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DCAR: A Discriminative and Compact Audio
Representation for Audio Processing

Liping Jing , Bo Liu, Jaeyoung Choi, Adam Janin, Julia Bernd, Michael W. Mahoney, and Gerald Friedland

Abstract—This paper presents a novel two-phase method
for audio representation, discriminative and compact audio
representation (DCAR), and evaluates its performance at detecting
events and scenes in consumer-produced videos. In the first
phase of DCAR, each audio track is modeled using a Gaussian
mixture model (GMM) that includes several components to capture
the variability within that track. The second phase takes into
account both global structure and local structure. In this phase,
the components are rendered more discriminative and compact
by formulating an optimization problem on a Grassmannian
manifold. The learned components can effectively represent the
structure of audio. Our experiments used the YLI-MED and
DCASE Acoustic Scenes datasets. The results show that variants
on the proposed DCAR representation consistently outperform
four popular audio representations (mv-vector, i-vector, GMM,
and HEM-GMM). The advantage is significant for both easier and
harder discrimination tasks; we discuss how these performance
differences across tasks follow from how each type of model
leverages (or does not leverage) the intrinsic structure of the data.

Index Terms—Audio representation, audio scene classification,
compact representation, discriminativity, event detection.
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I. INTRODUCTION

TO MEET the challenges presented by content-based re-
trieval of user-generated videos, we need approaches that

leverage cues in all available modalities. One less explored ap-
proach is to analyze the soundtracks. But while analysis of visual
content is widely studied, for example in event detection, anal-
ysis of video soundtracks has largely been restricted to specific,
inherently audio-focused tasks such as speech processing and
music retrieval.

However, when visual information cannot reliably identify
content (e.g., due to poor lighting conditions), audio may still
furnish vivid information. In other words, audio content is fre-
quently complementary to visual content—and in addition, it
offers more tractable processing. In recent years, audio pro-
cessing has therefore gained greater importance in multimedia
analysis [2]–[6].

In particular, multimodal approaches that use both visual and
audio cues have recently gained traction [7]. However, there
has not been much in-depth exploration of how best to leverage
the audio information. On the audio side, due to a historical
focus on carefully-curated speech and music processing cor-
pora [3], fewer audio researchers consider the problems posed
by unfiltered generic audio with varied background noises—
but these problems must be addressed to build audio classifiers
that can handle user-generated video. In addition, past work
on video analysis has often fed audio “blindly” into a machine
learner, without much consideration of how audio information is
structured.

In the last few years, the focus has been changing in both
event detection and audio analysis. For example, sound event
detection and acoustic scene classification have been included
several times in the Detection and Classification of Acoustic
Scenes and Events (DCASE) challenge at IEEE AASP [5].

Major areas of audio-based event and scene detection research
include audio data representation and learning methodologies.
In this work, we focus on the former, which aims to extract spe-
cific features that can refine an enormous amount of raw audio
data into higher-level information about the audio signals. Sec-
tion II gives an overview of current representation approaches
and discusses their limitations in detail. As a brief summary,
current approaches do not effectively capture signal variance
within audio tracks nor local structure (for example, between
Gaussian components), they risk losing information about geo-
metric manifold structure and hidden structure within the data,
they often require a lot of storage space, and they rarely leverage
available information from labels.
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In this paper, we address these issues by introducing a Dis-
criminative and Compact Audio Representation (DCAR) to
model audio information. This method is implemented in two
phases. First, each audio track is modeled using a Gaussian
mixture model (GMM) with several mixture components to de-
scribe its statistical distribution. This is beneficial for capturing
the variability within each track and for reducing the storage re-
quired, relative to the full original set of frames. We also tested
a variant in which a few components are generated for each
class; we call this efficient representation based on class-aware
components DCAR(c).

Second, by integrating the labels for the audio tracks and the
local structure among the Gaussian components, we identify an
embedding to reduce the dimensionality of the mixture compo-
nents and render them more discriminative. In this phase, the
dimensionality reduction task is formulated as an optimization
problem on a Grassmannian manifold and solved via the conju-
gate gradient method. Then a new audio track can be represented
with the aid of the learned embedding, which further compacts
the audio information. For classification, we adopt the kernel
ridge regression (KRR) method, which is compatible with the
manifold structure of the data.

As we argue in Section III, DCAR/DCAR(c) represents a con-
siderable advancement over existing popular methods in audio-
based event classification. In a nutshell, the novelty of DCAR
lies in its being a compact representation of an audio signal that
captures variability and has better discriminative ability than
other representations.

Our claim is supported by a series of experiments, described
in Section VI, conducted on the YLI-MED and DCASE datasets.
We first built binary classifiers for each pair of events in YLI-
MED, and found that the proposed DCAR performed bet-
ter than i-vectors on pairwise discrimination. We then delved
deeper, comparing multi-event classification results for DCAR
and DCAR(c) with four existing methods (including simple
GMMs, HEM-GMMs, and mean/variance vectors as well as
i-vectors) for events that are difficult to distinguish vs. events
that are easy to distinguish. We showed that DCAR/DCAR(c)
can handle both easy and hard cases; Section VI-B discusses
how these results may follow from how each model leverages
(or doesn’t leverage) the intrinsic structure of the data. Finally,
we conducted multi-event classification experiments on all ten
events, again showing that DCAR and DCAR(c) are the most
discriminative representations.

The event-detection results were mirrored in experiments on
audio scene classification using the DCASE dataset. We again
compared DCAR and DCAR(c) with i-vector, mv-vector, sim-
ple GMMs, and HEM-GMM, along with a baseline method
provided for DCASE. DCAR achieved the best average results
among the seven systems. Per-class, DCAR and DCAR(c) out-
performed the other methods on in-vehicle scenes, while achiev-
ing competitive results on indoor and outdoor scenes.

The remainder of this paper is organized as follows: Section II
surveys related audio work. Section III presents the proposed
DCAR model in detail, and Section IV describes the classifica-
tion with KRR. Section V describes how we applied DCAR in
event detection on YLI-MED, and Section VI discusses our
binary detection and multi-event classification experiments.

Sections VII and VII-C discuss methods and results from audio
scene–classification experiments on DCASE data. Conclusions
and future work are discussed in Section VIII.

II. RELATED WORK

Audio representations include low-level features (e.g., energy,
cepstral, and harmonic features) and intermediate-level features
obtained via further processing steps such as filtering, linear
combination, unsupervised learning, and matrix factorization
(see overview in Barchiesi et al., 2015 [8]).

A typical audio representation method for event detection is
to model each audio track as a vector so traditional classifica-
tion methods can be easily applied. The most popular low-level
features used are Mel-frequency cepstral coefficients (MFCCs)
[9] and variants thereof (e.g., GTCCs [4]). However, MFCC is
a short-term frame-level representation, so it does not capture
the whole structure hidden in each audio signal. To address this,
some researchers have used end-to-end classification methods
(e.g., neural networks), for example to simultaneously learn
intermediate-level audio concepts and train an event classifier
[10]. Several approaches have used first-order statistics derived
from the frames’ MFCC features, improving performance on
audio-based event detection. For example, Jin et al. adopted a
codebook model to define audio concepts [11]. This method
quantizes low-level features into discrete codewords, generated
via clustering, and provides a histogram of codeword counts
for each audio track (i.e., it uses the mean of the data in each
cluster).

However, such methods do not capture the complexity of
real-life audio recordings. For event detection, researchers have
therefore modeled audio using the second-order statistical co-
variance matrix of the low-level MFCC features [12]–[15].
There are two ways to compute the second-order statistics.
The first assumes that each audio track can be characterized
by the mean and variance of the MFCCs representing each
audio frame, then modeled via a vector by concatenating the
mean and variance [15]; this representation can be referred to
as a mean/variance vector or mv-vector. The other method is
to model all training audio via a Gaussian mixture model and
then compute the Baum-Welch statistics of each audio track
according to the mixture components, as in GMM-supervector
representations [12]. Again, each audio track is represented by
stacking the means and covariance matrices.

