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Abstract
With significant advances in imaging technology, multiple images of a person or an object are becoming readily available
in a number of real-life scenarios. In contrast to single images, image sets can capture a broad range of variations in the
appearance of a single face or object. Recognition from these multiple images (i.e., image set classification) has gained
significant attention in the area of computer vision. Unlike many existing approaches, which assume that only the images in
the same set affect each other, this work develops a group collaborative representation (GCR) model which makes no such
assumption, and which can effectively determine the hidden structure among image sets. Specifically, GCR takes advantage of
the relationship between image sets to capture the inter- and intra-set variations, and it determines the characteristic subspaces
of all the gallery sets. In these subspaces, individual gallery images and each probe set can be effectively represented via a
self-representation learning scheme, which leads to increased discriminative ability and enhances robustness and efficiency
of the prediction process. By conducting extensive experiments and comparing with state-of-the-art, we demonstrated the
superiority of the proposed method on set-based face recognition and object categorization tasks.

Keywords Image set classification · Group collaborative representation · Point-to-sets representation · Set-to-sets
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1 Introduction

With the development of image acquisition and transmis-
sion technologies, image set data is becoming increasingly
available. One example of such a dataset is a collection of a
person’s facial images gathered from surveillance systems or
from personal albums over a period of time; another exam-
ple is a collection of multiple images of an object captured
at different viewing angles by a network of cameras. For
each person or object, the collection of images may form
one or several image sets. The problem of classifying such
image sets is attracting increasing interest in the computer
vision and machine learning communities (Kim et al. 2007;
Harandi et al. 2011; Lu et al. 2013; Hayat et al. 2014, 2015;
Lu et al. 2015). Unlike traditional classification techniques
based on single images, image set classification techniques
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estimate the label of a probe (or testing) set given a number
of gallery (or training) sets.

In comparison to single images, image sets can incorporate
a broad range of variations in the appearance of a single
object, due to camera pose changes, non-rigid deformations,
or simply different lighting conditions. This information is
both potentially useful and a source of complex structure;
the challenges of image set classification lie in modeling the
structure inherent in image sets, andmeaningfullymeasuring
the similarity and differences between multiple sets.

Some approaches to modeling image sets include prob-
abilistically modeling each image set with a Gaussian
distribution (Arandjelovic et al. 2005; Shakhnarovich et al.
2002), and also representing the sets variously with linear
subspaces (Kim et al. 2007; Harandi et al. 2011), exemplars
or their affine or convex hulls (Cevikalp and Triggs 2010;
Hu et al. 2012; Yang et al. 2013; Zhu et al. 2014), or their
covariance matrices (Wang et al. 2012). Such methods rep-
resent each image set with a single model, and can have
difficulty adequately representing large intra-set variations
(arising from, e.g., images taken of the same face at different
times, under different lighting conditions, or when the per-
son has different expressions). In such cases where the set
structure is complex, single-model methods are inadequate.
Recently, researchers have proposed alternative multi-model
approaches (Wang et al. 2008, 2015; Wang and Chen 2009;
Chen et al. 2013) where each set is divided into several clus-
ters and each cluster is modeled with a local linear subspace
or a Gaussian distribution.

Although set-based representationmethods have achieved
promising performance, most retain the inherent limitation
that they exclusivelymodel intra-set structure and do not con-
sider the relationships between images from different sets.
However, one fact in face recognition is that the face images
from different sets still have similarity (sets belonging to one
person) and difference (sets belonging to different persons).
Thus, it is useful to model the local structure among images
within the same set and the relationships between different
sets. Another practical consequence of this limitation is that
these methods suffer when the image sets contain only a few
images. In this case, because of the paucity of training data in
the under-represented sets, it is difficult to capture their intra-
set structure well enough to effectively model these sets; this
leads to a decrease in the classification performance.

In addition to the choice of representation of the image
sets, the choice of set similarity or distance measure is
an important factor in the success of image set classifica-
tion. Most previous methods have used the nearest neighbor
scheme (Hu et al. 2012; Chen et al. 2013), which ignores the
relationships among gallery sets (training data). Zhang et al.
(2011) proposed a collaborative representation classification
mechanism (CRC) for the single image classification prob-
lem that represents each image with the training images from

all classes, thereby providing an alternative way to consider
the relationships among the classes during the classification
task. CRC has been empirically shown to be successful for
the facial recognition task. The recent image set collaborative
representation and classification (ISCRC)model of Zhu et al.
(2014) extends CRC to the image set classification problem.
However, ISCRC characterizes each image set with a sin-
gle exemplar, and therefore has the same limited ability as
other single-model representations to capture the complexity
in image sets.

In this paper, we propose a group collaborative represen-
tation approach (GCR) that aims to model both the variations
in each image set and the essential relationships among
image sets. GCR consists of two related representations,
as depicted in Fig. 1: point-to-sets representations (PSsR)
for the individual images in the gallery sets, and set-to-sets
representations (SSsR) for each probe set. To form these rep-
resentations, GCR first learns a multi-model representation
for each gallery set by employing spectral clustering on the
self-expressive coefficients of the images within each gallery
set (Lu et al. 2012). Each gallery set is then characterized by
the collection of mean vectors of the images within each
of its clusters. The PSsR representations express each train-
ing image as a linear combination of the collection of all
local models across all the gallery sets; a convex combination
of the group �1 and �2 regularizations (i.e., the group lasso
and ridge penalties) is employed to encourage representa-
tions that involve all the gallery sets while simultaneously
respecting the natural group structure inherent in the gallery
sets. Classifiers fit using PSsR representations gain from the
strengths of this collaborative multi-model representation as
well as the abundance of training data, since these repre-
sentations are available for each image in the training sets.
Complimentarily, SSsR represents an entire probe set (as
opposed to each image within the probe set) in terms of all
the gallery sets in a similarly regularized manner. By thus
separating the representations used at the training and test-
ing phases of classification, the GCR scheme reduces the
computational burden involved at the testing phase.

In the example shown in Fig. 2, the PSsR representation
enhances the separability of the gallery sets (from Fig. 2a–
c). Similarly, the proposed SSsR representation (shown in
Fig. 2d) more unambiguously associates the probe set in
this example with the appropriate gallery sets than does the
original representation (shown in Fig. 2b). This example
illustrates the discriminative power of the GCR representa-
tions, which can be taken advantage of using most traditional
classification methods by training on the PSsR representa-
tions and using the SSsR representations at test time.

The key to the performance of GCR lies in three areas.
First, because it uses the local models from all the gallery
sets as the dictionary with respect to which each training
image is represented, information on both intra- and inter-set
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Fig. 1 The framework of the proposedGCRmethod. InGCR, the image
set classification can be implemented with five steps. In Step 1, the local
structure is identified from each gallery set to form the dictionary D.
Step 2 represents each gallery image with the proposed PSsR model.
Each probe set is re-presented via the proposed SSsR model in Step 3.

In Step 4, the classifier [such as ridge regression (RR) or kernelized ver-
sion (KRR)] is trained on the new representation of gallery images. Step
5 predicts the label of each testing image set with the trained classifier
and new representation of testing data

Fig. 2 Representations of three
subjects from the Honda face
collection. Each gallery set
contains 100 images selected
from the corresponding subject,
and the probe set D consists of
100 additional images of the
subject in gallery set C. Panels a
and c depict 2-dimensional PCA
coordinates of the original
image representation (pixels)
and the PSsR representation of
the three gallery sets
respectively. Panel b
superimposes the PCA
representation of the probe set D
onto (a), and panel d
superimposes the SSsR
representation of the probe set D
(using a 10-cluster
representation) onto (c)

Using PSsR

Using PSsR and SSsR

Adding a 
probe set D

(a)

(b) (d)

(c)

variations are captured in the PSsR representations. Sec-
ond, the group lasso regularization encourages sparsity of
the PSsR and SSsR representations at the group level and
is therefore helpful in identifying the most related gallery
sets for each image or probe set, which increases the dis-
criminative power of these representations. Third, the ridge
penalty attempts to distribute the energy of the representa-

tions over all the localmodels, thereby increasing the stability
of the representations. Theoretically, this combination of reg-
ularizations has the salutatory effect of guaranteeing that
similar images have similar representations and two simi-
lar gallery sets contribute similarly to the representation of a
given image.
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GCR can also mitigate image set sparsity issues caused by
the presence of gallery setswith few images. This is due to the
fact that GCR (via PSsR), unlike existing single-model and
multi-model methods, represents every gallery image rather
than simply each gallery set. This, in combination with the
way the PSsR representation encourages the sharing of infor-
mation across gallery sets, assists in the modeling of gallery
sets with fewer images and provides more information dur-
ing the subsequent classification process. This is an important
advantage to the GCR model, as in realistic applications we
often do not have the opportunity to collect as many samples
from each image set as we would like.

The remainder of this work is organized as follows. In
Sect. 2 we review related works and we present the details
of the group collaborative representation model in Sect. 3. In
Sect. 3 we expound the optimization procedures for solving
PSsR and SSsR model, and in Sect. 4 we outline the image
set classification procedure using GCR representations. Sec-
tion 5 presents comprehensive experiments conducted on six
benchmark datasets: the results indicate that the GCR model
is computationally efficient and consistently achieves better
performance than eleven state-of-the-art techniques. Section
6 concludes with final remarks.

2 RelatedWorks

Two issues must be addressed when performing image set
classification: set representation, and the measurement of
relationships between sets. Existing image set classification
methods can be roughly divided into the categories of single-
model and multi-model methods, based on the manner in
which sets are represented. Single-model methods represent
each set with a single model, while multi-model methods use
multiple models.

Some single-model methods model image sets with
parametric probability distributions (e.g., Gaussians)
(Shakhnarovich et al. 2002; Arandjelovic et al. 2005) and
measure dissimilarity between image setswith theKullback–
Leibler divergence. Suchmethods sufferwhen thegallery and
probe sets do not exhibit any strong statistical relationship.
In order to avoid parameter estimation, other single-model
methods insteadmodel each image set via a single linear sub-
space that is selected to capture the intra-set variance (Kim
et al. 2007). Typically, this subspace is selected to be the
dominant eigenspace of the image set covariance matrix and
the distance between image sets is taken to be the principal
angles between their subspaces. In a refinement of thismodel,
Harandi et al. model image sets as points on a Grassmannian
manifold that is chosen to capture both intra-class compact-
ness and inter-class separability; various similarity measures
can then be applied to the final Grassmannian representation
to define the similarity of image sets (Harandi et al. 2011).

Althoughcomputationally attractive, linear subspacemod-
eling does not perform well when the image set has only
a few members or exhibits large and complex variations
(Wang et al. 2012). By nature, they also capture only very
weak information about the boundaries of image sets, which
negatively impacts their discriminative power (Cevikalp and
Triggs 2010). Consequently, researchers have also consid-
ered using representations based on the affine or convex hull
of image sets; the distance between image sets is then mea-
sured as the distance between the appropriate hulls. Cevikalp
and Triggs (2010) introduce affine and convex hull represen-
tations and find the distances by solving convex optimization
problems.Hu et al. (2012) use theCevikalp–Triggs affine hull
representation, but take the distance between image sets to be
the distance between two points in the sparse linear spans of
the respective image sets; an optimization problem is solved
to balance the sparsity with the closeness of the points. Yang
et al. (2013) represent image sets as the intersection of their
affine hull and an �p ball of specified radius, and take the
distance between image sets to be the Euclidean distance
between their representations. Thesemethods provide amore
expressive alternative to linearmodels, but incur significantly
higher computational costs and rely on the assumption that
image sets can be modelled as simple geometric structures.

