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Background: When a large number of protein conformations are generated and
screened, as in protein structure prediction studies, it is often advantageous to
change the conformation in units of four consecutive residues at a time. The
internal geometry of a chain of four consecutive Ca atoms is completely
described by means of the three angles u1, t, and u2, where t is the virtual
torsion angle defined by the four atoms and u1 and u2 are the virtual bond
angles flanking the torsion angle on either side. In this paper, we examine the
quality of the protein structures that can be obtained when they are represented
by means of a set of discrete values for these angles (discrete states).

Results: Different models were produced by selecting various different discrete
states. The performance of these models was tested by rebuilding the Ca chains
of 139 high-resolution nonhomologous protein structures using the build-up
procedure of Park and Levitt. We find that the discrete state models introduce
distortions at three levels, which can be measured by means of the ‘context-free’,
‘in-context’, and the overall root-mean-square deviation of the Ca coordinates
(crms), respectively, and we find that these different levels of distortions are
interrelated. As found by Park and Levitt, the overall crms decreases smoothly for
most models with the complexity of the model. However, the decrease is
significantly faster with our models than observed by Park and Levitt with their
models. We also find that it is possible to choose models that perform
considerably worse than expected from this smooth dependence on complexity.

Conclusions: Of our models, the most suitable for use in initial protein folding
studies appears to be model S8, in which the effective number of states
available for a given residue quartet is 6.5. This model builds helices, b-strands,
and coil/loop structures with approximately equal quality and gives the overall
crms value of 1.9 Å on average with relatively little variation among the different
proteins tried.

Introduction
One of the major problems faced when trying to predict
the three-dimensional structure of protein molecules is
the enormous size of their conformational space [1,2]. One
way to reduce this vast conformational space is to dis-
cretize it by allowing only a small number of states for
each residue. A common strategy is to place the protein
chain on a lattice [1–4]. Another, perhaps less popular,
procedure is to discretize the dihedral angles of the struc-
ture. For example, Rooman et al. [5] discretized the
Ramachandran map using six or seven discrete states to
represent the heavily populated areas of the map. This
approach gave promising results in modeling small pep-
tides [5] and has been used in combination with genetic
algorithms for protein structure prediction studies [6,7].

An obvious problem with these discrete state models is
that they introduce distortions to the protein structure.
The quality of the protein backbone structure that the
models produce is measured in this article mainly
by means of the root-mean-square deviation of the Ca

coordinates (crms). It varies according to the type and
number of conformational states (complexity of the
model) allowed for each residue or a combination of the
residues. For lattice models, for example, the accuracy
ranges from 5.39 Å crms for a simple lattice with √3
states per lattice point to 0.90 Å crms for the complex 55-
state lattice model [8]. The choice of a particular model
is therefore an exercise in compromise between simple
models that will reduce the search space and more
complex ones that will increase the fidelity of the struc-
ture produced.

In the present article, we study the quality of the struc-
tures that can be obtained by discretizing a particular
type of representation that we use for the structure pre-
diction studies. In this representation, the conformation
of a protein is described by the Ca chain only and the
conformational search variables are the set of three
virtual bond and torsion angles that will completely
define the local geometry of four consecutive Ca atoms.
For a set of four consecutive residues (i to i+3), the
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three angles consist of the virtual torsion angle t
defined by the four atoms (i, i+1, i+2, and i+3) and the
two flanking virtual bond angles u1 and u2 defined by
the three atoms (i, i+1, and i+2) and (i+1, i+2, and i+3),
respectively (Figure 1). Oldfield and Hubbard [9] have
already reported on the frequency distribution of this
particular set of angles in the database of protein struc-
tures. The description based on the four-residue unit is
chosen over other possible Ca-based representations
(e.g. see [10]) because four residues are the basic unit of
an a-helix or a b-hairpin turn and because any unit
longer than four residues will require more than three
angles to specify. Flocco and Mowbray [11] recently
showed that the torsion angle defined by the four con-
secutive Ca atoms can be used to analyze the protein
conformational changes.