However, it can be time-consuming to deal with GMMs for
each audio track in later analysis steps. Turnbull et al. [16]
proposed the HEM-GMM method, which first generates GMM
components from each track, then groups the components be-
longing to each class and uses the cluster centers to represent
that class. This reduces the number of components going into
subsequent analysis. Our class-aware representation, DCAR(c),
follows this approach.

An exciting area of recent work is the i-vector approach,
which uses latent factor analysis to compensate for foreground
and background variability [17]. The i-vector approach can be
seen as an extension of the GMM-supervector. It assumes that
these high-dimensional supervectors can be confined to a low-
dimensional subspace; this can be implemented by applying
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probabilistic principal component analysis (PPCA) to the super-
vectors. The advantage of an i-vector is that the system learns the
total variance from the training data and then uses it on new data,
so that the representation of the new data has similar discrimi-
nativity to the representation of the training data. I-vectors have
shown promising performance in audio-based event detection
[13], [14].

In fact, many of these representations have shown promis-
ing performance, but they have some limitations with regard to
audio-based event detection. For example, the signal variance
within a given audio track may be large; training a Gaussian mix-
ture model on all of the audio tracks (as in the GMM-supervector
or i-vector approaches) does not capture that variability, and thus
may not characterize a given event well.

The second limitation is that each mixture component consists
of both a mean vector and a covariance matrix, which can intro-
duce many more variables, and so result in high computational
complexity and require a lot of storage space. The third limita-
tion is that the covariance matrices of the mixture components in
these methods are usually flattened into one supervector, which
may distort the geometric manifold structure1 within the data
[18] and lose information about hidden structure. Fourth, most
audio representations are derived in an unsupervised manner,
i.e., they do not make use of any existing label information. But
in fact, label information has been very useful for represent-
ing data in classification tasks such as image classification [19]
and text classification [20]. Last but not least, these methods
do not explicitly consider the local structure between Gaussian
components, which may be useful for distinguishing events.

At a different level of semantic structure, i.e., individual audio
concepts or noises, recent work has experimented with using
neural networks to deal with large-scale datasets (e.g., [21]).
However, for higher-level events and scenes, the audio data may
be too limited to train a neural network sufficiently.

These drawbacks motivate us to propose a new audio repre-
sentation method to capture the variability within each audio
track and to characterize the distinct structures of events with
the aid of valuable existing labels and local structure within
the data; these characteristics of our method have significant
benefits for event detection and audio-scene classification.

III. DISCRIMINATIVE AND COMPACT AUDIO REPRESENTATION

In this section, we describe our proposed two-phase audio rep-
resentation method. The first phase, described in Section III-A,
aims to capture the variability within each audio track. The sec-
ond phase, described in Section III-B, identifies a discriminative
embedding.

A. Phase 1: Characterizing Per-Track Variability

We first extract the low-level features, in this case MFCCs,
from the audio tracks. Let X = {Xk}n

k=1 denote a set of n
audio tracks. Each track Xk is segmented into mk frames.
Each frame xk

f (1 ≤ k ≤ n and 1 ≤ f ≤ mk ) is modeled via
a vector with d-dimensional MFCC features (d = 60), i.e.,

1By geometric structure, we mean intrinsic structure within data such as
affine structure, projective structure, etc.

xk
f ∈ R60 . (Details on how we extract the MFCCs are given in

Section V-A.)
Previous work has demonstrated that second-order statistics

are much more appropriate for describing complicated mul-
timedia data [17], [22]. Therefore, we train a GMM with P
components using the Expectation-Maximization algorithm for
each audio track (here we call these components track-aware
components)

Xk = {xk
f }mk

f =1 ∈ Rd×mk . (1)

The estimated GMM components are denoted as

G = {gi}N
i=1 (2)

where gi = {wi, μi,Σi}. When each audio track is modeled via
P components, N = nP . Each component has its correspond-
ing weight wi , mean μi , and covariance matrix Σi .

Generally, covariance matrices are positive semi-definite, and
can be made strictly positive definite by adding a small constant
to the diagonal elements of the matrix. For convenience, we use
the notation Σ to indicate a symmetric positive definite (SPD)
matrix. After GMM modeling, each audio track—typically con-
taining hundreds to thousands of frames—is reduced to a smaller
number of mixture components with prior probabilities. The
covariance matrices provide a compact and informative feature
descriptor, which lies on a specific manifold, and obviously
captures the (second-order) variability of the audio.

As we noted above, we also tested a variant, DCAR(c), in
which this step generates class-aware GMM components instead
of track-aware. Specifically, we first employ the regular EM to
generate GMM components over all the frames of each class,
and then use them to learn the embedding.

B. Phase 2: Identifying a Discriminative Embedding

In the second phase of the DCAR method, a discriminative
embedding is identified by integrating the global and local struc-
ture of the training data, so that both training data and unseen
new data can be re-represented in a discriminative and compact
manner.

1) Overview of Phase 2: The model presented thus far
ignores the global structure of the data (e.g., the valuable la-
bel information) and the local structure among the components
(e.g., nearest neighbors). Meanwhile, the original feature rep-
resentation is usually large (since there are 60 MFCC features,
each mean vector has 60 elements, and each covariance matrix
contains 60 × 60 elements), which may be time-consuming in
later data processing. Therefore we propose a new method for
generating a discriminative and compact representation from
the high-dimensional mixture components. The DCAR method
is summarized in Fig. 1.

Our main goal is to learn an embedding W ∈ Rd×r (r < d,
where d is the number of MFCC features and r is the em-
bedding space size) based on the GMM components of the la-
beled audio track (G = {gi, �i}N

i=1 , where �i is the label for
component gi , based on the label of the corresponding
audio track from which gi was generated). The resulting
low-dimensional GMM components should preserve the im-
portant structure of the original GMM components as much as
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Fig. 1. Framework for generating the discriminative and compact audio repre-
sentation (DCAR). The left side shows the original d-dimensional GMM compo-
nents (μ ∈ Rd and Σ ∈ Rd×d ); the right side shows the DCAR representation
with r-dimensional (r < d) mixture components (μ̂ ∈ Rr and Σ̂ ∈ Rr×r ).

possible. To accomplish this, we introduce an embedding W
and define the new GMM components with mean

μ̂ = WT μ (3)

and covariance matrix

Σ̂ = WT ΣW. (4)

As mentioned above, the covariance matrix Σ is SPD, i.e., 0 ≺
Σ ∈ Sym+

d . To maintain this property, i.e., 0 ≺ Σ̂ ∈ Sym+
r , the

embedding W is constrained to be full rank. A simple way of en-
forcing this requirement is to impose orthonormality constraints
on W (i.e., WT W = Ir ), so that the embedding can be iden-
tified by solving an optimization problem on the Grassmannian
manifold.