More recently, Wang et al. (2012) proposed modeling
each image set with its covariance matrix, and Lu et al.
(2013), Uzair et al. (2014) extended this representation by
additionally including the mean and the outer-product of
the covariance matrix with the mean. To quantify set sim-
ilarities in Wang et al. (2012), the covariance matrices are
mapped from the manifold of positive-semidefinite matrices
to a Euclidean space, and the Log-Euclidean distance is used
as the distance metric. In Lu et al. (2013), a local kernel met-
ric learning method is used to learn an appropriate similarity
function, and in Uzair et al. (2014), a sparse kernel learning
technique is used to learn a discriminative combination of
a small number of several candidate kernels including the
Log-Euclidean distance kernel. More generally, several met-
ric learning methods have been proposed to find efficacious
set-to-set and point-to-set metrics (Zhu et al. 2013; Huang
et al. 2014) when sets are modeled as points on a Rieman-
nian manifold.

The above models attempt to capture each image set using
a single model, so can be expected to have trouble accu-
rately capturing image sets with large internal variations. To
mitigate this situation, multi-model approaches have been
proposed that extract multiple local models from each image
set via clustering, linear patch constructions, or joint sparse
approximation (Wang et al. 2008; Wang and Chen 2009;
Chen et al. 2013). Wang et al. (2015) recently extended this
line of work by modeling image sets as Gaussian mixtures
and using kernelized discriminant analysis to perform face
recognition with image sets.
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Thesemulti-model approaches havedemonstratedpromis-
ing performance on image set classification, but ignore the
relationships between image sets when representing image
sets. In fact, using information from other image sets within
the same class when learning the representation of a given
image set may increase the discriminative power of the
learned representation. As an example, the Template Deep
Reconstruction Model of Hayat et al. (2015) learns a tem-
plate for each class by fitting a deep neural network using all
of the image sets from within that class, and classification
is carried out by voting based on the reconstruction errors
of all the templates when applied to a probe image set. The
semi-supervised clustering framework of Mahmood et al.
(2014) clusters all gallery and probe images simultaneously,
thereby learning the distribution over the clusters for both the
probe image set and the classes represented in the gallery; to
classify, the probe image set is assigned to the class whose
distribution over the clustersmost resembles that of the probe
set. Zhu et al. (2014) introduced a collaborative representa-
tion approach in which the probe set is represented as a point
in the convex hull of the gallery images, but this method is
limited by the fact that each image set is represented as a sin-
gle point, and all gallery sets are treated equally in learning
the representations.

Unlike previous works, in this work we represent each
gallery image and each probe set using all the gallery data,
and the influence of each gallery set on the representation
of a given image or set varies intelligently depending on its
importance to the probe.We exploit the structure within each
gallery set and the relationships between the gallery sets to
learn group collaborative representations (GCRs) for both
images and sets. The former we call point-to-sets represen-
tations (PSsRs), and use to represent gallery images, and the
latter we call set-to-set representations (SSsRs) and we use
to represent probe image sets. Because of the group collabo-
rative regularization, the PSsR and SSsR representations are
more discriminative than existing representations. Addition-
ally, since both representations are compact, the training and
testing procedures are efficient. Complete details of these
representations are given in the next section.

3 Group Collaborative Representation

Let the gallery data be X = {X j }1≤ j≤g ∈ R
d×N . Here, g is

the number of image sets and there are N total gallery images.
The j th gallery set X j = {x j

i }1≤i≤n j ∈ R
d×n j

contains n j

images (hence N = ∑g
j=1 n

j ); here, x j
i ∈ R

d indicates the

i th image in the j th gallery set. Similarly,U = {U j }1≤ j≤p ∈
R
d×M denotes the probe data with p sets, each probe set

U j = {u j
i }1≤i≤m j has m j images, and u j

i ∈ R
d indicates

the i th image in the j th probe set. The total number of probe
images is M = ∑p

j=1m
j .

Our method aims to characterize each gallery image and
each probe set using all the gallery data, in order to best use
the intra- and inter-set variations to improve the discrimi-
native ability of the representation. To capture the complex
structure in gallery set X j , we extract from it multiple sub-
spaces and represent it with their subspace means. We then
represent each gallery image and probe set with respect to
the dictionary formed by the collection of subspace means
from all the gallery sets. A group collaborative regularization
is enforced on the coding coefficients to ensure that the most
relevant gallery sets are selected to encode the input data.
Furthermore, the group collaborative regularization assists
in ensuring that data from the same set have similar repre-
sentations,which is a critical property in representations used
for image classification.

3.1 Multiple Model Extraction

Because of the processes that generate image sets (e.g., vari-
ation in lighting or pose in the case of facial image sets),
the image set usually has complicated structure. Fortunately,
one common observation is that the set is approximated well
by the union of several low-dimensional subspaces (Vidal
2011), which motivates us to segment our gallery sets into
several clusters of low-dimensional subspaces, and then use
these subspace means to represent the set’s local models.

Several subspace clustering methods have been proposed
in the literature; their applicability and accuracy vary depend-
ing on the domain of application, but they usually fall
into one of four classes: algebraic, iterative, statistical, and
spectral clustering-based (Vidal 2011). Among these, spec-
tral clustering-based methods have demonstrated the ability
to capture both global and local structure from the self-
expressive coefficients (Vidal 2011). Lu et al. proposed a
least squares regression method (LSR) to efficiently com-
pute the self-expressive coefficients which are then used as
inputs to a spectral clustering algorithm to obtain the clus-
ter centers and the cluster membership of each instance (Lu
et al. 2012). We follow this method and formulate the mul-
tiple models extraction from gallery set X j ∈ R

d×n j
as the

ridge regression problem

min
Z

‖X j − X j Z‖2F + λ‖Z‖2F .

s.t. diag(Z) = 0
(1)

Here, Z = [z1, z2, . . . , zn j ] ∈ R
n j×n j

is the matrix of self-
expressive coefficients. Each entry zba indicates the extent
to which the bth image x j

b contributes to the representation

of the ath image x j
a . diag(Z) ∈ R

n j
is a vector (∈ R

n j
) and

its component is the corresponding diagonal entry of Z. The
constraint diag(Z) = 0 is adopted here to avoid the trivial
solution of (1). This model encourages the coefficients of
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a group of correlated images to be approximately equal (Lu
et al. 2012), which is helpful for clustering. An affinitymatrix
among the images is then defined as (|Z| + |Z|T )/2. Here λ

is set to 1 in experiments.
After applying spectral clustering to the affinity matrix,

one obtains the cluster membership of all the images in X j ,
denoted by C j ∈ R

n j×c. When the i th image is assigned to
the r th cluster, C j

ir = 1, otherwise C j
ir = 0. The subspace

corresponding to the r th cluster is represented by the mean

vector of its members, denoted by d j
r =

∑n j
i=1 C

j
ir x

j
i

∑n j
i=1 C

j
ir

∈ R
d .

Note that the number of clusters (c) is a pre-defined param-
eter. For simplicity, we use the same c for all sets, i.e.,
we extract the same number of local models from all sets.
The effect of c is empirically demonstrated and discussed in
Sect. 5.

After extracting the local models from the gallery sets,
we can form the dictionary D = {D j } = {d j

r } ∈ R
d×cg ,

where 1 ≤ j ≤ g indicates the gallery index and 1 ≤ r ≤ c
indicates the index of the local model extracted from the
corresponding gallery set. The dictionary D is divided into
g subdictionaries D j corresponding to the j th gallery set.
Replacing the original images with the means of subspaces
is good way to extract the multi-model structure from each
gallery set. This is reasonable because the subspace means
can simultaneously remove the noisy or redundant informa-
tion from each image set and capture its local multi-models
of each set.

3.2 Point-to-Sets Representation (PSsR)

In this subsection, we introduce our group collaborative
representation for individual images, the Points-to-Sets rep-
resentation (PSsR).

In many previous works, regardless of whether sets use
a single or multi-model representation, each image is repre-
sented by exactly one of the models (e.g., the nearest cluster
center). This choice may be suboptimal, as an image may be
better represented by a combination of multiple models. Fur-
ther, as discussed in Zhang et al. (2011), data from different
classes may share similarities.

Motivated by these considerations, rather than represent-
ing a given image only in terms of a single model from one
gallery set, we represent it in terms of all the models from
all the gallery sets. To avoid clutter, we use x to refer to
gallery image x j

i in the following sections. A first pass at a
satisfactory representation of x is given by the minimizer of

min
z

1

2
‖x − Dz‖22. (2)

Since the dictionary D contains the models from all the
gallery sets, models from multiple classes can all potentially

contribute to modeling x. Popular alternative choices for the
loss function include the logistic loss and hinge loss. How-
ever, it has been shown that the least squares loss function is
universally Fisher consistent and shares the same population
minimizer with the squared hinge loss function (Zou et al.
2008). The least square loss function is also more convenient
computationally.

Recall that the dictionary D is naturally divided into sub-
dictionaries corresponding to the different gallery sets. It is
reasonable to expect that the support of the representation
coefficients z of each image across D should reflect this
grouping. In particular, the contributions of different gal-
leries to a given image should vary in importance, so rather
than treat the subdictionaries equally, we add a weighted
group lasso term to (2) with weights chosen according to
the expected relevance of each gallery set to this image:

Ω1(z) = λ1

g∑

j=1

w j‖zG j ‖2. (3)

Here, w = {w j } j=1,...,g ∈ R
g is the set of gallery weights

and G j is the set of indices corresponding to the j th subdic-
tionary in D. More specifically, when

D =
{
d11, d

1
2, . . . , d

1
c, d

2
1, d

2
2, . . . , d

2
c, . . . , d

g
1, d

g
2, . . . , d

g
c

}
,

(4)

the set of indices corresponding to the j th gallery set is

G j = {( j − 1)c + 1, . . . , ( j − 1)c + c}. (5)

This weighted group lasso term imposes sparsity at the
gallery level, so as λ increases, the number of gallery sets
with non-zero contributions to the representation of the image
decreases (Yuan and Lin 2006).

To choose the weights, we follow the local consistency
assumption (Cai et al. 2011), and take w j to be the normal-
ization of the average Euclidean distance between the image
and the elements of the j th subdictionary:

w j = Distavg(x, D j )
∑g

i=1 Distavg(x, Di )
, (6)

where

Distavg(x, D j ) = 1

c

c∑

r=1

‖x − d j
r ‖2.

This choice of weights ensures that the group coefficients
zG j approach zero if the image is far from the j th gallery
set. This is a desirable property, as it ensures that images
are only represented in terms of galleries which have some

123



International Journal of Computer Vision

relation to the image, thereby increasing the stability of the
image representations.

On theother hand, solely using this group lasso termwould
violate our desire that the collaborative representation use all
of the local models. To remedy this situation, we use the �2-
norm regularizer

Ω2(z) = λ2‖z‖22. (7)

This regularizer essentially imposes a Gaussian prior on the
entries of the z, which penalizes sparse vectors and thereby
helps spread the support of the coefficients out among all the
models. Simultaneously, it encourages similar local models
to contribute similar amounts to the representation of the
image x (Zou and Hastie 2005).

Our final PSsR representation of x is the coefficient vector
z that minimizes the combination of (2), (3), and (7):

min
z

1

2
‖x − Dz‖22 + λ1

g∑

j=1

w j‖zG j ‖2 + λ2‖z‖22, (8)

The parameters λ1 and λ2 determine the tradeoff between the
fidelity and regularization terms.

