥⎦ ÛT

i Kcos(X̂,X)

⎞
⎟⎠


 1

n
tr(Q̄Φ̂TKcos(X̂,X))

so that by again lemma 4

Z22 

N

n

1

nn̂
E

N∑
j=1

yTQ−jUj

⎡
⎢⎢⎣

1
n
tr(Q̄Φ̂TKcos(X̂,X))

(1 + δcos)2
0

0
1
n
tr(Q̄Φ̂TKsin(X̂,X))

(1 + δsin)2

⎤
⎥⎥⎦UT

j Q−jy



(
N

n

)2
1

n̂
yT

E

[
Q

(
1
n
tr(Q̄Φ̂TKcos(X̂,X))

(1 + δcos)2
Kcos

+
1
n
tr(Q̄Φ̂TKsin(X̂,X))

(1 + δsin)2
Ksin

)
Q

]
y



(
N

n

)2
1

n̂
yT

(
Q̄ΞQ̄+

N

n

[
1
n
tr(Q̄ΞQ̄Kcos)

(1 + δcos)2

1
n
tr(Q̄ΞQ̄Ksin)

(1 + δsin)2

]
Ω

[
Q̄KcosQ̄
Q̄KsinQ̄

])
y



(
N

n

)2
1

n̂

[
1
n
tr(Q̄Φ̂TKcos(X̂,X))

(1 + δcos)2

1
n
tr(Q̄Φ̂TKsin(X̂,X))

(1 + δsin)2

]
Ω

[
yTQ̄KcosQ̄y
yTQ̄KsinQ̄y

]
.
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Assembling the estimates for Z1, Z21 and Z22, we get

E[Etest] 

1

n̂
‖ŷ‖2 − 2

n̂
ŷT N

n
Φ̂Q̄y+

1

n̂
yT

(
N 2

n2
Q̄Φ̂TΦ̂Q̄

)
y+

(
N

n

)2
1

nn̂

×
[

n
N trKcos(X̂, X̂) + N

n trQ̄Φ̂TΦ̂Q̄Kcos − 2 trQ̄Φ̂TKcos(X̂,X)

(1 + δcos)2

n
N trKsin(X̂, X̂) + N

n trQ̄Φ̂TΦ̂Q̄Ksin − 2 trQ̄Φ̂TKsin(X̂,X)

(1 + δsin)2

]

×Ω

[
yTQ̄KcosQ̄y

yTQ̄KsinQ̄y

]

which, up to further simplifications, concludes the proof of theorem 3.

Appendix D. Several useful lemmas

Lemma 5. (Some useful properties of Ω). For any λ > 0 and Ω defined in (12), we
have

(a) all entries of Ω are positive;

(b) for 2N = n, det(Ω−1), as well as the entries of Ω, scales like λ as λ→ 0;

Proof. Developing the inverse we obtain

Ω =

⎡
⎢⎢⎣
1− N

n

1
n
tr(Q̄KcosQ̄Kcos)

(1 + δcos)2
−N

n

1
n
tr(Q̄KcosQ̄Ksin)

(1 + δsin)2

−N

n

1
n
tr(Q̄KcosQ̄Ksin)

(1 + δcos)2
1− N

n

1
n
tr(Q̄KsinQ̄Ksin)

(1 + δsin)2

⎤
⎥⎥⎦

−1

we have [Ω−1]11 =
1

1+δcos
+ λ

n
trQ̄ Kcos

1+δcos
Q̄+ N

n
1
n
trQ̄ Kcos

1+δcos
Q̄ Ksin

1+δsin
> 0, [Ω−1]12 < 0, and simi-

larly [Ω−1]21 < 0, [Ω−1]22 > 0. Furthermore, the determinant writes

det(Ω−1) =

(
1− 1

n
trQ̄

Kcos

1 + δcos
+

λ

n
tr Q̄

Kcos

1 + δcos
Q̄

)

×
(
1− 1

n
tr Q̄

Ksin

1 + δsin
+

λ

n
tr Q̄

Ksin

1 + δsin
Q̄

)

+

(
1− 1

n
tr Q̄

Kcos

1 + δcos
+ 1− 1

n
tr Q̄

Ksin

1 + δsin

+
λ

n
tr Q̄

(
Kcos

1 + δcos
+

Ksin

1 + δsin

)
Q̄

)

× N

n

1

n
tr Q̄

Kcos

1 + δcos
Q̄

Ksin

1 + δsin
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where we constantly use the fact that Q̄N
n

(
Kcos

1+δcos
+ Ksin

1+δsin

)
= In − λQ̄. Note that

1− 1

n
tr Q̄

Kcos

1 + δcos
=

1

1 + δcos
> 0,

1− 1

n
tr Q̄

Ksin

1 + δsin
=

1
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so that (a) det(Ω−1) > 0 and (b) for 2N = n, det(Ω−1) scales like λ as λ→ 0. �

Lemma 6. (Derivatives with respect to N). Let assumption 1 holds, for any λ > 0
and
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defined in theorem 1, we have that (δcos, δsin) and ‖Q̄‖ are all decreasing functions of N.
Note in particular that the same conclusion holds for 2N > n as λ→ 0.

Proof. We write
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for Ω defined in (12) and Φ = Kcos
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+ Ksin

1+δsin
, which, together with lemma 5, allows us to

conclude that ∂δcos
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< 0. Further note that
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which concludes the proof. �

Lemma 7. (Derivative with respect to λ). For any λ > 0, (δcos, δsin) and ‖Q̄‖ defined
in theorem 1 decrease as λ grows large.
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Proof. Taking the derivative of (δcos, δsin) with respect to λ > 0, we have explicitly
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which, together with the fact that all entries of Ω are positive (lemma 5), allows us to
conclude that ∂δcos
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, ∂δsin
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and thus the conclusion for Q̄. �
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