The event or scene label for each training track, which we also
assign to the GMM components, can be interpreted as global
structure for those components. There is also intrinsic internal
structure among the components, such as the affinity between
each pair. When reducing the dimensionality of GMM compo-
nents, it is necessary to maintain these two types of structure.
Motivated by the idea of linear discriminative analysis [23] and
Maximum Margin Criterion [24], DCAR aims to minimize the
intra-class distance while simultaneously maximizing the inter-
class distance. In the next subsection, we introduce an undirected
graph defined by a real symmetric affinity matrix A ∈ RN ×N

that encodes these structures.
2) Affinity Matrix Construction: The affinity matrix A is

defined by building an intra- (within-)class similarity graph and
an inter- (between-)class similarity graph, as follows:

A = Sw − Sb . (5)

Sw and Sb are two binary matrices describing the intra-class
and inter-class similarity graphs respectively, formulated as:

Sw (i, j) =
{

1 if gi ∈ NNw (gj ) or gj ∈ NNw (gi)
0 otherwise

(6)

and

Sb(i, j) =
{

1 if gi ∈ NNb(gj ) or gj ∈ NNb(gi)
0 otherwise

(7)

where NNw (gi) contains the nw nearest neighbors of component
gi that share the same label as �i , and NNb(gi) is the set of nb

nearest neighbors of gi that have different labels. Here, the
nearest neighbors of each component can be identified via their
similarity. We use heat kernel weight to measure the similarity
between components

S(i, j) = λ exp
(−δ2

μ(μi, μj )
2σ2

μ

)
+ exp

(−δ2
Σ(Σi ,Σj )
2σ2

Σ

)
(8)

where λ is a trade-off parameter to control the contribution
from the components’ means and covariance matrices and δμ

indicates the distance measure for the means of the mixture
components. Here we use the simple euclidean distance

δ2
μ(μi, μj ) = ‖μi − μj‖2

2 . (9)

δΣ indicates the distance measure for the covariance matrices
of the components.

Previous research uses a number of metrics, including the
Affine-Invariant Riemannian Metric (AIRM) [25], Stein Diver-
gence [26], and the Log-Euclidean Metric (LEM) [27]. AIRM
imposes a high computational burden in practice, and we have
observed experimentally that nearest neighbors selected accord-
ing to LEM more often fall into the same event than nearest
neighbors selected according to either AIRM or Stein. For these
reasons, we use LEM to compute δΣ

δ2
Σ(Σi ,Σj ) = ‖ log(Σi) − log(Σj )‖2

F (10)

where the log(.) function is the matrix logarithm.
The constructed affinity matrix A thus effectively combines

local structure, i.e., nearest neighbors, and global structure, i.e.,
label information—which is used to find the within-class nearest
neighbor (NNw ) and the between-class nearest neighbor (NNb ).

3) Embedding Optimization: Once we have A, the next
step is to learn an embedding such that the structure among
the original GMM components {gi}N

i=1 = {μi,Σi}N
i=1 is re-

flected by the low-dimensional mixture components {ĝi}N
i=1 =

{μ̂i , Σ̂i}N
i=1 . This process can be modeled using the following

optimization problem:

F (W) =
∑
i,j

Aij

(
λδ2

μ(μ̂i , μ̂j ) + δ2
Σ(Σ̂i , Σ̂j )

)

=
∑
i,j

Aij

(
λ‖WT (μi − μj )‖2

F

+ ‖ log(WT ΣiW) − log(WT ΣjW)‖2
F

)
.

(11)

With the aid of the mapping functions in (3) and (4) and the
distance metrics δμ (9) and δΣ (10), the optimization problem
can be rewritten as

min
W T W=Ir

F (W ). (12)

As in (8), λ is used to balance the effects of two terms, in tuning
by cross-validation on the training data. Optimizing F(W) re-
sults in a situation where the low-dimensional components are
close if their corresponding original high-dimensional compo-
nents are event-aware neighbors; otherwise, they will be as far
apart as possible.
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The problem in (12) is a typical optimization problem with
orthogonality constraints, which can be effectively solved on
Grassmannian manifolds [28]. For F(W) and any rotation ma-
trix R ∈ SO(r) (i.e., RRT = RT R = Ir ), we have F(W) =
F(WR) (see Appendix A for a detailed proof). This indicates
that (12) is most compatible with a Grassmannian manifold. In
other words, we can model the embedding W as a point on a
Grassmannian manifold G(r, d), which consists of the set of all
linear r-dimensional subspaces of Rd .

Here we employ the conjugate gradient (CG) technique to
solve (12), because CG is easy to implement, has low storage
requirements, and provides superlunar convergence in the limit
[28]. On a Grassmannian manifold, CG performs minimiza-
tion along geodesics with specific search directions. Here, the
geodesic is the shortest path between two points on the manifold.
For every point on the manifold G, its tangent space is a vector
space that contains the tangent vectors of all possible curves
passing through that point. Unlike flat spaces, on a manifold
we cannot directly transport a tangent vector from one point to
another point by simple translation; rather, the tangent vectors
must parallel transport along the geodesics. (Details for finding
the optimal W are given in Appendix B.)

Then, given a new audio track, we can extract its MFCC
features, train P GMM components, and re-represent these
components with the embedding W to get its discriminative,
low-dimensional mixture components, i.e., its DCAR.

IV. CLASSIFICATION AND DETECTION WITH DCARS

As we describe above, each audio track is represented via
several mixture components, including mean vectors and co-
variance matrices. It would be possible to flatten the matrices
into vectors and then use traditional vector-based classification
methods for event detection. However, the covariance matrices
lie on the manifold of positive definite matrices, and such a
vectorization process would ignore this manifold structure [18].
Therefore, we use the Kernel Ridge Regression (KRR) method
to build the event and scene classifiers.

Let Ĝ = {ĝi}N
i=1 and ĝi = {μ̂i , Σ̂i} be mixture components

for the training audio tracks belonging to L events. (In order
to reduce the computational complexity, following [16], we can
generate components for each class instead of for each track.)
Y ∈ RN ×L indicates the label information for Ĝ, where Yij =
1 if the ith component belongs to the jth event; otherwise Yij =
0. The KRR method aims to train a classifier by solving the
following optimization problem:

min
H

J(H) = ‖φ(Ĝ)T H − Y‖2
F + α‖H‖2

F (13)

where φ is a feature mapping from the original feature space to a
high-dimensional space, and the kernel function can be written
as K = φ(Ĝ)T φ(Ĝ).

Since each component ĝi has a mean μ̂i and a covariance
matrix Σ̂i , we can define a combined kernel function to integrate
these two parts, as follows:

K(ĝi , ĝj ) = λKμ(μ̂i , μ̂j ) + KΣ(Σ̂i , Σ̂j ). (14)

The trade-off parameter λ (see (8)) can be tuned by cross-
validation on the training data. As described in Section III-B2,
we use a Gaussian kernel to calculate Kμ and KΣ via

Kμ(μ̂i , μ̂j ) = exp
(−‖μ̂i − μ̂j‖2

2

2σ2
μ̂

)
(15)

and

KΣ(Σ̂i , Σ̂j ) = exp
(−‖ log(Σ̂i) − log(Σ̂j )‖2

F

2σ2
Σ̂

)
. (16)

The problem in (13), as a quadratic convex problem, can be
optimized by setting its derivative with respect to H to zero,
and then computing H in closed form

H = φ(Ĝ)(K + αI)−1Y. (17)

Here Kij = K(ĝi , ĝj ) as given in (14).
Given a new test audio track, P mixture components

{gp}P
p=1 = {wp, μp ,Σp}P

p=1 can be obtained via the meth-
ods described in Section III-A. Then the corresponding dis-
criminative, low-dimensional mixture components {ĝp}P

p=1 can
be generated as in (3) for μ̂p = W T μp , and as in (4) for
Σ̂p = W T ΣpW , where the embedding W is learned from the
training data. Then the class membership matrix M = {Mp}P

p=1

(where Mp ∈ R1×L is the class membership of the p-th compo-
nent) can be calculated

Mp = φ(ĝp)T H = φ(ĝp)T φ(Ĝ)(K + αI)−1Y

= Kp(K + αI)−1Y. (18)

Here Kp = [K(ĝp , ĝi)]Ni=1 , indicating the similarity between ĝp

and all of the training mixture components in Ĝ. We can then
make a final prediction about the class of the new audio track
with P components using an average voting scheme

� = arg max
j

P∑
p=1

wpMp(j) (19)

where wp is the weight of the pth component. The computational
complexity for embedding learning and classification processes
is analyzed in Appendix C.