The proposed model (8) has two theoretical properties.
First, two images have similar representation vectors zi and
z j if they have similar ridge regression coefficients against
dictionary D; this is quantified in Theorem 1.

Theorem 1 Given two images x1 and x2, let

βRR(xi ; λ2) = (DT D + λ2 I)−1DT xi

denote the ridge regression coefficients of xi against D with
regularization parameter λ2. The PSsR representations z1
and z2 of x1 and x2 satisfy

‖z1 − z2‖2 ≤ ‖βRR(x1; λ2) − βRR(x2; λ2)‖2 + 2λ1
λ2

.

Second, if two image sets have similar ridge regression
coefficients against dictionary D, they will make similar
contributions to the representation of any image; this is quan-
tified in Theorem 2. These two stability properties make the
PSsR a discriminative representation and contribute towards
the improvement of the performance of classifiers which use
PSsRs as inputs.

Theorem 2 Let z denote the PSsR of an image x and let
βRR(x; λ2)be as defined inTheorem1. Each pair (zG j , zGk ),
consisting of the coefficients of the j th and kth gallery sets,
satisfies

‖zG j − zGk‖2 ≤ ‖βRR(x; λ2)G j − βRR(x; λ2)Gk‖2
+ λ1

λ2
(w j + wk).

The dependence of the bounds in Theorems 1 and 2 on λ1/λ2
suggests that as this ratio decreases, both types of stability
(similar images having similar representations, and similar
galleries contributing similarly to the PSsR of an image)
increase. Thus we expect that the optimal choice of λ1 is
smaller than the optimal choice of λ2; this is empirically ver-
ified in “Appendix 3”.

Proofs of the theorems are given in “Appendix 1”.

3.3 Set-to-Sets Representation (SSsR)

From a practitioner’s perspective, it is important that clas-
sification algorithms be both highly accurate and quickly
applicable to probe sets. The PSsR representation scheme
can certainly be used to build classifiers for the individual
images in probe sets, however applying classifiers to each
image in the probe sets would be time-consuming. Also, as
our primary goal is to obtain a prediction at the set-level, the
final prediction for the entire probe set requires an additional
step such as voting; voting and similar aggregation strate-
gies may be sensitive to noise and outliers in the individual
images.

To avoid the difficulties just mentioned, we propose build-
ing classifiers that use a set-to-sets representation (SSsR) for
the i th probe set (U i ∈ R

d×mi withmi images). To calculate
the SSsR, we first group the images of the probe set into c
clusters using subspace clustering, so that each cluster cor-
responds to one subspace (see Sect. 3.1). Let U i

r ∈ R
d×mi

r

denote the mi
r images belonging to the r th subspace, then

U i = [U i
1, . . . ,U

i
c] and

∑c
r=1 m

i
r = mi . Similarly to the

PSsR, the SSsR of each subspace U i
r expresses this sub-

space in terms of the entire dictionary D of gallery images
by solving the optimization problem

min
z, y

‖U i
r y − Dz‖22 + λ1

g∑

j=1

w j‖zG j ‖2 + λ2‖z‖22 + λ3‖ y‖22

s.t.
mi
r∑

k=1

yk = 1. (9)

Here the dictionary D and group indices G j are defined in
(4) and (5) respectively. The coefficient w j for a fixed clus-
ter U is obtained by averaging the w j defined in (6) over
the images in U . Each subspace U is thus represented by
z, and the SSsR of a certain point U y in its affine hull. The
ridge regression term ‖y‖22 ensures that the chosen points bal-
ance between minimizing the SSsR representation objective
and using all of the images in U i . Once the representations
zr for the individual subspaces U i

r have been learned, the
SSsR representation of the probe set is Z = [z1, . . . , zc] ∈
R
cg×c. Because SSsR is a more stable representation of a

123



International Journal of Computer Vision

probe set, voting strategies become less sensitive to noise
and outliers in SSsRs than in the PSsRs of the individual
images (see Table 9 in Sect. 5.5). Appropriate values of the
trade-off parameters for the four terms can be tuned via cross-
validation.

3.4 Discussion

Our proposed group collaborative representation model first
extracts subspaces from the gallery sets, then represents every
gallery image and every probe set with the aid of these
extractedmultiplemodels (subspaces), using respectively the
PSsR and SSsR representations. Thus, the GCR model can
be understood as both a multi-model representation and a
collaborative representation model.

Most existing multi-model methods aim to capture the
intra-set structure (Wang et al. 2008; Wang and Chen 2009;
Chen et al. 2013; Wang et al. 2015), i.e., they model each
set with the information that the current set contains. Such
models ignore the relationships between sets, even setswithin
the same class. Also, since the statistical information used
to characterize the sets are drawn solely from that set (e.g.
means and covariance matrices), the learned statistics can
have low confidences if there are insufficiently many images
in the set. Our GCR model addresses these two deficiencies
of multi-model representations by building representations
formed with the aid of all gallery sets.

Zhu et al. (2014) also used the idea of collaborative repre-
sentation (Zhang et al. 2011) to represent each image set with
all the gallery sets. This allows their model to capture and
exploit the relationships between all the training data. How-
ever, they adopted a single model representation for each set;
the resulting information loss degrades the performance of
classifiers built using their representations.

The proposed GCR model uses a multi-model collabo-
rative representation that captures both intra- and inter-set
relationships. The group lasso and ridge penalty are used in
fitting both PSsR and SSsR to promote democratic repre-
sentations. These regularizers balance the need to use all of
the training data when generating the representation with the
need to use the most relevant training data. Thus the GCR
representation captures more useful discriminative informa-
tion than prior representations.

3.5 Optimization Procedure

The optimization problems (8) for PSsR and (9) for SSsR
are convex and can be solved by various methods. For sim-
plicity in dealing with the group lasso penalty, we employ
the alternating direction multiplier method (ADMM) (Boyd
et al. 2011) to find the optimal solution. More detail is given
in “Appendix 2”.

4 Image Set Classification Using the GCR
Representations

Either of the two GCR representations could be used to
train and apply image set classifiers, but they possess dif-
ferent relative advantages. In particular, the PSsR provides
more detailed and abundant information about image sets
than the SSsR, however the SSsR can be computed much
more quickly and results in a more concise representation
of image sets. These observations suggest training classifiers
using PSsR, to maximize the amount of information avail-
able during the training process, and applying them to probe
sets using SSsR, to reduce the application cost. We follow
this prescription, with one exception noted below.

Using PSsR, each image in each gallery set is repre-
sented as a vector in R

cg , therefore either existing set-based
classification methods or traditional classification methods
(supplemented by, e.g., voting) can be used to build image
set classifiers. In prior works, the nearest neighbor approach
was usually adopted to estimate the labels of a probe set.
However, local classification methods like nearest neighbors
ignore the global information implicit in the gallery sets.
Accordingly, in the remainder of this work, we use ridge
regression (RR) and its kernelized version (KRR) (Saunders
et al. 1998) to build image set classifiers.

Let Z ∈ R
cg×N contain the PSsRs of g gallery image

sets comprising a total of N images. Given that there are L
classes, let F ∈ R

N×L be the class indicator matrix of the
images, so Fi j = 1 if the i th image belongs to the j th class
and otherwise Fi j = 0. The RR and KRR models learn a
classifier by solving the optimization problem

min
H

‖φ(Z)T H − F‖2F + β‖H‖2F , (10)

where the feature map φ maps from R
cg into R

p for some
integer p. In the case of RR, φ(Z) = Z, and the minimizer
of this problem is

H = (ZZT + β I)−1ZF. (11)

Defining the kernel matrix K = φ(Z)Tφ(Z), the solution
for KRR is

H = φ(Z)(K + β I)−1F. (12)

In our experiments with KRR, we consider both the mean
kernel (Uzair et al. 2014) and Riemannian kernel (Wang et al.
2012). For the new representation output by GCR, we cal-
culate the mean and covariance matrix of the PSsRs of the
subset containing the i th image for two kernels. To apply
the trained classifiers to a probe set, we compute the SSsR
Ẑ ∈ R

cg×c of the probe set and predict the class indicator
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matrix F̂ of the probe set as

F̂ = Ẑ
T
H = Ẑ(ZZT + β I)−1ZF (13)

for RR, and

F̂ = φ(Ẑ)T H = K ′(K + β I)−1F (14)

for KRR. Here K ′ = φ(Ẑ)Tφ(Z) measures the similarity
between the probe set and the gallery sets. For the mean
kernel,

K ′
i j = exp

(−‖ ẑi − μ j‖2
σ 2

)
(15)

where μ j is the mean of the PSsRs of the gallery images
which belong to the same subset as the j th image.

KRR using the Riemannian kernel is the exception men-
tioned earlier to our prescription of using the PSsR during
training and SSsR at test time. This is because for the Rie-
mannian kernel

K ′
i j = tr

(
log(Σ̂ i ) log(Σ j )

)
,

where Σ̂ i and Σ j are the covariance matrices of the subset
containing the i th probe vector and the subset containing
the j th gallery image. SSsR provides only one vector for
each of the c subsets learned during the SSsR procedure, but
several are required to compute a covariance matrix. Thus
when using the Riemannian kernel for classification, we use
the PSsR during both training and testing.

The predicted class matrix F̂ ∈ R
c×L provided by RR

or KRR provides a soft prediction of the class for each of
the c subsets in the probe set. To merge these predictions to
obtain a single class for the probe set, we adopt the weighted
average voting scheme of Yang et al. (2013):

j = argmax
j

1

δ j

(
1

c

c∑

r=1

F̂r j

)

. (16)

The weight δ j serves as a confidence measure for the accu-
racy of the prediction of the j th class; it is defined as the
sum of the singular values of the PSsRs of the gallery images
in the j th class, δ j = ∑

i σi (Z
( j)). One expects that if δ j is

large, there is a large amount of variation in the images drawn
from the j th class, so the confidence of the classifier for the
j th class will be lower. Thus, this voting scheme weighs the
predictions of the j th class inversely proportional to δ j .

5 Experiments

To demonstrate the performance of our proposed GCR
model, a series of experiments are conducted on six real-
world image datasets for two typical computer vision tasks:
face recognition and object categorization.

5.1 Datasets

In experiments, six 2D image datasets including four face
datasets and two object image datasets are used to evalu-
ate the proposed model. In face datasets, the facial images
extracted from each video clip form one image set. In object
datasets, the images of an object constitute one image set.

Honda/UCSD (Lee et al. 2003) consists of 59 video
sequences featuring 20 different subjects. Face images were
obtainedusing theViola–Jones face detector (Viola and Jones
2004) and resized to 20 × 20 pixels. Following Hu et al.
(2012), Zhu et al. (2014), we processed the images using
histogram equalization. One set per subject was randomly
selected for training the classifiers (20 sets in total); the
remaining 39 sets were used during testing.

Mobo (Gross and Shi 2001) is a human pose identification
dataset containing 96 video sequences of 24 subjects. Face
images were extracted and resized to 40 × 40 pixels. Fol-
lowing Zhu et al. (2014), Yang et al. (2013)the images are
represented using LBP features. One set is randomly selected
from each subject to use in training, and the remainder are
used in testing.

YouTube Celebrities (YTC) (Kim et al. 2008) is a chal-
lenging video dataset containing 1910 video clips of 47
celebrities. The images of each subject were collected under
varying lighting and with diverse facial expressions and
poses. The Viola–Jones face detector was used to extract face
images which were subsequently resized to 32 × 32 pixels.
We used LBP histogram features to represent the images, as
we found this choice enhances the performance of most of
the compared methods. Each clip is considered as one image
set. Following Zhu et al. (2014), Yang et al. (2013), Hu et al.
(2012), for each subject, 3 sets are randomly selected for
training and 6 sets for testing.