Thus, the state of each quartet of residues (i to i+3) is
described by means of a set of values for the u1–t–u2
angle triplets, which are analogous to the f–c angle
pairs in the study of Rooman et al. [5]. The representa-
tion is discretized by allowing only a small number of
discrete values, or states, for this triplet of angles. Dif-
ferent choices for the discrete angle values result in dif-
ferent models and the complexity of a model is
determined by the number of discrete states allowed
(plus the connectivity considerations, see Materials and
methods). We study a number of different models of
increasing complexity. Structures were built using each
of these models and the efficient build-up procedure of
Park and Levitt [8], which minimizes the crms from the
known native structure. Examination of the quality of
these structures yields interesting insights into the rela-
tion between the complexity of a model and the fidelity
of the structure produced.

Results
Distribution of the u1–t–u2 angle triplets
Figure 2 gives a stereoview of the distribution of the
u1–t–u2 angle triplets found in our database of 139
protein structures (see Materials and methods). The
three-dimensional map is consistent with the one
described by Oldfield and Hubbard [9]. There are no
data points with the u angle outside the range 75° to
160°. Periodic structures such as a-helices and b-strands
must have u1 ≈ u2, since u1 of a residue quartet (i to i+3)
is the same as u2 of the preceding quartet (i–1 to i+2).
The data points for these structures cluster around the
point (u1 = u2 = 95° and t = 50°) for the a-helices and
(u1 = u2 = 125° and t = 210°) for the b-strands [12]. The
data points outside these two clusters, as well as many
within the clusters, represent nonperiodic structures,
many of which are linkers and turns that connect the two
periodic structural elements.

Figure 3 shows the data of Figure 2 projected onto the
u1–u2 plane. The distribution is nearly symmetric with
respect to a flip along the u1–u2 diagonal. Four main clus-
ters can be identified in this two-dimensional map. Two
of them, in the regions marked A and B in the figure, are
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Figure 1

Definition of the three angles u1, t, and u2. The four line segments
connect four consecutive Ca atoms, which are numbered i to i+3.

Figure 2

Stereoview of the distribution in the u1–t–u2 space of the
conformation of all residue quartets in the 139 database proteins. The
red dots are for the quartets in the a-helical and the b-strand
structures. The figure was made using the in-house program GEMM. 



centered on the diagonal of the plot, have a more or less
circular shape, and contain all of the a-helix and b-strand
states, respectively. The other two, in the regions marked
C and D in the figure, are elongated along one of the coor-
dinate axes. The points in region C have the u1 angles of
an a-helix and the u2 angles of a b-strand structure. These
points can serve as linkers that connect an a-helix to a b-
strand. Similarly, the cluster of points in region D have the
u1 angles of a b-strand and the u2 angles of an a-helix and
can serve as b-to-a linkers.

In order to give a more precise definition to these clusters,
the u1–u2 plane was divided into four rectangular regions
by means of vertical and horizontal lines (Figure 3). These
lines were placed at u1 = u2 = 108°, which is near the
minimum in the distribution of the data points as a func-
tion of the u angle (Figure 4). The clusters were then
defined as all the points that fall within the corresponding
rectangular regions.

The distribution of the data points as a function of the t
angle is shown for each of the four clusters in Figure 5.
Cluster A has a large sharp peak at t ≈ 50° (Figure 5a),
which obviously contains all of the a-helical structures.
However, there are also a significant number of points
outside this peak which are clearly not a-helical since
their t angles are large. Cluster B contains one large broad
peak (Figure 5b). The breadth of the peak presumably
reflects the large variation that is possible for b-structures,

but the peak also includes many of the points for nonperi-
odic structures (see Figure 2). Predictably, the linker clus-
ters C and D show broad distributions (Figure 5c,d) that
indicate that many discrete states will be required in order
to represent these clusters.

Choice of the discrete values for u1 and u2
The distribution pattern of Figure 3 indicates that the
simplest way to discretize the u1–u2 space is to use four
discrete points, one to represent each of the A, B, C, and
D clusters. Models that use more than one point per
cluster, particularly for the B, C, and D clusters, can be
interesting, but they are necessarily more complex and
have not been investigated in this study. Even when the
u1–u2 space is restricted to only four discrete points, the
representation can become complex because of the need
to choose many different values for the t angle, as will be
seen later.