V. EVENT DETECTION EXPERIMENTS ON YLI-MED

We evaluated the event detection and classification perfor-
mance of our proposed representation against several baseline
representations, using the recently released dataset YLI-MED.

A. Dataset

YLI-MED [29] is an open video corpus focused on multime-
dia event detection research (modeled on the TRECVID MED
corpus [30], but publicly available). The videos are drawn from
the YFCC100M dataset [31]. YLI-MED includes about 2000
videos that contain examples of ten events, with standard train-
ing and test sets. Our experiments used the audio tracks, which
we preprocessed and represented using MFCCs. The frames
were extracted using a 100 ms Hamming window with a stride
size of 10 ms per frame shift, a 22050 Hz sampling rate, and
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TABLE I
YLI-MED DATASET COMPOSITION

Event ID Event Name

Ev101 Birthday Party
Ev102 Flash Mob
Ev103 Getting a Vehicle Unstuck
Ev104 Parade
Ev105 Person Attempting a Board Trick
Ev106 Person Grooming an Animal
Ev107 Person Hand-Feeding an Animal
Ev108 Person Landing a Fish
Ev109 Wedding Ceremony
Ev110 Working on a Woodworking Project

40 Mel bands. The first 20 coefficients and the corresponding
∇ and acceleration coefficients (∇∇) were calculated to obtain
a 60-dimensional vector for each frame. Table I describes the
data we used. The number of videos in each class varies from
89 to 99 for training, and 39 to 131 for testing.

B. Methodology

To evaluate our proposed DCAR method, we compared it with
four state-of-the-art audio representations used for event detec-
tion and classification: mv-vector [15], i-vector [14], GMM, and
HEM-GMM [16]. By GMM, we mean here the base GMMs ob-
tained by extracting the GMM components from each audio
track (as described in Section III-A), but without the discrim-
inative dimensional reduction step. For comparison, we also
included the DCAR(c) representation, which is similar to HEM-
GMM in that it generates a few components for each class (rather
than each track).

As we mentioned in Section II, an i-vector obtains a GMM
supervector for each frame, then factorizes them to obtain the
i-vector representation. In contrast, an mv-vector models each
audio track via the mean and variance of the MFCC features,
then concatenates the mean and variance.

There are several parameters for each of the representations,
which we tuned using cross-validation on the training data to
obtain the best result. For GMM, HEM-GMM, DCAR, and
DCAR(c), the number of components for each audio track is
tuned from 1 to 10, with a step of 1. For i-vector, the number
of components in all of the training data is tuned to one of
the values in {27 , 28 , 29 , 210} and the vector dimensionality is
tuned to one of the values in {200, 400, 600, 800, 1000}. For
HEM-GMM and DCAR(c), the number of components for each
class is tuned form 50 to 200, with a step of 50. For DCAR and
DCAR(c), the number of nearest neighbors (nw and nb ) is set to
be 5 for affinity matrix construction, the embedding space size
r is tuned in [L, 60] with a step of 5 (L is the number of events),
and the trade-off parameter λ is tuned to one of {10k}2

k=−2 .2

2In addition, we tried normalizing each track, with each MFCC feature having
a mean of 0 and a variance of 1. All GMM components then have 0 means, so
KRR depends solely on the covariance matrix. However, for event detection,
information about means appears to be important. When we tuned λ in (14), we
found that we usually obtained the best results with both means and covariance
matrices.

Because our focus is on comparing different audio represen-
tations, we describe here experiments that all used the same
classification method, KRR.3 When applying KRR, we use the
Gaussian kernel (15) for i-vector and mv-vector, and the com-
bined kernel (14) for the other methods. The parameters (σμ and
σΣ ) in the heat kernel weight are set by a self-tuning technique
[32]. For the l-th event in s testing tracks, we compared the
prediction result to the ground truth to determine the number of
true positives (TPl), false positives (FPl), true negatives (TNl),
and false negatives (FNl). We then evaluated event detection
or classification performance using four metrics, Accuracy,
FScore, False Alarm Rate (FAR), and MissRate, defined
(respectively) as

Accuracy =
∑L

l=1 TPl

s
, FScorel =

2 × TPl

2 × TPl + FPl + FNl

FARl =
FPl

TNl + FPl
, MissRatel =

FNl

FNl + TPl
.

Accuracy is calculated on all s testing tracks together (i.e., the
combined or overall accuracy), while the other three metrics are
calculated for each event and then averaged for the L events.
Larger Accuracy and FScore values and smaller FAR and
MissRate values indicate better performance.

VI. EXPERIMENTAL RESULTS: EVENT DETECTION

We evaluated the representations under study in a combina-
tion of binary detection and multi-event classification tasks.

A. Binary-Event Detection

In the first experiment, we built 45 binary classifiers (one for
each pair of events). We had two goals in this experiment. The
first was to compare two representation strategies: modeling
GMMs on all training tracks, in this case as the first phase of the
i-vector approach, vs. modeling GMMs on each training track,
using DCAR. The second was to investigate how the events are
distinguished. As the graphs in Fig. 2 show, DCAR outperforms
i-vector on most tasks. On average, DCAR achieves an accuracy
improvement of 10.74% over i-vector (0.8293 vs. 0.7489) across
the binary detection tasks. The win-tie-loss value for pairwise
tests with 0.05 accuracy-difference threshold for DCAR against
i-vector is 35-7-3; with 0.01 difference threshold, it is 40-2-3.
Note that, when the absolute accuracy difference is less than the
threshold, the situation is called a tie.

From these results, we can see that there are some event pairs
that are particularly difficult to distinguish, such as Ev106–
Ev107 and Ev107–Ev108. And in fact, it could be argued that
distinguishing between events with a Person Grooming an An-
imal (Ev106), a Person Hand-Feeding an Animal (Ev107), and
a Person Landing a Fish (Ev108) can be non-trivial even for
humans. Nonetheless, compared with i-vector, our proposed
DCAR increases binary classification accuracy even on these

3To check the validity of this approach, we also tested several other classifi-
cation techniques with mv-vector and i-vector representations, including SVM,
KNN, and PLDA. The performance rankings between representations were
parallel across all classification techniques.
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Fig. 2. Binary classification accuracy. (a) Comparison between i-vector (in the lower left triangle) and DCAR (in the upper right triangle) for each pairwise
classification, with darker color indicating higher accuracy. (b) Histogram of the accuracy improvement obtained by DCAR relative to i-vector across the 45
classifications. (a) I-vector (lower triangle) versus DCAR (upper triangle). (b) Histogram of relative gain (DCAR versus i-vector).

difficult pairs. This result demonstrates that modeling each au-
dio track via a Gaussian mixture model is more suitable to
characterizing audio content, and that integrating label informa-
tion and local structure is useful in generating discriminative
representations.

B. Easy Versus Hard Cases

To further explore how our proposed DCAR method performs
on audio-based event detection under different difficulty levels,
we extracted two subsets from YLI-MED. Subset EC5 (“Easy-
Case”) contains five events (Ev101, Ev104, Ev105, Ev108, and
Ev109) that are generally easy to distinguish from (most of) the
others. Subset HC4 (“HardCase”) contains four events (Ev103,
Ev106, Ev107, and Ev110) that are more difficult to distinguish.4

1) Dimensionality Tuning: Before comparing DCAR with
other state-of-the-art representations, we conducted a set of
multi-event classification experiments to study how the dimen-
sionality parameter (r) affects DCAR under these two difficulty
levels. Here, we used five-fold cross-validation on the training
data to tune r. The parameter was tuned from 5 to 60 with a step
of 5. Combined (overall) Accuracy and average MissRate on
EC5 and HC4 for each step are given in Fig. 3.