YouTube Faces (YTF) (Wolf et al. 2011) contains 3425
videos of 1595 subjects. Each video is taken as an image set.
FollowingHayat et al. (2015), only the 226 subjects with four
or more videos are used. LBP features provided by the author
are used to represent the images.We randomly selected 3 sets
from each subject for training and use the rest for testing.
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Table 1 Summary of the
datasets

Datasets Honda Mobo YTC YTF ETH-80 RGB-D

Classes (c) 20 24 47 226 8 51

Sets/c 1–5 4 9 4–6 10 3–14

Images/set 13–618 202–897 7–350 48–2175 41 99–172

Gallery sets/c 1 1 3 3 5 3

Probe sets/c 0–4 3 6 1–3 5 0–11

ETH-80 contains images representing 8 object categories.
Each category is divided into 10 sub-categories, each of
which contains 41 multi-view images resized to 32 × 32
pixels. The images are represented using LBP features. In
our experiments, each subcategory is taken as a image set.
We randomly selected 5 sets of each of the subcategories for
training and used the remaining 5 sets for testing.

RGB-D (Lai et al. 2011) contains RGB and depth video
sequences corresponding to 51 common household objects,
taken from multiple viewing angles. Each multi-frame video
sequence is taken as an image set. Each image is resized to
32 × 32 pixels and its intensity is used as the input feature
representation.We randomly selected 3 sets from each object
for training and used the remaining sets for testing.

The data sets are summarized in Table 1. The number
of classes per dataset varies between 8 and 226. Usually
classification is harder for datasets with more classes, so in
particular, facial recognition on the YTF dataset is a chal-
lenging task. Also, the number of images in each set varies
by a lot both between datasets and within the classes of each
dataset; this further affects the performance of most existing
image set classification methods, as fewer images provide
less information to be used in modeling the set. For each
dataset, the training and testing subsets are randomly gener-
ated 10 times and the average results are reported. When the
number of probe sets is zero for one class, it means that there
is no testing data in the corresponding class.

5.2 Methodology

We compare the performance of our proposed method to
eleven existing methods. Eight of the baseline methods are
single-model methods; the remaining three are multi-model
methods.

Of the single-model methods, five take exemplar-based
approaches in which each image set is represented by an
exemplar:

– AHISD (Cevikalp and Triggs 2010),
– CHISD (Cevikalp and Triggs 2010),
– SANP (Hu et al. 2012),
– RNP (Yang et al. 2013), and
– ISCRC (Zhu et al. 2014);

and three take structure-based approaches in which each set
is represented as an affine/convex hull, or as a subset of a
Riemannian manifold:

– DCC (Kim et al. 2007),
– CDL (Wang et al. 2012), and
– SSMDL (Zhu et al. 2013).

The multi-model methods considered are

– MMD (Wang et al. 2008),
– MDA (Wang and Chen 2009), and
– DARG (Wang et al. 2015).

The codes for all thesemethodswere available on the authors’
websites, with the exception of DARG. Due to there being no
publicly available code, we implemented DARG in MAT-
LAB.

These single-model methods have several hyperparame-
ters: for DCC, the dimension of each subspace is set to 10;
for CDL, Partial Least Squares is used as the classifier; for
SSMDL, the number of positive pairs per set is selected from
{1, 3, 5} and the number of negative pairs per set is selected
from {3, 5, 10}; for AHISD and CHISD, the percentage of
energy preserved by PCA is set to 90 and the loss penalty
parameter C is set to 100. To determine the parameters used
in SANP, RNP and ISCRC to balance between the loss func-
tion and the regularization term, we used values from the
set {10−4, 10−3, 10−2, 10−1, 100, 101} and recorded the best
results. For ISCRC, the number of atoms per set is selected
from {5, 10, 20}.

For the multi-model methods MMD, MDA and DARG,
the number of local models is selected from {1, 3, 5, 7} and
the best results are reported. The percentage of energy pre-
served by PCA and the distance ratio for MMD are set
following Wang et al. (2008). For MDA, the number of
between-class neighboring local models is set to 5. The fus-
ing coefficients used inDARG for combining kernels derived
from the Mahalanobis and Log-Euclidean distances are cho-
sen following Wang et al. (2015).

We built RR and KRR classifiers using the proposed GCR
model. These classifiers are denoted with GCR for classifiers
built using RR on top of GCR, GCR(m) for classifiers built
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Table 2 Classification accuracy (average ± standard deviation) of GCR and baseline methods

Methods Honda Mobo YTC YTF RGB-D ETH

RR 93.08±2.43 97.08±1.02 69.22±3.97 36.37±1.12 62.95±3.97 88.75±4.75

GCR 98.72±1.81 98.61±0.65 77.80±3.50 53.86±2.92 72.86±2.91 92.12±3.99

KRR(m) 97.95±2.02 97.64±0.67 69.22±3.97 49.39±1.96 75.00±3.41 91.75±4.42

GCR(m) 99.74±0.81 98.19±0.93 79.30±2.92 52.22±2.21 70.37±3.41 90.25±3.74

KRR(r) 99.74±0.81 92.36±2.10 61.67±3.57 37.78±1.83 79.80±2.83 92.75±4.16

GCR(r) 99.74±0.81 93.33±2.51 63.64±3.31 42.23±2.58 83.06±1.88 96.50±3.07

using KRR with the mean kernel, and GCR(r) for classifiers
built using KRR with the Riemannian kernel. The effect of
parameters on GCR has been tested and the detail is given in
“Appendix 3”.

Classification performance is evaluated via accuracy.
Given p probe sets with ground truth label li for the i th
probe set and corresponding predicted label fi , the accuracy
is defined via

Accuracy =
∑p

i=1 δ(li , fi )

p
. (17)

Here δ is theKronecker delta: δ(x, y) = 1 if x = y, otherwise
δ(x, y) = 0.

5.3 Integrating Hand-Crafted Features with GCR

In this section, three experiments are conducted to demon-
strate the performance of GCR with the aid of hand-crafted
features.

5.3.1 Comparing with Single Image-Based Classifiers (RR
and KRR)

In this subsection, two single image-based classifiers, RR and
KRR, are used as baselines to demonstrate the performance
of the proposed GCR framework. The label of a probe set is
predicted by a majority voting scheme. For each data set, all
images are used to train the classifier.

The results are shown in Table 2, where GCR is based
on RR, and GCR(m) and GCR(r) are based on KRR with
the mean kernel and the Riemannian kernel respectively.
The best results are in bold, and the second-best results are
underlined. As expected, the proposed GCR framework out-
performs the corresponding baseline. This result confirms
that considering intra-set local structure and inter-set rela-
tionship is helpful to construct the new representation for
the gallery images and probe sets and further enhance the
set-based image classification accuracy.

Fig. 3 Face examples from the Honda and Mobo datasets. a Honda, b
Mobo

Fig. 4 Face examples from the YTC and YTF datasets. a YTC, b YTF

5.3.2 Set-Based Face Recognition

In this subsection, we compare the performance of our
proposed method with that of eleven existing methods on the
task of set-based face recognition. Set-based face datasets
are commonly extracted frompersonal videos or surveillance
recordings. Each set of images consists of consecutive frames
featuring one person’s face.

Figures 3 and 4 show examples of sets of face images cor-
responding to different subjects. It can be seen that, because
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Table 3 Classification accuracy
(average± standard deviation)
of fourteen methods on the
Honda dataset

Methods 50–50 100–100 All

DCC (Kim et al. 2007) 77.09±3.34 83.08±3.23 92.01±3.21

CDL (Wang et al. 2012) 97.95±1.62 99.49±1.08 99.49±1.08

SSDML (Zhu et al. 2013) 89.23±4.49 88.46±4.05 89.61±3.89

AHISD (Cevikalp and Triggs 2010) 93.85±3.66 93.97±2.62 93.81±2.97

CHISD (Cevikalp and Triggs 2010) 90.77±3.46 92.92±5.37 94.62±2.54

SANP (Hu et al. 2012) 92.82±3.97 93.85±3.66 91.79±3.37

RNP (Yang et al. 2013) 96.67±3.02 96.51±2.86 96.92±2.64

ISCRC (Zhu et al. 2014) 97.95±2.35 98.46±1.79 98.97±1.73

MMD (Wang et al. 2008) 87.94±3.42 88.20±3.86 90.25±2.35

MDA (Wang and Chen 2009) 88.72±4.04 90.26±5.51 92.82±4.80

DARG (Wang et al. 2015) 96.41±1.93 98.72±2.24 99.23±1.05

GCR 98.72±1.81 99.74±0.81 98.72±1.81

GCR(m) 98.97±2.47 98.97±1.32 99.74±0.81

GCR(r) 99.49±1.08 99.74±0.81 99.74±0.81

Table 4 Classification accuracy
(average± standard deviation)
of fourteen methods on the
Mobo dataset

Methods 50–50 100–100 All

DCC (Kim et al. 2007) 88.30±5.41 90.69±3.01 91.25±1.61

CDL (Wang et al. 2012) 82.36±3.34 85.89±2.94 88.86±3.10

SSDML (Zhu et al. 2013) 95.95±2.46 96.62±2.40 97.03±1.77

AHISD (Cevikalp and Triggs 2010) 96.35±2.30 96.89±1.28 97.70±1.43

CHISD (Cevikalp and Triggs 2010) 95.68±2.78 97.30±1.68 96.76±1.30

SANP (Hu et al. 2012) 91.38±3.91 92.08±3.82 97.92±1.18

RNP (Yang et al. 2013) 96.81±1.27 97.78±1.68 98.06±1.87

ISCRC (Zhu et al. 2014) 96.49±1.77 97.81±1.42 97.79±1.24

MMD (Wang et al. 2008) 91.39±3.91 92.08±3.82 92.50±3.53

MDA (Wang and Chen 2009) 93.06±1.38 94.44±3.14 96.66±1.63

DARG (Wang et al. 2015) 96.94±1.57 97.64±1.93 97.62±0.87

GCR 98.19±1.32 98.47±1.02 98.61±0.65

GCR(m) 97.78±1.49 97.92±1.63 98.19±0.93

GCR(r) 88.47±2.70 93.06±3.33 93.33±2.51

the videos in the YTC and YTF datasets were recorded
in unconstrained environments, each face set exhibits a
large variance in lighting conditions, poses, and expressions.
Accordingly, face recognition in the YTC and YTF datasets
is more challenging than face recognition in the Hondo and
Mobo datasets.

To evaluate the effect of set size on these methods,
we measured the classification accuracy while varying the
face set size for both the gallery and probe sets between
50 images, 100 images, and all available images. Sets
which contain less than 50 frames are always used in their
entirety.

The 10-fold cross-validated average and standard devi-
ation of the classifier accuracies on the Honda and Mobo
datasets are recorded in Tables 3 and 4 respectively. Although
most of the methods achieve comparable performances on

these two datasets, classifiers based on our proposed GCR
model consistently obtain the best results. More specifically,
Riemannian KRR using GCR representations as input fea-
tures [i.e., GCR(r)] outperforms the other methods on the
Honda dataset, and RR using GCR representations as input
features (i.e., GCR) exhibits the best performance on the
Mobo dataset.

The prediction results on the YTC and YTF datasets are
listed in Tables 5 and 6 respectively. As expected, even
simply using ridge regression, our proposed GCR represen-
tations significantly outperform the existing set-based image
classification methods. This result confirms that the group
collaborative representations more successfully capture the
structure of the gallery and probe image sets than existing
single-model and multi-model representation methods.
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Table 5 Classification accuracy
(average± standard deviation)
of fourteen methods on the YTC
dataset

Methods 50–50 100–100 All

DCC (Kim et al. 2007) 66.64±4.41 68.37±3.84 69.12±3.81

CDL (Wang et al. 2012) 47.29±3.57 54.43±4.24 55.73±4.36

SSDML (Zhu et al. 2013) 74.08±3.87 74.98±3.96 75.38±3.34

AHISD (Cevikalp and Triggs 2010) 72.18±3.16 72.98±3.02 73.42±2.78

CHISD (Cevikalp and Triggs 2010) 73.54±2.93 73.44±3.61 73.73±3.90

SANP (Hu et al. 2012) 72.20±2.91 73.31±3.52 73.61±3.36

RNP (Yang et al. 2013) 74.98±3.96 75.38±3.34 74.08±3.87

ISCRC (Zhu et al. 2014) 75.33±3.70 75.48±4.10 76.33±2.91

MMD (Wang et al. 2008) 71.06±4.73 71.27±3.55 71.13±3.14

MDA (Wang and Chen 2009) 75.76±3.50 75.38±2.95 75.82±3.95

DARG (Wang et al. 2015) 76.36±3.43 76.56±3.61 76.98±3.05

GCR 77.67±3.56 77.75±3.82 77.80±3.50

GCR(m) 78.80±2.84 79.18±3.10 79.30±2.93

GCR(r) 55.28±3.77 61.64±3.29 63.64±3.31

Table 6 Classification accuracy
(average± standard deviation)
of fourteen methods on the YTF
dataset

Methods 50–50 100–100 All

DCC (Kim et al. 2007) 30.92±1.49 30.64±1.30 32.15±2.06

CDL (Wang et al. 2012) 37.13±2.03 38.31±2.53 40.17±1.55

SSDML (Zhu et al. 2013) 34.15±1.57 35.32±2.03 36.24±2.05

AHISD (Cevikalp and Triggs 2010) 29.35±0.83 31.57±2.76 31.53±1.65

CHISD (Cevikalp and Triggs 2010) 32.33±1.95 32.59±2.25 33.09±1.84

SANP (Hu et al. 2012) 30.98±2.49 31.48±0.85 32.02±1.32

RNP (Yang et al. 2013) 32.15±2.73 34.41±0.81 35.07±1.39

ISCRC (Zhu et al. 2014) 38.77±3.34 40.75±0.62 41.97±1.72

MMD (Wang et al. 2008) 32.33±1.95 32.59±2.25 34.56±2.04

MDA (Wang and Chen 2009) 34.74±2.40 34.26±0.82 34.88±0.97

DARG (Wang et al. 2015) 37.71±2.00 39.63±2.42 41.08±1.97

GCR 53.01±2.87 53.58±2.95 53.86±2.92

GCR(m) 51.67±1.19 52.83±2.98 52.22±2.21

GCR(r) 37.20±2.19 42.12±1.99 42.23±2.58

For the challenging dataset YTF, ISCRC is the best of
the existing classification methods, which demonstrates that
collaborative representation is beneficial in modeling these
image sets. However, at training time ISCRC represents each
gallery set as a whole in terms of the other gallery image sets;
this may lose information retained in the PSsR representa-
tion, which represents every image in the gallery in terms of
the other gallery image sets.

An interesting observation from this experiment is that
GCR is relatively insensitive to the set size. For example, the
multi-model method DARG and the single-model method
CDL (the second best performing method on the Honda
dataset) obtain better performance as the set size increases,
while GCR(r) exhibits only a slight variance among the three
settings (50, 100, All). This implies that GCR can work well
when there are few images in the gallery or probe sets.

5.3.3 Set-Based Object Categorization

In this subsection, we evaluate the methods on the multi-
view object categorization task. In this task, each object is
recorded in multiple images captured at different angles. We
use two popular benchmark datasets, ETH and RGB-D, in
our experiments. Figure 5 shows several examples of image
sets drawn from ETH and RGB-D. The image sets in the
ETH dataset contain 41 images, so we only conducted ‘All’
experiments, i.e., all images are used in the gallery and probe
sets.

The classification results on ETH and RGB-D are listed
in Table 7. It can be seen that GCR(r), CDL, and DARG are
superior to the other methods, which is consistent with the
results of Wang et al. (2012), Uzair et al. (2014). Among
the methods, Riemannian KRR using GCR representations
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Fig. 5 Object examples from the ETH and RGB-D datasets. a ETH, b
RGB-D

is demonstrated to be the best choice for computing the
similarity between two sets for the multi-view object catego-
rization task.We note that both GCR(r) and CDLmodel each
set with a covariance matrix. However, the set’s covariance
matrix used by CDL is obtained using only the informa-
tion of the current set, and ignores the correlations between
image sets. The GCR(r) covariance matrix, on the other
hand, is built from a collaborative representation so implic-
itly takes into account the correlations between image sets.
This difference contributes to the superior performance of
GCR(r).

5.4 Integrating Deep Features with GCR

The proposed GCR framework can be constructed on differ-
ent kinds of input features including hand-crafted features

(e.g., LBP or intensity) and deep neural network-learned fea-
tures (e.g., CNN network). In the previous experiments, we
focus on the hand-crafted features. In this subsection, we
conducted a series of experiments on YTC, YTF and RGB-
D to compare the proposed GCR (taking deep features as
input) with TDRM (Hayat et al. 2015) (an encoder–decoder
neural network) and the existing single image-based deep
convolution neural network classifiers.

The VGG16 CNN architecture (Simonyan and Zisser-
man 2014) is adopted here to learn the deep features. For
YTF, the original CNN network is trained on a 2622 celebri-
ties dataset (Parkhi et al. 2015) and fine-tuned by YTF.
Since YTC and 2622 celebrities dataset share some com-
mon celebrities, we use ImageNet to train a VGG16 CNN
network and fine-tune it with YTC and RGB-D respec-
tively. Three end-to-end neural network classifiers based on
VGG16 (for single image classification) are used as base-
lines. One outputs the label of each set via a majority voting
scheme (denoted as VGG16). The other two exploit mean
and max pooling schemes on the basic feature aggregation
of all images in each set and obtain the corresponding label
[denoted as VGG16(max) and VGG16(mean)].

The comparison results are listed in Table 8. FromTable 8,
we can get the following three observations. Firstly, the deep
neural network-based features can always improve the per-
formance of our proposed GCR model, i.e., VGG16-GCR is
better than GCR on three datasets, where GCR is trained
on the hand-crafted features (LBP for face datasets YTC
and YTF, intensity for object dataset RGB-D). Secondly,
good feature learning architecture is essential for deep neural
network-based image set classification,which iswhyVGG16
outperforms TDRM, where the majority voting is adopted to
predict the label of each probe set. Thirdly, it is not appro-

Table 7 Classification accuracy
(average± standard deviation)
of fourteen methods on the
RGB-D and ETH datasets

Methods RGB-D ETH

50-50 100-100 All All

DCC (Kim et al. 2007) 65.58±4.12 72.79±1.66 71.16±2.94 88.00±4.83

CDL (Wang et al. 2012) 77.96±3.67 78.71±2.15 80.54±3.24 94.75±3.47

SSDML (Zhu et al. 2013) 62.72±2.65 63.72±3.22 66.53±3.61 87.75±5.45

AHISD (Cevikalp and Triggs 2010) 62.38±3.12 62.93±4.23 62.41±1.70 79.50±6.06

CHISD (Cevikalp and Triggs 2010) 63.05±1.78 63.67±1.84 64.84±2.25 84.17±4.78

SANP (Hu et al. 2012) 42.81±3.05 43.29±2.14 44.90±2.15 83.50±3.48

RNP (Yang et al. 2013) 61.56±1.74 63.27±3.86 65.90±2.89 88.50±4.89

ISCRC (Zhu et al. 2014) 60.08±3.25 63.61±3.13 65.17±2.84 83.75±6.32

MMD (Wang et al. 2008) 52.79±2.57 54.29±3.86 52.52±1.00 84.85±4.93

MDA (Wang and Chen 2009) 47.62±2.84 60.68±2.94 62.51±3.04 86.75±4.57

DARG (Wang et al. 2015) 76.93±2.37 80.06±2.75 81.08±2.70 95.75±3.53

GCR 70.15±3.35 70.68±2.65 72.86±2.91 92.12±3.99

GCR(m) 67.86±3.64 69.83±2.78 70.37±2.99 90.25±3.74

GCR(r) 78.37±2.51 82.86±1.77 83.06±1.88 96.50±3.07
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Table 8 Classification accuracy (average± standard deviation) ofGCR
methods combined with CNN features

Methods YTC YTF RGB-D

VGG16(max) 26.31±1.96 26.09±2.01 23.38±4.08

VGG16(mean) 57.30±2.05 70.64±1.34 44.54±2.93

VGG16 81.50±3.49 84.07±3.09 79.46±4.49

TDRM 77.56±3.11 52.03±2.67 69.83±3.82

GCR 77.80±3.50 53.86±2.92 72.14±3.95

VGG16+GCR 82.21±3.02 86.28±0.99 82.14±3.95

GCR(m) 79.30±2.93 52.22±2.21 70.37±2.99

VGG16-GCR(m) 82.88±2.93 87.17±1.17 82.23±3.79

GCR(r) 63.64±3.31 42.23±2.58 83.06±1.88

VGG16-GCR(r) 76.38±2.83 58.87±2.34 86.39±2.17
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Fig. 6 Objective function values of PSsR (a) and SSsR (b) versus iter-
ation count for the Mobo dataset.

priate to use the max or mean pooling on the basic feature
aggregation, because it may result in losing the structure
information among each set.

5.5 Comparison of Running Time

To fit classifiers using the GCR model, one must obtain the
PSsR representations for the gallery sets and the SSsR rep-
resentations for the probe sets. The optimization problems
(8) and (9) associated with the PSsR and SSsR models can
be solved using ADMM as described in Sect. 3.5. The con-
vergence of the ADMM algorithm for this use case, where
the alternating minimization is with respect to two blocks of
variables, has been well established (Boyd et al. 2011). In

fact, because one of the two functions in the objectives of
both the PSsR and SSsR is strictly convex, ADMM is guar-
anteed to exhibit a linear convergence rate (Deng and Yin
2012). Figure 6 shows the objective function values of both
GCR representations as a function of the iterations, for the
Mobo dataset using all images in each set.

Both algorithms converge in 20 iterations. In combination
with the fact that the iterations can be completed by applying
closed-form formulas involving nothing more computation-
ally intensive than solving a linear system, these plots are
evidence supporting the assertion that our proposed method
finds reasonable representations in a small amount of time.