The results show that DCAR performs better as r increases,
reaches the best value at r = 25 for both cases, and then again
decreases in performance as r grows larger. We believe this is
because a smaller r cannot optimally characterize the hidden
structure of the data, while a larger r may separate the structure
into more dimensions until it is essentially equivalent to the
original data, thus decreasing the efficacy of the representation.

2) Easy and Hard Results: Table II shows the multi-event
classification performance of DCAR, DCAR(c), and four base-
line representations—base GMM, HEM-GMM, mv-vector, and
i-vector—in terms of FScore, Accuracy, MissRate and FAR
at the two difficulty levels (on EC5 and HC4).

For the EC5 subset, DCAR(c) consistently achieves the best
results (marked in bold) on each evaluation metric, with DCAR
consistently second-best. For HC4, the situation is nearly re-

4The division was based on the results in Sections VI-A and VI-C, as well as
a priori human understanding of the events’ similarity. Because multiple criteria
were used, Ev102 did not fall clearly into either category.

versed, with DCAR achieving the best results on most metrics.
However, differences between DCAR and DCAR(c) were not
statistically significant in either case. (Significance is assessed
using McNemar’s two-tailed test for correlated proportions). In-
terestingly, i-vector performs better than mv-vector on the EC5
data, but worse than mv-vector on the HC4 data (p = 0.0001 or
better for Accuracy in both cases). For Accuracy, p = 0.01 or
better on pairwise comparisons of DCAR vs. mv-vector and i-
vector, and p = 0.05 or better for DCAR vs. GMM only, for both
subsets. Comparing DCAR(c) with HEM-GMM, p = 0.002 on
EC5, but p = 1 on HC4.

3) DCAR, Variance, and Structure: We can make a number
of observations about these results. First, it seems that modeling
a GMM on all the training audio tracks together (as in i-vector)
is not effective comparing with modeling GMM components
for each audio track when the events are semantically related to
each other (as in HC4). We believe this is due to the fact that, in
real-world applications (e.g., with user-generated content), each
audio track may have a large variance. The set of strategies that
model each track via GMM capture the hidden structure within
each audio track, while the i-vector strategy may smooth away
that structure (even between events), leading to a less useful
representation.

Second, mv-vector performs worse than the proposed meth-
ods. We believe this indicates that one mixture component may
not sufficiently capture the full structure of the audio; in addition,
vectorizing the mean and variance inevitably distorts the intrin-
sic geometrical structure among the data. Third, the proposed
methods outperform GMM and HEM-GMM. As we described
in Section III, DCAR begins by extracting such a GMM model,
but it also takes into account the label information and the in-
trinsic nearest neighbor structure among the audio tracks when
modeling the training data, and outputs a mapping function to
effectively represent the test data.

C. Ten-Event Classification

Because event classification is a kind of supervised learn-
ing, learning becomes more difficult as the number of events
increases. In the next experiment, we again compared the pro-
posed DCAR model with the baseline representations, this time
on the ten-event dataset. As before, the parameters for each
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Fig. 3. Effects of varying the parameter (r) in DCAR for the EasyCase subset (five-event classification), and for the HardCase subset (four-event classification),
in terms of Accuracy and MissRate. (a) EC5. (b) HC4.

TABLE II
COMPARISON OF SIX REPRESENTATIONS [MV-VECTOR, I-VECTOR, GMM, HEM-GMM, DCAR, AND DCAR(C)] ON MULTIEVENT

CLASSIFICATION FOR EASY-TO-DISTINGUISH EVENTS (EC5) AND HARD-TO-DISTINGUISH EVENTS (HC4)

Subset EC5 Subset HC4

Evaluation (Ev101,Ev104, Ev105, Ev108, Ev109) (Ev103,Ev106, Ev107, Ev110)

Metric mv-vector i-vector GMM HEM-GMM DCAR DCAR(c) mv-vector i-vector GMM HEM-GMM DCAR DCAR(c)

FScore(↑) 0.4773 0.6415 0.6670 0.6466 0.7067 0.7164 0.4278 0.2795 0.4821 0.5059 0.5282 0.5261
Accuracy(↑) 0.5455 0.6828 0.7131 0.6949 0.7434 0.7475 0.4573 0.2863 0.5000 0.5531 0.5684 0.5513
MissRate(↓) 0.5168 0.3367 0.3252 0.3486 0.2779 0.2710 0.5393 0.6975 0.4840 0.4770 0.4577 0.4536
FAR(↓) 0.1136 0.0785 0.0730 0.0771 0.0647 0.0640 0.1788 0.2409 0.1684 0.1496 0.1496 0.1564

Note: Best results in boldface; second-best underlined.

TABLE III
PER-EVENT COMPARISON OF CLASSIFICATION PERFORMANCE (AS F Score AND MissRate) USING

SIX REPRESENTATIONS: MV-VECTOR, I-VECTOR, GMM, HEM-GMM, DCAR, AND DCAR(C)

FScore (↑) MissRate (↓)

mv-vector i-vector GMM HEM-GMM DCAR DCAR(c) mv-vector i-vector GMM HEM-GMM DCAR DCAR(c)

Ev101 0.7259 0.7842 0.7303 0.7518 0.7835 0.7904 0.2824 0.1679 0.1527 0.1908 0.1298 0.1221
Ev102 0.2837 0.3396 0.3651 0.3529 0.4603 0.4426 0.5918 0.6327 0.5306 0.5102 0.4082 0.4490
Ev103 0.2178 0.2569 0.2410 0.3639 0.3820 0.4138 0.7179 0.6410 0.7436 0.6154 0.5641 0.5385
Ev104 0.4274 0.6206 0.6000 0.5820 0.6207 0.6421 0.6063 0.4331 0.3622 0.4409 0.3621 0.3150
Ev105 0.3354 0.3899 0.5714 0.5424 0.5178 0.5419 0.6932 0.6477 0.3864 0.4545 0.4205 0.3750
Ev106 0.1964 0.1835 0.2963 0.2162 0.3750 0.3846 0.7105 0.7368 0.6842 0.7895 0.6053 0.6053
Ev107 0.3850 0.3298 0.3250 0.4409 0.4024 0.4096 0.6814 0.7257 0.7699 0.6372 0.7080 0.6991
Ev108 0.3191 0.3853 0.3878 0.3186 0.4231 0.4536 0.6341 0.4878 0.5366 0.5610 0.4634 0.4634
Ev109 0.4211 0.5028 0.4286 0.4894 0.5176 0.5263 0.6667 0.5833 0.6667 0.5741 0.5926 0.5833
Ev110 0.0833 0.2299 0.2857 0.2703 0.2162 0.2571 0.9091 0.7727 0.7500 0.7727 0.8182 0.7955
Average 0.3395 0.4023 0.4231 0.4330 0.4699 0.4862 0.6494 0.5829 0.5583 0.5546 0.5072 0.4946

Note: Best results in boldface; second-best underlined.

method were tuned by cross-validation on the training data.
Table III gives the classification performance on each event
and the average over the ten events in terms of FScore and
MissRate.

For all of the individual events and on average, DCAR
achieves superior or competitive performance. DCAR also per-
forms better in terms of Accuracy and FAR. The overall
Accuracy scores for mv-vector, i-vector, GMM, HEM-GMM,
DCAR, and DCAR(c) are 0.3907, 0.4640, 0.4923, 0.4859,
0.5231, and 0.5488, respectively (p = 0.02 or better for DCAR
vs. each baseline and p = 0.0002 or better for DCAR(c) vs. each

baseline [McNemar’s two-tailed]). The average FAR scores are
0.0674, 0.0593, 0.0570, 0.0571, 0.0523, and 0.0506. Although
other representations may perform as well or better on some
particular events, DCAR and DCAR(c) consistently outperform
the other representations for all evaluation metrics (an average
of more than 8% gain on all metrics relative to the second best
representation). These results further demonstrate that model-
ing each audio track via GMM and then integrating both label
information and local structure are beneficial.

In addition to comparing results across the existing repre-
sentation methods, we also experimented with applying feature
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TABLE IV
COMPARISON OF TEN-EVENT CLASSIFICATION PERFORMANCE

FOR GMM REPRESENTATIONS WITH AND WITHOUT

PRE-TRAINING FEATURE REDUCTION

Evaluation GMM PCA+GMM LDA+GMM

Metric r = 30 r = 9
FScore (↑) 0.4231 0.4293 0.3278
Accuracy (↑) 0.4923 0.4987 0.3419
MissRate (↓) 0.5583 0.5508 0.6574
FAR (↓) 0.0570 0.0562 0.0935

Fig. 4. Per-event percentages of test tracks that are correctly classified by how
many representations.

reduction methods at the frame level before training the GMM,
using PCA [33] and linear discriminant analysis (LDA) [23].
(As an alternative to DCAR’s approach to dimensionality re-
duction.) The number of principal components (r) in PCA was
tuned from 5 to 60 with a step of 5. For LDA, r = L − 1, where
L is the number of events. As shown in Table IV, the results
with PCA are a little better than GMM without PCA, but the
accuracy difference is not statistically significant (p = 0.7117,
McNemar’s two-tailed). Results with LDA are much worse than
GMM without LDA. We hypothesize that the main reason for
the poor performance of LDA+GMM is that LDA only con-
siders L − 1 dimensions, which is usually too few to capture
sufficient information for later GMM training.

D. Intra-Event Variation

Delving deeper into the variability of audio tracks, we looked
at the degree to which some test tracks in YLI-MED could be
classified more accurately than others.

We took the predicted result for each test track in the ex-
periments with four of the representations (mv-vector, i-vector,
GMM and DCAR) described in Section VI-C and calculated
how many of the representations made correct predictions for
that track.

Fig. 4 shows the distribution of the number of representations
making accurate predictions for each audio track, broken down
by event. Generally, there is wide variation in accuracy among
audio tracks belonging to the same event, with the exception
of Ev101 (Birthday Party); this suggests that Ev101 may have
distinctive audio characteristics that lead to more consistent clas-
sification. It is worth noting that there are some audio tracks that

Fig. 5. Effects of λ on DCAR for DCASE.

Fig. 6. Effects of the number of nearest neighbors on DCAR for DCASE. (a)
nw = 5. (b) nb = 5.

are never correctly classified by any of the representations. For
example, more than 50% of the audio tracks for Ev110 (Work-
ing on a Woodworking Project) could not be correctly classified
by any of the four representations. This situation highlights a
challenging property of the event detection task: some of the
events are quite confusable due to their inherent characteris-
tics. For example, Ev103 (Getting a Vehicle Unstuck) may have
similar audio properties to Ev110 (Working on a Woodworking
Project) in that both are likely to involve sounds generated by
motors. This is also the reason we included Ev103 and Ev110
in the “Hard Case” HC4 dataset for the experiments described
in Section VI-B.

VII. SCENE CLASSIFICATION EXPERIMENTS ON DCASE

Extending beyond event detection, we evaluated the perfor-
mance of our proposed representation on acoustic scene classi-
fication, defined as recognition of the audio environment.
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TABLE V
PER-FOLD COMPARISON OF ACOUSTIC SCENE CLASSIFICATION PERFORMANCE USING SEVEN METHODS: DCASE’S BASE,

MV-VECTOR, I-VECTOR, GMM, HEM-GMM, DCAR, AND DCAR(C), BASED ON MONAURAL MFCC FEATURES

FScore (↑) MissRate (↓)

Base mv-vector i-vector GMM HEM-GMM DCAR DCAR(c) Base mv-vector i-vector GMM HEM-GMM DCAR DCAR(c)

Fold1 0.7197 0.7100 0.8020 0.8273 0.8230 0.8383 0.8152 0.2685 0.2750 0.1979 0.1655 0.1751 0.1573 0.1893
Fold2 0.7541 0.5845 0.6650 0.7619 0.7766 0.7823 0.7882 0.2413 0.3981 0.3196 0.2294 0.2222 0.2138 0.2061
Fold3 0.6135 0.7512 0.7684 0.8149 0.7990 0.8283 0.8320 0.3699 0.2370 0.2172 0.1748 0.1921 0.1639 0.1609
Fold4 0.7089 0.7053 0.7691 0.8032 0.7930 0.8025 0.7991 0.2677 0.2778 0.2230 0.1915 0.2041 0.1927 0.1959
Average 0.6990 0.6877 0.7511 0.8018 0.7979 0.8129 0.8086 0.2868 0.2969 0.2394 0.1903 0.1977 0.1819 0.1881

Accuracy (↑) FAR (↓)

Average 0.7132 0.7031 0.7606 0.8097 0.8026 0.8181 0.8119 0.0205 0.0210 0.0172 0.0136 0.0141 0.0130 0.0134

Note: Best results in boldface; second-best underlined.

TABLE VI
PER-FOLD COMPARISON OF ACOUSTIC SCENE CLASSIFICATION PERFORMANCE USING SEVEN METHODS: DCASE’S BASE,

MV-VECTOR, I-VECTOR, GMM, HEM-GMM, DCAR, AND DCAR(C), BASED ON BINAURAL MFCC FEATURES

FScore (↑) MissRate (↓)

Base mv-vector i-vector GMM HEM-GMM DCAR DCAR(c) Base mv-vector i-vector GMM HEM-GMM DCAR DCAR(c)

Fold1 0.7123 0.7491 0.8195 0.8310 0.8286 0.8392 0.8422 0.2795 0.2426 0.1765 0.1647 0.1706 0.1569 0.1603
Fold2 0.7540 0.6166 0.6899 0.7871 0.8036 0.8065 0.8222 0.2516 0.3730 0.2928 0.2065 0.1946 0.1893 0.1728
Fold3 0.6580 0.7583 0.7792 0.8222 0.8384 0.8313 0.8402 0.3275 0.2324 0.2162 0.1671 0.1554 0.1600 0.1496
Fold4 0.7215 0.7909 0.8273 0.8279 0.8183 0.8522 0.8206 0.2650 0.2022 0.1660 0.1680 0.1817 0.1451 0.1654
Average 0.7115 0.7287 0.7790 0.8170 0.8210 0.8323 0.8333 0.2809 0.2626 0.2128 0.1766 0.1756 0.1628 0.1620

Accuracy (↑) FAR (↓)

Average 0.7191 0.7374 0.7871 0.8234 0.8244 0.8372 0.8380 0.0201 0.0188 0.0153 0.0126 0.0125 0.0117 0.0116

Note: Best results in boldface; second-best underlined.

A. Dataset

We used the TUT Acoustic Scenes 2016 dataset from the
DCASE challenge [34]. This dataset is divided into 15 classes
of scene from three scenes (Vehicle, Outdoor, Indoor), with (in
most cases) several 3–5 minute binaural recordings from differ-
ent locations for each class. Since the ground truth labels for the
evaluation set were not public when we conducted our experi-
ments, we used only the development set. The development set
is divided into 4 folds, each of which has a training and a test set
(prescribed by DCASE). We experimented with each fold sep-
arately, then recorded the performance on each fold. The 5-fold
cross-validation on each fold was used to tune the parameters,
i.e., the training files of each fold are partitioned into five equal
subsets.