We advocated using SSsR to model the probe sets instead
of PSsR for the sake of efficiency at test time. To demonstrate
the effectiveness of this proposal, we conducted an experi-
ment comparing using PSsR to model the Mobo probe sets
versus using SSsR (using all images in each set). The predic-
tion accuracy and the running time of the prediction phase
are shown in Table 9. (Note that the training phases for RR
+ SSsR and RR + PSsR are identical.) As expected, SSsR
shortens the prediction time both in terms of the time needed
to find the probe set representations and the time needed to
predict using these representations. It also increases the clas-
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Fig. 7 The running times (training in green, testing in yellow) of four-
teen methods on the Mobo dataset, and the prediction accuracy on
testing data (the value in parentheses for each method) (Color figure
online)

Table 9 Prediction performance and timing when using SSsR or PSsR to model probe sets with all images in the Mobo dataset

Methods Accuracy Time (s) for generating SSsR or PSsR Time (s) for prediction

RR+SSsR 98.61±0.65 13.05 1.43e−4

RR+PSsR 97.64±1.14 24.93 0.12

KRR(m)+SSsR 98.19±0.93 13.52 0.05

KRR(m)+PSsR 96.81±1.16 25.84 0.13
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Fig. 8 The influence of gallery set size on the a Honda (size of a probe set = 50) and c ETH datasets (size of a probe set = 41), and the influence
of probe set size on the b Honda and (size of a gallery set = 50), d ETH datasets (size of a gallery set = 41)

sification performance. This result supports our advocacy for
theSSsRmodel as providing robust and compact descriptions
of probe sets.

Figure 7 shows the running times of fourteen algorithms
on the full-sized Mobo dataset. All the methods were imple-
mented in MATLAB and executed on a 4 GHz quad-core
machine. GCR and GCR(m) are more efficient than the
other methods in both the training and testing phases, with
the exception of DCC. However, GCR and GCR(m) have
superior prediction accuracy compared to DCC: 98.61% and
98.19%,in comparison to 91.25%.

The single-model methods (SANP, CHISD and AHSID)
do not have a training phase.However, they requiremore time
during the testing phase because they use a nearest-neighbor
scheme that requires forming a one-to-one set matching.
Compared with the multi-model methods (MDA, MMD and

DARG), GCR-basedmethods cost less time in both the train-
ing and testing phases. The main reason for this disparity is
that these multi-model methods require additional time to
construct kernels or extract structure.

ISCRC, likeGCR, is a collaborative representationmethod.
ISCRC has comparable training time, however it requires
more time during testing, because it has to calculate each pair
of probe-gallery sets’ distance during testing. Our proposed
GCRmodel instead uses a robust and compact representation
(SSsR) for the probe set itself. For the same reason, GCR is
faster than CDL and RNP during the testing phase.

5.6 Representing Low Cardinality Image Sets

In real applications, each image set may comprise only a
small number of images. For example, in the task of multi-
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Fig. 9 The effect of image set size on a GCR, b GCR(m) and c GCR(r) for six datasets. All means that all images are used in each gallery or probe
set, and 5(k) means five key images are generated in each gallery or probe set

view object detection, it is often the case that images of each
object are available only from a few vantage points. To inves-
tigate the efficacy of our proposed GCR model in handling
image sets with a small number of images, we compared
its performance on the Honda and ETH datasets against the
baseline methods as the size of both the gallery and probe
sets are varied. In this experiment, five subsets are randomly
extracted from the gallery and probe sets except for those sets
containing only 5 images; in the latter case, we use PSsR to
represent the probe sets.

As shown in Fig. 8, classifiers built on top of the
GCR representations using ridge regression and kernel ridge
regression with the mean kernel (GCR and GCR(m)) out-
perform the other methods in most cases, especially when
there are only five images in each gallery and probe set. The
Riemannian kernel performs poorly because it requires an
accurate estimate of the covariance matrix, which is difficult
to acquire with a small number of images per set. Similarly,
the low cardinality of the image sets contributes to the failure
of structure-basedmethods that attempt to identify subspaces
(as inDCC,MMD, andMDA) or capture structure via covari-
ance matrices (as in CDL and DARG).

These results demonstrate that the GCR model has the
ability to represent image sets containing only a few images.
The main reason for this ability is that the PSsR repre-
sentation is used in training, so every image in each set is
represented collaboratively and used as inputs when training
the classifier; accordingly, the learning process makes full
use of all available training images. Then at test time, the
SSsR model represents each image set stably and collabo-
ratively, so the paucity of images does not unduly affect the
representation of the probe sets.

On the other hand, in real application, one image set may
contain a few key images and a large number of informa-
tive or uninformative images. To simulate this situation, we
take advantage of the subspaces identified by GCR to extract
five key images from each set. More specifically, the sub-
space means of each gallery set are taken as key images. For
each probe set, the new representations obtained by SSsR are
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Fig. 10 Performance of RNP and CDL with and without GCR repre-
sentations

taken as key images. Four experiments are designed, 5(k)–
All, All–All, All–5(k) and 5(k)–5(k), where 5(k) indicates
five key images are used in each gallery or probe set, All
indicates that all images are used in each gallery or probe
set. The results of our proposed GCR framework with dif-
ferent classifiers (linear ridge regression (GCR), mean and
Riemannian kernelized version (GCR(m) and GCR(r))) are
shown in Fig. 9.

As expected, GCR achieves the best performance in the
All-5(k) setting (Fig. 9a). It is reasonable because training
GCR with all gallery images is helpful to keep the informa-
tion as much as possible. Meanwhile, only key images of a
probe set can enhance the robustness of voting process. From
Fig. 9b, we can see that GCR(m) works better with 5(k)–5(k)
on face datasets (Honda, Mobo, YTC and YTF). The reason
is that the key images extracted by the subspace means have
the similar structure to the mean kernel. But the object image
set in RGB-D and ETH contain images captured from differ-
ent views, which leads to a big variance in each set and hard
to represent each set with a limited number of key images.
GCR(r) benefits from All–All setting (as shown in Fig. 9c)
because all images are sufficient to generate the covariance
matrix of each set.
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Table 10 Improvements of the
set-based classification methods
RNP and CDL with the aid of
GCR on six datasets

Honda (%) Mobo (%) YTC (%) YTF (%) ETH (%) RGB-D (%)

RNP + GCR 2.38 0.42 3.40 30.74 2.97 6.63

CDL + GCR 0.25 4.87 19.36 7.67 1.54 2.28

Table 11 Classification accuracy of the set-based classification meth-
ods RNP and CDL and the traditional classification methods with the
aid of GCR on six datasets

Honda Mobo YTC YTF ETH RGB-D

RNP + GCR 99.23 98.47 76.60 45.85 91.13 70.27

CDL + GCR 99.74 93.19 66.52 43.25 96.12 82.38

GCR(*) 99.74 98.61 79.30 53.86 96.50 83.06

GCR(*) denotes the best of RR + GCR, KRR(m) + GCR and KRR(r)
+ GCR

5.7 Combining GCRwith Existing Set-Based
ClassificationMethods

GCR provides a representation of each image in each gallery
set, and each subspace in each probe set, so after learning the
PSsR and SSsR, each image set remains a set, but one whose
elements are collaborative representations. Accordingly, it
is straight-forward to use GCR in conjunction with existing
set-based classification methods.

We take two set-based classification methods, RNP and
CDL, as examples. Because RNP and CDL representations
are built on statistics of the image set such as the covariance
matrix, the probe set is also represented via PSsR rather than
SSsR. The classification accuracies and corresponding per-
formance improvements are shown in Fig. 10 and Table 10,
respectively. Clearly, these set-based classification methods
benefit from our new representation model, especially on the
difficult data sets YTC and YTF.

Meanwhile, we compared the performance of RNP +
GCR, CDL+ GCR and GCR(*) (the best result of RR +
GCR, KRR(m) + GCR and KRR(r) + GCR) in Table 11.
The results indicate that, when using GCR, traditional clas-
sification methods can outperform complicated set-based
classification methods. The main reason for this is that probe
sets are well-represented using the SSsR model.

6 Conclusion

In this paper, we have proposed a group collaborative repre-
sentation (GCR) framework for representing set-based image
data. GCR consists of two parts: a point-to-set representa-
tion (PSsR) that encodes gallery sets by coding each gallery
image using all the gallery sets, and a set-to-set representation
(SSsR) that encodes probe sets by coding several representa-
tive subspaces of the probe set in terms of all the gallery sets.

Compared with existing set-based methods, GCR effectively
captures set structure information and reduces information
loss. In particular, classifiers trained on PSsR representations
use all the available data during training, which is impor-
tant for handling low cardinality gallery sets; and applying
these classifiers to the more compact SSsR representations
increases the efficiency of the prediction process while also
increasing the robustness of the set representation. A series
of experiments on six real world data sets have shown that
GCR consistently outperforms existing methods on the tasks
of set-based face recognition and object categorization.
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Appendix 1: Theoretical Proof

In this appendix, we prove the two properties of the pro-
posed PSsR representation that are described in Theorem 1
and Theorem 2 respectively. It can be seen that both theo-
rems provide bounds that quantify these expected behaviors
by directly relating the stability properties of the PSsR rep-
resentation to those of the ridge regression representation.

Actually, when λ1 = 0, the PSsR representation of an
image x reduces to ridge regression:

z	 = argminz‖x − Dz‖22 + λ2‖z‖22.

For brevity we will refer to the solution to this problem
as βRR(x; λ2); straightforward calculations give the closed-
form expression

βRR(x; λ2) = (DT D + λ2 I)−1DT x.

Our main tool in proving these results is the following
characterization of the PSsR representation.

Lemma 1 Consider the PSsR representation of image x,
given by

z	 = argminz
1

2
‖x − Dz‖22 + λ1

g∑

j=1

w j‖zG j ‖2 + λ2‖z‖22.
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Define

D̃ = DT D + λ2 I

x̃ = D̃−1/2DT x, and

S =
{
v : ‖( D̃1/2

v) j‖2 ≤ λ1w j for j = 1, . . . , g
}

.

The PSsR representation satisfies

z	 = βRR(x; λ2) − D̃
−1/2

PS(x̃)),

where PS(x̃) denotes the projection of x̃ onto the convex set
S.

Proof The optimization problem defining z	 is equivalent to

min
z‖zG j ‖2≤ν j

1

2
‖x − Dz‖22 + λ1

g∑

j=1

w jν j + λ2‖z‖22.

It is clear that ν	
j = ‖z	G j

‖2. Furthermore, there are strictly
feasible points, so by Slater’s condition, strong duality holds.
The claimed characterization of z	 follows from identifying
the constraints on the dual optimal point.

To find the Lagrangian function, we observe that the con-
straints require that (zG j , ν j ) be in the Lorentz cone, which
is self-dual, so the associated dual variables (βG j

, γ j ) are
also in the Lorentz cone, and the Lagrangian is

L(z, ν,β, γ ) = 1

2
‖x − Dz‖22 + λ1

g∑

j=1

w jν j

+ λ2‖z‖22 −
g∑

j=1

(
zG j

ν j

)T (
βG j

γ j

)

.

Primal optimality requires

∇zG j
L = (DT D − 2λ2 I)z − DT x − β = 0 and

∇ν j L = λ1w − γ = 0.

It follows that the Lagrangian dual optimization problem is
equivalent to

min
‖β j‖2≤λ1w j

(β + DT x) D̃
−1

(β + DT x)

= min
‖β j‖2≤λ1w j

‖ D̃−1/2
β + x̃‖22.

Define β̃ = − D̃
−1/2

β, then this optimization problem is
equivalent to

min
‖( D̃1/2

β̃) j‖2≤λ1w j

‖x̃ − β̃‖22.

The minimizer of this problem is the projection of x̃ onto the
constraint set S; it follows that the dual optimal variable is

β	 = − D̃
1/2

PS(x̃), and by the primal optimality condition,
the corresponding optimal primal variable is

z	 = (DT D + λ2 I)−1(β	 + DT x)

= βRR(x; λ2) − D̃
−1/2

PS(x̃)

as claimed. ��
Our first stability result in Theorem 1 quantifies the sense

in which similar images have similar PSsR representations.
Theorem 1 The PSsR representations of any two images x1
and x2 satisfy

‖z1 − z2‖2 ≤ ‖βRR(x1; λ2) − βRR(x2; λ2)‖2 + 2
λ1

λ2
.