For each scene, the development set includes 78 segments
of 30 s each. We extracted MFCCs from the DCASE segment
files using similar settings to those for YLI-MED, except we
extracted the frames using a 40 ms Hamming window with 50%
overlap [34].

B. Methodology

The classifier (KRR), parameters, and evaluation metrics we
used for audio scene classification parallel those we used for
event classification, described in Section V-B. In addition to
comparing DCAR and DCAR(c) with our mv-vector, i-vector,
GMM, and HEM-GMM baselines, we also included a baseline
provided by DCASE (which we will refer to as Base). For Base,

the Gaussian mixture components are learned for each acoustic
scene using the Expectation-Maximization algorithm.

C. Experimental Results: Scene Classification

First, we investigated the effect of the trade-off parameter
λ on DCAR. The chart in Fig. 5 shows that the best result
is obtained at around λ = 1; this indicates that both mean and
covariance are useful for determining the low-dimensional com-
ponents. Meanwhile, we compared the performance of DCAR
using only the mean vector vs. only the covariance matrix, ob-
taining an FScore of 0.7279 and 0.7473 respectively – notably
worse than DCAR using both (0.8129).5 We also investigated
the effect of the number of nearest neighbors when construct-
ing the affinity matrix. As shown in Fig. 6, the performance
of DCAR increases with the number of neighbors, approaches
a maximum, then decreases.6 In other words, a large number
of neighbors may bring noisy information. (Red indicates per-
formance without considering local structure, i.e., with each
element of A set to 1.) These explorations confirm that DCAR
obtains higher performance by using both local structure and
global label information.

We then tested the various methods in both monaural and bin-
aural conditions. Table V gives the classification performance

5The same comparison on YLI-MED data shows the opposite balance be-
tween mean vector and covariance matrix, but again, the best result is obtained
by using both.

6The same pattern is found with the YLI-MED data.
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TABLE VII
PER-CLASS COMPARISON OF AVERAGE ACOUSTIC SCENE CLASSIFICATION Accuracy USING SEVEN METHODS: DCASE’S

BASE, MV-VECTOR, I-VECTOR, GMM, HEM-GMM, DCAR, AND DCAR(C), BASED ON BINAURAL MFCCS

Group Scene Base mv-vector i-vector GMM HEM-GMM DCAR DCAR(c)

Vehicle Bus 0.6197 0.7204 0.6816 0.7849 0.8947 0.7836 0.9079
Vehicle Car 0.6888 0.8467 0.9480 0.8974 0.7711 0.8599 0.8217
Vehicle Train 0.3913 0.4408 0.6477 0.5505 0.8760 0.5745 0.9028
Vehicle Tram 0.9205 0.8397 0.8561 0.8674 0.8599 0.8813 0.9375
Indoor Cafe 0.4963 0.7376 0.7050 0.8986 0.9378 0.8766 0.9360
Indoor Grocery store 0.5959 0.6930 0.8208 0.6692 0.9722 0.7719 0.9722
Indoor Home 0.8222 0.6826 0.7667 0.7722 0.6692 0.7056 0.7074
Indoor Library 0.8279 0.5569 0.7093 0.8171 0.7497 0.8929 0.6931
Indoor Office 0.9737 0.7139 0.9737 0.8238 0.8790 0.8407 0.9087
Indoor Metro station 1.0000 0.9452 0.9591 0.9737 0.9737 0.9737 0.9459
Outdoor City center 0.8819 0.8756 0.9097 0.9247 0.9733 0.9090 0.8794
Outdoor Forest path 0.7242 0.8710 0.8770 0.9861 0.7125 0.9861 0.7042
Outdoor Urban park 0.2861 0.5417 0.4458 0.6889 0.7707 0.7667 0.7600
Outdoor Lakeside beach 0.6930 0.8327 0.8816 0.8948 0.6109 0.9079 0.6424
Outdoor Residential area 0.8653 0.7638 0.6253 0.8020 0.8510 0.8271 0.8510

Avg. of classes 0.7191 0.7374 0.7871 0.8234 0.8244 0.8372 0.8380
Variance 0.0447 0.0198 0.0225 0.0142 0.0253 0.0112 0.0244

Note: Best results in boldface; second-best underlined.

for the different representations (as FScore and MissRate),
across the four folds and on average, based on monaural MFCCs.
Again, the mv-vector method computes the mean and variance
of the frames’ MFCCs for each audio file, GMM and DCAR
learn the file-aware components, HEM-GMM and DCAR(c)
learn the class-aware components, and i-vector learns the com-
ponents from all of the files, while Base learns the components
from the audio files belonging to one scene. In most cases,
DCAR obtains a better result (shown in boldface) than the base-
lines on these metrics.

The best performance in DCASE 2016 was obtained by
Eghbal-Zadeh et al. [35]. In their work, binaural audio (from
both left and right channels), the averaged monaural represen-
tation, and the difference between the left and right channels
were extracted as four different feature-space representations
for each audio track (using 60-dimensional MFCCs for each
audio frame). We replicated this with each of the seven methods
under comparison, fusing the classification results from the four
representations late in the procedure for each method. These
results are listed in Table VI. All methods were improved by
using binaural audio, but either DCAR or DCAR(c) was still
consistently superior to the five baselines in terms of FScore
and MissRate.

Finally, Accuracy scores for each class are given in Table VII
(averaged across the four folds). The results are separated into
three groups: vehicle, indoor, and outdoor. Our methods obtain
competitive performance for all three groups, and either DCAR
or DCAR(c) obtains one of the top two results for most classes
(with the exception of Home and City Center). This may be
because the embedding W is learned for all classes rather than
for each individual class.

VIII. CONCLUSION AND FUTURE WORK

In this article, we have presented a new audio representation,
DCAR, and demonstrated its use in event classification and

audio-scene classification. One distinguishing characteristic of
the DCAR method is that it can capture the variability within
each audio track. Another is that it achieves better discriminative
ability by integrating label information and the graph of the
components’ nearest neighbors among the audio tracks, i.e., it
can successfully characterize both global and local structure
among audio tracks.

Representing audio using the proposed DCAR notably im-
proves performance on event detection (using the YLI-MED
dataset) and audio scene classification (using the DCASE chal-
lenge dataset), as compared with the existing popular represen-
tations (e.g., on YLI-MED, an average of more than 8% relative
gain for ten-event classification and more than 10% gain for
binary detection across all metrics).

The proposed representation benefits from leveraging global
and local structure within audio data; however, videos are of
course multimodal. Other data sources such as visual content,
captions, and other metadata can provide valuable information
for event detection; we therefore plan to extend the current
model by incorporating such information.

Related work on audio analysis (e.g., Coviello et al., 2011
[36]; Coviello et al., 2012 [37]; Barchiesi et al., 2015 [8]) has
demonstrated that the temporal evolution of different events
plays an important role in audio analysis; another possible direc-
tion for expanding DCAR is to take into consideration complex
temporal information in modeling video events.

Last but not least, we might explore extracting the
information-rich segments from each audio track rather than
modeling the whole track.

APPENDIX A
PROOF: THE ROTATIONAL INVARIANCE OF F

Given the objective function F(W) in (12), repeated here
as (20), and any rotation matrix R ∈ SO(r) (i.e., RRT =
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RT R = Ir ), we can show that F(W) = F(WR)

F(W) =
∑
i,j

Aij

(
λ‖WT (μi − μj )‖2

F

+ ‖ log(WT ΣiW) − log(WT ΣjW)‖2
F

)
.

(20)

Proof. According to the definition of F(W) in (20), we can
write F(WR) as

F(WR) =
∑
i,j

Aij

(
λ‖(WR)T (μi − μj )‖2

F

+ ‖ log((WR)T ΣiWR)

− log((WR)T ΣjWR)‖2
F

)
.

We set

F1ij (WR) = ‖(WR)T (μi − μj )‖2
F

= Tr
[
(μi − μj )T (WR)(WR)T (μi − μj )

]

= Tr
[
(μi − μj )T WRRT WT (μi − μj )

]

= Tr
[
(μi − μj )T WWT (μi − μj )

]

= ‖(W)T (μi − μj )‖2
F

= F1ij (W). (21)

Since 0 ≺ WT ΣiW ∈ Sym+
r is symmetric positive-definite,

and the log-euclidean metric has the properties of Lie group
bi-invariance and similarity invariance), i.e.,

‖ log(X) − log(Y )‖2
F = ‖ log(RT XR) − log(RT Y R)‖2

F

then

F2ij (WR) = ‖ log((WR)T ΣiWR)

− log((WR)T ΣjWR)‖2
F

= ‖ log(RT (WT ΣiW)R)

− log(RT (WT ΣjW)R)‖2
F

= ‖ log((WT ΣiW) − log(WT ΣjW)‖2
F

= F2ij (W). (22)

Thus

F(WR) =
∑
i,j

Aij

(
λF1ij (WR) + F2ij (WR)

)

=
∑
i,j

Aij

(
λF1ij (W) + F2ij (W)

)
= F(W)

(23)

as claimed. �

APPENDIX B
SOLVING THE OPTIMIZATION PROBLEM IN (12)

Let ∇W and DW be the tangent vector and the gradient of
F(W) at point W of the Grassmannian manifold. The gradient
at the τ -th iteration can be obtained by subtracting the normal
component at W(τ ) from the transported vector:

D(τ )
W = ∇(τ )

W − W(τ )(W(τ ))T ∇(τ )
W . (24)

The search directionHW in the (τ + 1)-th iteration can be com-
puted by parallel transporting the previous search direction and
combining it with the gradient direction at the current solution

H(τ +1)
W = D(τ +1)

W + γ(τ +1)	H(τ )
W . (25)

	H(τ )
W is the parallel translation of the vector H(τ )

W . According
to Absil, Mahony, and Sepulcher 2008 [28], the geodesic going
from point W in the direction H(τ )

W can be represented by the
geodesic equation

W(t) =
[
WV U

] [
cosΛt
sinΛt

]
V T . (26)

Here, t is a scalar that determines how far W (t) can walk
along the geodesic in the descent direction. F(W(t)) is not a
convex function over t, but minimizing it is a one-dimensional
optimization problem. Thus, we adopted the derivative-free line
search (e.g., golden-section search) to determine the optimal
t(τ ) in the τ -th iteration. According to [38], this line search
method can find the local optimal point.

Then, we have

	H(τ )
W =

( − W(τ )V sinΛt(τ ) + U cosΛt(τ ))ΛV T (27)

where UΛV T is the compact singular value decomposition of
H(τ )

W .
The step size γ(τ +1) can be determined via the exact conju-

gacy condition

γ(τ +1) =
〈D(τ +1)

W −	D(τ )
W ,D(τ +1)

W 〉
〈D(τ )

W ,D(τ )
W 〉

(28)

where 〈A,B〉 = Tr(AT B). Similar to 	H(τ )
W , 	D(τ )

W can be
calculated by

	D(τ )
W = D(τ )

W − (
W(τ )V sin Λt(τ ) + U(I − cos Λt(τ ))

)
× UT D(τ )

W . (29)

Going back to the objective function in (11), by setting
F1ij = ‖WT (μi − μj )‖2

F and F2ij = ‖ log(WT ΣiW) −
log(WT ΣjW)‖2

F , (11) can be rewritten as

F(W) =
∑
i,j

Aij

(
λF1ij + F2ij

)
(30)

then its tangent vector ∇W on the manifold can be computed in
three steps

∇WF1ij = 2(μi − μj )(μi − μj )T W (31)
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Algorithm 1: Solving (12) via a Conjugate Gradient on a
Grassmannian Manifold
Input: A set of labeled d-dimensional GMM components

{gi, �i}N
i=1 with means {μi}N

i=1 and covariance matrices
{Σ}N

i=1 , reduced dimensionality r, and parameter λ.
1: Construct an affinity matrix A using (5)
2: Initialize W (0) such that (W (0))T W (0) = Ir and τ = 0
3: Compute ∇(0)

W as in (33) and D(0)
W as in (24), and set

H(0)
W = −D(0)

W
4: for τ = 0, 1, 2, · · · do
5: Perform [UΛV ] = SV D(H(τ )

W )
6: Given U , Λ, V and (26), find the optimal W(τ )(t)

over t with golden-section search. Set t(τ ) = tmin
(where tmin is the value of t at the optimal point of
W(τ ))

7: Compute 	H(τ )
W and 	D(τ )

W as in (27) and (29)
8: Set W(τ +1) = W(τ )(t(τ ))
9: Compute ∇(τ +1)

W as in (33) and D(τ +1)
W as in (24)

10: Find the step size γ(τ +1) via (28)
11: Find the new search direction H(τ +1)

W via (25)
12: end for
Output: W (τ +1)

∇WF2ij = 4
(
ΣiW(WT ΣiW)−1 − ΣjW(WT ΣjW)−1

)

×
(

log(WT ΣiW) − log(WT ΣjW)
)

(32)

∇W =
∑
i,j

Aij

(
λ1∇WF1ij + λ2∇WF2ij

)
. (33)

This conjugate gradient method for solving (12) is summa-
rized in Algorithm 1.

APPENDIX C
COMPLEXITY ANALYSIS OF THE METHODS COMPARED

Storage complexity: Suppose we have n tracks belonging to
L classes, with each track represented by a collection of d-
dimensional MFCC feature vectors (d = 60). For i-vector, the
vector dimensionality is d∗ (where d∗ is tuned to one of the
values in in {200, 400, 600, 800, 1000}). It requires O(nd∗) of
space to store the vectors. The storage complexity for mv-vector
is O(nd′), with d′ = 131. For GMM, each component contains a
mean vector and a covariance matrix, thus it requires O(nPd2 +
nPd) of space, where P is the number of components extracted
from each track. For HEM-GMM, the storage complexity is
O(LPLd2 + LPLd), where PL is the number of component
extracted from each class.

Similar to GMM, the storage for DCAR is O(nPr2 + nPr),
where r is the reduced dimensionality; it is less than d. DCAR(c)
requires O(LPLr2 + LPLr) of space. The compactness of
DCAR and DCAR(c) can be compared with that of GMM and
HEM-GMM, respectively. For example, it can be seen from
Fig. 3(a) and Table II that, on the EC5 subset, DCAR obtains

an accuracy comparable to plain GMM at r = 25. In that case,
the storage complexity of DCAR/DCAR(c) is about 1

6 that of
GMM/HEM-GMM.

Time complexity: In each iteration of Algorithm 1, we cal-
culate the gradient of the pairwise distances for a total of N 2

distances (N = nP for DCAR, and N = LPL for DCAR(c)).
Then compact SVD and matrix inversion must be implemented,
with a time complexity of O(r3). Therefore, the time complex-
ity for learning W is O(N 2r3). In our experiments, only the
k-nearest neighbors are considered for each component, which
makes the affinity matrix A very sparse. The number of non-zero
distance pairs is thus many fewer than N 2 . Meanwhile, r is less
than 60 (say, r = 25 for EC5 and HC4). An efficient method is
to compute the gradients in parallel and then sum them.

Classification complexity: Due to computing the kernel for
components, the complexity of the classification algorithm is
O(N 2r2 + Nr3) for the training phase and O(P (d2r + Nr2))
for the testing phase. In the future, we plan to employ a more
computationally efficient classification method (rather than a
kernel classifier).
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