Proof Let wi denote the group sparsity weights associated
with image xi for i = 1, 2. Using the notation of Lemma 1,
let

S1 =
{
v : ‖( D̃1/2

v) j‖2 ≤ λ1w
1
j for j = 1, . . . , g

}
and

S2 =
{
v : ‖( D̃1/2

v) j‖2 ≤ λ1w
2
j for j = 1, . . . , g

}
.

By Lemma 1,

‖z1 − z2‖2 ≤ ‖βRR(x1; λ2) − βRR(x2; λ2)‖2
+‖ D̃−1‖2‖ D̃1/2

PS1(x̃1) − D̃
1/2

PS2(x̃2)‖2
The definition of S1 implies that

‖ D̃1/2
PS1(x̃1)‖22 =

∑g

j=1

∥
∥
∥( D̃

1/2
PS1(x̃1)) j

∥
∥
∥
2

2

≤ λ21‖w1‖22 ≤ λ21,

where the final inequality follows from the fact that w1 is a
probability distribution, so has �2-norm at most one; simi-

larly, ‖ D̃1/2
PS2(x̃2)‖2 ≤ λ1.

Observe also that

‖ D̃−1‖2 = λmin(DT D + λ2 I)−1 ≤ λmin(λ2 I)−1 = λ−1
2 .

The desired bound on ‖z1− z2‖2 follows by combining these
pieces:

‖z1 − z2‖2 ≤ ‖βRR(x1; λ2) − βRR(x2; λ2)‖2
+ ‖ D̃−1‖2

(∥
∥
∥ D̃

1/2
PS1(x̃1)

∥
∥
∥
2
+

∥
∥
∥ D̃

1/2
PS2 (x̃2)

∥
∥
∥
2

)

≤ ‖βRR(x1; λ2) − βRR(x2; λ2)‖2 + 2
λ1

λ2
.

��
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Before stating our second stability result, we present a
useful technical lemma.

Lemma 2 Let R have orthonormal rows, so RRT = I, and
let M be a positive semidefinite matrix. Then for any vector
x,

‖RMx‖2 ≥ λmin(M)‖Rx‖2.

Proof Since M 
 λmin(M)I and conjugation preserves the
semidefinite order, RMRT 
 λmin(M)I . It follows that
the smallest eigenvalue of (RMRT )2 is no smaller than
λmin(M)2, so

RMRT RMRT 
 λmin(M)2 I .

Conjugating both sides by R, we observe that

PRT MRT RMPRT 
 λmin(M)2RT R,

where PRT = RT R is the orthogonal projector onto the
row space of R. We therefore conclude that MRT RM 

λmin(M)2RT R, which implies that

‖RMx‖22 = xT MRT RMx ≥ λmin(M)2xT RT Rx

= λmin(M)2‖Rx‖22.

��
Our second stability result in Theorem 2 quantifies the

extent to which similar galleries induce similar coordinates
in the PSsR representation of a single image.
Theorem 2 Let z	 denote the PSsR representation of an
image x. Each pair (z	G j

, z	Gk
) of subgroups of coordinates

satisfies

‖z	G j
− z	Gk

‖2 ≤ ‖βRR(x; λ2)G j − βRR(x; λ2)Gk‖2
+λ1

λ2
(w j + wk).

Proof Let R j denote the matrix that maps a vector z to zG j

and, similarly, let Rk denote the matrix that maps z to zGk .

By Lemma 1, z	 = βRR(x; λ2) − D̃
−1/2

PS(x̃), so

‖z	G j
− z	Gk

‖2 ≤ ‖βRR(x; λ2)G j − βRR(x; λ2)Gk‖2
+‖(R j − Rk) D̃

−1/2
PS(x̃)‖2.

The matrix R j has orthonormal rows, so by Lemma 2,

‖R j D̃
−1/2

PS(x̃)‖2 = ‖R j D̃
−1

D̃
1/2

PS(x̃)‖2
≤ ‖ D̃−1‖2‖( D̃1/2

PS(x̃))G j ‖2 ≤ λ1

λ2
w j .

The last inequality holds because of the definition of S and
the observation that

‖ D̃−1‖2 = λmin(DT D + λ2 I)−1 ≤ λ−1
2 .

A similar argument shows that

‖Rk D̃
−1/2

PS(x̃)‖2 ≤ λ1

λ2
wk .

From these estimates, we conclude that

‖z	G j
− z	Gk

‖2 = ‖βRR(x; λ2)G j − βRR(x; λ2)Gk‖2
+ λ1

λ2
(w j + wk)

as claimed. ��
The previous bound relates the stability of the PSsR rep-

resentation to that of the ridge regression representation; for
completeness, we use standard arguments to estimate the sta-
bility of the ridge regression representation, resulting in a
direct relationship between the similarity of D j and Dk and
that of zG j and zGk .

Corollary 1 Let z	 denote the PSsR representation of an
image x and r = x − DβRR(x; λ2) denote the residual
of the ridge regression representation. Each pair (z	G j

, z	Gk
)

of subgroups of coordinates satisfies

‖z	G j
− z	Gk

‖2 ≤ 1

λ2
‖D j − Dk‖2‖r‖2 + λ1

λ2
(w j + wk).

Proof The ridge regression coordinates are the solution to
the smooth unconstrained optimization problem

argminz‖x − Dz‖22 + λ2‖z‖22,

so they are characterized by the property that the gradient of
the objective vanishes at βRR(x; λ2):

(DT D + λ2 I)βRR(x; λ2) − DT x = 0.

In particular, by considering the appropriate blocks of coor-
dinates in this gradient, we see that

DT
j DβRR(x; λ2) + λ2βRR(x; λ2)G j − DT

j x = 0 and

DT
k DβRR(x; λ2) + λ2βRR(x; λ2)Gk − DT

k x = 0.

It follows that

βRR(x; λ2)G j − βRR(x; λ2)Gk

= 1

λ2
(D j − Dk)

T (x − DβRR(x; λ2)),
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so

‖βRR(x; λ2)G j − βRR(x; λ2)Gk‖2 ≤ 1

λ2
‖D j − Dk‖2‖r‖2.

Using this estimate in Lemma 2 gives the desired result. ��

Appendix 2: Optimization Procedures

Optimization for PSsR

The optimization problem (8) for PSsR is convex and can
be solved by various methods. For simplicity in dealing with
the group lasso penalty, we employ the alternating direction
multiplier method (ADMM) (Boyd et al. 2011) to find the
optimal solution. To do so, we introduce an auxiliary vector
a ∈ R

cg of the same size as z, and replace (8) with the
equivalent problem

min
z,a

1

2
‖x−Da‖22+λ1

g∑

j=1

w j‖zG j ‖2+λ2‖z‖22, s.t. a = z.

(18)

The augmented Lagrangian function of (18) is

L (z, a, γ , η) = 1

2
‖x − Da‖22 + λ1

g∑

j=1

w j‖zG j ‖2 + λ2‖z‖22

+ 〈γ , z − a〉 + η

2
‖z − a‖22,

(19)

where γ ∈ R
cg is the Lagrange multiplier, η is a positive

number that is adaptively updated, and 〈·, ·〉 denotes the inner
product between two vectors. The optimization problem (18)
can be solved by minimizing (19) by fixing two variables of
(z, a, γ ), minimizing over the free variable, and alternating
over the choice of optimization variable until convergence.

In more detail, to determine a(τ+1), the value of a at step
τ + 1, set z = z(τ ), γ = γ (τ ) and η = η(τ) and solve

argmin
a

1

2
‖x − Da‖22 + η

2

∥
∥
∥
∥z − a + γ

η

∥
∥
∥
∥

2

2
. (20)

This quadratic program is optimized when its derivative with
respect to a is zero, i.e. when

DT Da − DT x + ηa − ηz − γ = 0,

so a(τ+1) is given by

a(τ+1) = (DT D + ηI)−1(DT x + ηz + γ ). (21)

It is clear that the inverse of (DT D+ηI) exists as the matrix
is symmetric positive definite.

Similarly, when we fix a = a(τ+1), γ = γ (τ ) and η =
η(τ), then z(τ+1) is determined by solving

argmin
z

λ1

g∑

j=1

w j‖zG j ‖2 + λ2‖z‖22 + η

2

∥
∥
∥
∥z −

(

a − γ

η

)∥
∥
∥
∥

2

2
.

(22)

It turns out that (22) is equivalent to the following problem,

argmin
z

2λ1√
η + 2λ2

g∑

j=1

w j

∥
∥
∥
√

η + 2λ2zG j

∥
∥
∥
2

+
∥
∥
∥
∥
√

η + 2λ2z − η√
η + 2λ2

(

a − γ

η

)∥
∥
∥
∥

2

2
.

(23)

Using the change of variables x̂ = η√
η+2λ2

(a − γ
η
) and ẑ =

z
√

η + 2λ2, rewrite (23) as

argmin
ẑ

1

2
‖x̂ − ẑ‖22 + λ1√

η + 2λ2

g∑

j=1

w j‖ ẑG j ‖2. (24)

Following the analysis in Bach et al. (2012), one can show
that

ẑG j = x̂G j

‖x̂G j ‖2
max

(

‖x̂G j ‖2 − w jλ1√
η + 2λ2

, 0

)

,

and the update rule for z follows from the definitions of x̂
and ẑ:

z(τ+1)
G j

= tG j

‖tG j ‖2
max

(‖tG j ‖2 − w j
λ1
η

1 + 2λ2
η

, 0

)

(25)

where tG j = (a − γ
η
)G j .

Now let a = a(τ+1), z = z(τ+1) and η = η(τ). We update
the Lagrange multiplier by the amount by which the con-
straint a(τ+1) = z(τ+1) is violated, via

γ (τ+1) = γ (τ ) + η(z − a). (26)

The choice of the penalty parameter η plays a crucial role
in the efficiency of the algorithm. Although in theory a larger
value of η leads to faster convergence, too large a value can
cause numerical difficulties. In general, the correct choice of
η is problem-dependent. Fortunately, an adaptive updating
strategy was proposed in Tao and Yuan (2011); Lin et al.
(2011) that dynamically updates η via

η(τ+1) = min{ρη(τ), ηmax }. (27)
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Here ηmax is a given upper bound for {ητ }, and ρ ≥ 1 is a
constant. In practice, we set ηmax = 104 and ρ = 1.1.

Algorithm 1 Solving (18) via ADMM to obtain a PSsR

Input: Image x ∈ R
d , dictionary D ∈ R

d×cg , weight vector w ∈ R
g ,

and parameters λ1, λ2 ≥ 0.
1: Initialize z(0) = a(0) = γ (0) = 0, η(0) = 0.1, ηmax = 104, ρ =

1.1, ε = 10−3, τ = 0
2: while not converged do
3: τ ← τ + 1
4: Update a(τ ) using Eq. (21).
5: Update z(τ ) using Eq. (25.)
6: Update the multipliers γ (τ ) using Eq. (26).
7: Update η(τ) using Eq.(27).
8: Check the convergence conditions: ‖a(τ ) − z(τ )‖∞ < ε and

max{‖a(τ ) − a(τ−1))‖∞, ‖z(τ ) − z(τ−1))‖∞} < ε.

9: end while
Output: z(τ ), a(τ )

Algorithm 1 details the procedure for determining PSsR
coordinates using the ADMM method. In each iteration,
updating a in (21) requires the construction of (DT x+ηz+
γ ), which costs O(dcg). After precomputing the eigenvalue
decomposition of DT D in time O((cg)3), one can apply the
inverse of (DT D+ηI) at each iteration with cost O((cg)2).
Clearly the updates for z and the Lagrange multiplier γ , (25)
and (26), can be computed in time O(cg), the size of z.
Consequently, assuming a constant number of iterations of
ADMM, the complexity of identifying the PSsR represen-
tation for an image is O(dcg + (cg)2 + (cg)3). Also, the
O((cg)3) cost of the decomposition of DT D needs only be
paid once, then the result can be used in finding the PSsRs of
subsequent images. We remark that the computational com-
plexity can be reduced by considering inexact versions of
ADMMNg et al. (2011) or by using suitable surrogate func-
tions Razaviyayn et al. (2013).

Optimization for SSsR

SSsRs are obtained by solving the optimization problem (9).
We find it convenient to rewrite (9) as

min
z, y

∥
∥
∥
∥
[
U i

r − D
]
[
y
z

]∥
∥
∥
∥

2

2
+ λ1

g∑

j=1

w j

∥
∥
∥
∥
∥

(
[
0 I

]
[
y
z

] )

G j

∥
∥
∥
∥
∥
2

+ λ2

∥
∥
∥
∥
[
0 I

]
[
y
z

]∥
∥
∥
∥

2

2
+ λ3

∥
∥
∥
∥
[
I 0

]
[
y
z

]∥
∥
∥
∥

2

2

s.t.
[
1 0

]
[
y
z

]

= 1.

(28)

For convenience, define

a =
[
y
z

]

∈ R
mi
r+cg

V = [
U i

r − D
] ∈ R

d×(mi
r+cg)

Q = [
I 0

] ∈ R
mi
r×(mi

r+cg), where I ∈ R
mi
r×mi

r and 0 ∈ R
mi
r×cg

f =
[
1
0

]

∈ R
mi
r+cg, where 1 ∈ R

mi
r and 0 ∈ R

cg

M = [
0 I

] ∈ R
cg×(cg+mi

r ), where I ∈ R
cg×cg and 0 ∈ R

cg×mi
r

and rewrite (28) as

min
a

‖Va‖22 + λ1

g∑

j=1

w j‖(Ma)G j ‖2 + λ2‖Ma‖22 + λ3‖Qa‖22

s.t. f T a = 1.

(29)

We again opt to solve this optimization problem via ADMM;
to do so we introduce an auxiliary variable b to write the
equivalent problem

min
a,b

‖Va‖22 + λ1

g∑

j=1

w j‖bG j ‖2 + λ2‖b‖22 + λ3‖Qa‖22

s.t. f T a = 1, b = Ma,

(30)

which has the augmented Lagrangian

L (a, b, γ 1, γ 2)

= ‖Va‖22 + λ1

g∑

j=1

w j‖bG j ‖2 + λ2‖b‖22 + λ3‖Qa‖22

+ 〈γ 1, b − Ma〉 + η

2
‖b − Ma‖22 + 〈γ 2, f T a − 1〉

+ η

2
| f T a − 1|2,

(31)

where γ 1 and γ 2 are Lagrange multipliers and η is a
penalty parameter. We find the SSsR by minimizing this
augmented Lagrangian with respect to each of the variables
(a, b, γ 1, γ 2) in an alternating manner.

Variable a is updated by fixing b = b(τ ), γ 1 = γ
(τ )
1 ,

γ 2 = γ
(τ )
2 and η = η(τ) and solving

argmin
a

‖Va‖22 + λ3‖Qa‖22 + η

2

∣
∣
∣
∣ f

T a − 1 + γ 2

η

∣
∣
∣
∣

2

+η

2

∥
∥
∥
∥b − Ma + γ 1

η

∥
∥
∥
∥

2

2
. (32)
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The objective is a quadratic in a with minimizer

a(τ+1) =
(
2V T V + 2λ3QT Q + η f f T + ηMT M

)−1

(
(η − γ2) f + MT (ηb + γ 1)

)
.

(33)

Note that MT M + QT Q = I, so the matrix inversion in
(33) is well-defined.

The new value for b is obtained by fixing a = a(τ+1),
γ 1 = γ

(τ )
1 , γ 2 = γ

(τ )
2 and η = η(τ) and optimizing

argmin
b

λ1

g∑

j=1

w j‖bG j ‖2 + λ2‖b‖22

+η

2

∥
∥
∥
∥b −

(

Ma − γ 2

η

)∥
∥
∥
∥

2

2
, (34)

which has the same form as (22). Applying similar reasoning
as leads to (25), we have that

b(τ+1)
G j

= tG j

‖tG j ‖
max

(‖tG j ‖2 − w j
λ1
η

1 + 2λ2
η

, 0

)

(35)

where tG j =
(
Ma − γ 2

η

)

G j
.

The Lagrange multipliers γ 1 and γ 2, and penalty param-
eter η are updated via

γ
(τ+1)
1 = γ

(τ )
1 + η(b − Ma), (36)

γ
(τ+1)
2 = γ

(τ )
2 + η( f T a − 1), (37)

and

η(τ+1) = min(ρη(τ), ηmax ). (38)

The complete algorithm for obtaining SSsR coordinates
is summarized in Algorithm 2.

Appendix 3: Impact of Parameters

The proposed GCR models uses four hyperparameters: the
number of subspaces c and the trade-off parameters λ1, λ2,
and λ3, appearing in (8) and (9).

Number of Subspaces

As discussed in Sect. 3, the dictionary D is extracted by
dividing eachgallery set into c subsets and taking the columns
of D to be the means of these subsets. The probe sets are
also separated into c subsets, each of which is modeled in

Algorithm 2 Solving (9) via ADMM to obtain an SSsR

Input: Images U ∈ R
d×mi

r , dictionary D ∈ R
d×cg , weight vector

w ∈ R
g , and parameters λ1, λ2, λ3 ≥ 0.

1: Initialize b(0) = a(0) = γ
(0)
1 = γ

(0)
2 = 0, η = 0.1, ηmax =

104, ρ = 1.1, ε = 10−3, τ = 0
2: while not converged do
3: τ ← τ + 1
4: Update a(τ ) using Eq.(33).
5: Update b(τ ) using Eq.(35).
6: Update the multipliers γ

(τ )
1 using Eq.(36).

7: Update the multipliers γ
(τ )
2 using Eq.(37).

8: Update penalty parameter η using Eq.(38).
9: Check the convergence conditions: ‖a(τ ) − z(τ )‖∞ < ε and

max{‖a(τ ) − a(τ−1))‖∞, ‖z(τ ) − z(τ−1))‖∞} < ε.

10: end while
Output: a, b

terms of D. Thus, c plays an important role in both GCR
models.

To determine the effect of c on the GCR represen-
tations, we evaluated the accuracy of ridge regression
classifiers fit on six datasets using GCR representations
with different values of c. Figure 11 shows the accu-
racy when c is fixed to 5 for the probe set representa-
tions and is varied for the gallery set representations, and
Fig. 12 shows the accuracy when c is fixed to 5 for the
gallery set representations and varied for the probe set
representations. The reported accuracies are 10-fold cross-
validated.

We see from Fig. 11 that the accuracy is low when c
is small for the gallery set representations, and becomes
relatively stable when c is in [3, 10]. This is reason-
able, because when c is small, we are merging together
image clusters and losing useful information, but when c
is larger, we do not pay any accuracy price for poten-
tially over-partitioning the image clusters. From Fig. 12,
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Fig. 11 Impact of c (the number of subsets in each gallery set) on GCR
in terms of classification accuracy where each probe set is represented
with five subsets
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Fig. 12 Impact of c (the number of subsets in each probe set) on GCR
in terms of classification accuracy where each gallery set is represented
with five subsets

we find that the accuracy increases and then decreases as
the number of clusters used to represent the probe sets
increases. Here large c means that the probe set is over-
segmented relative to the gallery sets, which makes the
voting scheme more sensitive to outliers and violates the
voting consistency (as discussed in Sect. 4) required in
the prediction process. Based on these observations, we set
c as 5 for the representations of both gallery and probe
sets.

Trade-off Parameters λ1, λ2 and λ3

There are three terms in the PSsR model (8). In this subsec-
tion, we will demonstrate the effect of the two regularizers,
the second term (�2-norm constraint on new representation)
and the third term (group sparsity constraint on new repre-
sentation).

In the first experiment, we calculate the Davies–Bouldin
index (DBI) (Davies and Bouldin 1979) of six datasets for
four representations (the original pixel features, PSsR with
only �2-norm regularization (i.e., λ1 = 0), PSsR with only
group lasso regularization (i.e., λ2 = 0), and PSsR with the
full objective). The DBI measure simultaneously evaluates
intra-cluster compactness and inter-cluster separation, and is
defined as

DBI = 1

L

L∑

i=1

max
i �= j

Ci + C j

Si, j
(39)

where Ci = 1
ni

∑ni
k=1 ‖xk −μi‖2 measures the compactness

of the i th category and Si, j = ‖μi − μ j‖2 measures the
separation between the i th and j th categories. Here L is the
number of classes, μi is the mean of the images in the i th

Honda Mobo YTC YTF RGB-D ETH

Datasets

1
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3

4
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6
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8

D
B

I

Original feature
GCR only with l2-norm

GCR only with group sparse norm
GCR

Fig. 13 The quality of four choices of features used to represent the
all six datasets measured in terms of the Davies–Bouldin index (Davies
and Bouldin 1979, the smaller the better)

class, and ni is the number of images in the i th class. Lower
DBI values indicate that a representation is better able to
capture intra- and inter-set relationships.

The DBIs of four representations evaluated on the Honda
video training dataset (L = 20) are shown in Fig. 13. Clearly
the lowest DBI value is obtained by the PSsR, which demon-
strates that the collaborative nature of the GCRmodel as well
as the mixture of group sparsity and l2 penalties encourages
learning representations that are discriminative and result in
compact classes.

From the above results, it can be roughly seen that the
parameters λ1 and λ2 control the trade-offs between group
sparsity, ridge regularization, and the reconstruction loss
in the PSsR objective (8). To demonstrate the effect of
these parameters in detail, we conducted extensive exper-
iments by varying λ1 and λ2 on six datasets, as shown
in Fig. 14. Ridge regression is used and the accuracies
reported are 10-fold cross-validated. For simplicity, we set
λ1 and λ2 in the SSsR objective (9) to the same values as
those used in the PSsR objective. Since the λ3 parameter
in the SSsR objective plays a similar role to λ2, we take
λ3 = λ2.

Both parameters took values in {10−6, 10−5, . . . , 100,
101}. It can be seen that GCR performs stably over a wide
range of settings for λ1 and λ2. In particular, the represen-
tations’ accuracy is insensitive to λ2. Note, however, that
large values of λ1 (> 10−2) tend to result in overly sparse
coefficients, which leads to information loss and decreased
accuracy. Based on these results, in all other experiments, we
set λ1 = 10−3, λ2 = 10−1 and λ3 = 10−1.

The ridge-regression parameter used in fitting the RR
and KRR classifiers (10) was tuned among the values
{10−5, 10−4, . . . , 103, 104}. The experimental results show
that the classification accuracy is insensitive toβ. Thuswe fix
β in our experiments (with both the RR and KRR classifiers)
at 10−3.
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Fig. 14 Effect of λ1 and λ2 on GCR in terms of classification accuracy for six datasets a Honda, bMobo, c YTC, d YTF, e RGB-D and f ETH
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