The points representing clusters A and B are placed on
the diagonal and their placement requires two angle
values, ua and ub, respectively. The position representing
cluster C must then be placed at u1 = ua and u2 = ub

because otherwise the state represented cannot function
as an a-to-b linker. Similarly, the point that represents
cluster D is placed at u1 = ub and u2 = ua. Therefore,
only two discrete values of u are needed in order to
define all four u1–u2 states. The values for ua and ub

were chosen to be 94° and 124°, respectively. These
were obtained by averaging u values of the appropriate
sets of data points.
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Figure 3

Projection of the u1–t–u2 map onto the u1–u2 plane. The plane is
divided into four regions, which are labeled A–D. Two sets of dividing
lines are shown: one at u1 = u2 = 102° and another at u1 = u2
= 108°. The latter set was used in this work.

Figure 4

Frequency distribution of the u angle.
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Representation with the minimal set
We started by studying the representation using the
minimal set, S1, in which only four discrete states were
allowed, one for each of the four clusters in the u1–u2
map—these were termed a, b, c, and d (Table 1). The t
angles for these states were chosen as the mean of data
points around the main peak in the t angle distribution for
each cluster shown in Figure 5. The values of these angles

are listed in Table 2 together with those for all other states
used in this work. Although four states are allowed, the
complexity index of this model is 2 because of the connec-
tivity constraint.

When S1 was used to rebuild the structure of the proteins
in the database, according to the build-up procedure
described in the Materials and methods, the average crms
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Figure 5
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Frequency distribution of the t angle for the data points in (a) cluster A, (b) cluster B, (c) cluster C, and (d) cluster D of Figure 3. The approximate
locations of the t values used for different discrete states are indicated.



obtained was 5.29 Å (Table 3). Park and Levitt [8]
observed that the quality of a discrete representation
increases with its complexity and generally follows the
relation: 

log(〈crms〉) = –0.514 * log(complexity) + 0.816 (1)

Figure 6 shows that S1 gives a result that is poorer than
expected from this formula.

Individual secondary structural elements were reproduced
with much higher accuracy (Table 3), but still rather
poorly than might be expected. For example, in 1eca, the
majority of the a-helices were distorted and showed high
crms values: 2.9 Å, 2.2 Å, 4.2 Å, 3.1 Å, 3.2 Å, and 2.3 Å for
helices B, D, E, F, G, and H, respectively. Helix A was an
exception, with a crms of 0.4 Å. This is due to the fact that
the build-up procedure used builds the structure from the
N to the C terminus of the protein. Helix A is at the N-
terminal end of the protein and almost no cumulative error
is introduced during the application of the build-up proce-
dure. Helix C was also an exception, with a crms of 0.2 Å.
This is a four-residue helix, and the a state was assigned to
this quartet. This indicates that independent helices may
be well reproduced using our a state.

In order to assess more generally the inherent ability of this
model to represent the secondary structural elements, we
extracted a-helices and b-strands from four representative
proteins and rebuilt them independently of the rest of the
structure. The average context-free crms values obtained
were 0.52 Å, 0.72 Å, 1.3 Å, and 0.91 Å for the 1eca and 1ilk
helices and the 1bcx and 1cbs strands, respectively. (The
averages are given in parentheses in Table 3.) Thus, inde-
pendent pieces of secondary structures can be reproduced
with high quality using this set, particularly the a-helices.
One helix, the first helix in 1ilk, was an exception and
showed a 2.22 Å crms. This helix has a significant distor-
tion at residues 31 and 32, as specifically noted in the
header of the PDB file for this protein. The poorer perfor-
mance for the b-strands was to be expected in view of the
greater structural heterogeneity of the b-strands, reflected
in the fact that the b-strand state occupies a broader
volume in the u1–t–u2 map than the a-helix state. 

The linkers (nonperiodic structures) were likewise
extracted from the four representative structures and
rebuilt independently. The context-free crms values
obtained, 1.1 Å, 1.34 Å, 1.36 Å, and 1.26 Å for 1eca, 1ilk,
1cbs, and 1bcx, respectively, were also substantially higher
than those for the a-helices. 
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Table 1

The eight sets of discrete states used in this work*.

S1 a, b, c, d
S2 a, b1, b2, c, d
S3 a, a1, b, c, d
S4 a, a1, a2, b, c, d
S5 a, a1, a2, b1, b2, c, d
S6 a, b, c, d, I′, II, II′, VIII
S7 a, a1, a2, b1, b2, c, c1, c2, d1, d2, d3
S8 a, a1, a2, b1, b2, b3, b4, c, c1, c2, d1, d2, d3

*The discrete state codes are defined in Table 2.

Table 2

u1, u2, and t angles, in degrees, of the discrete states used*.

Name u1 u2 t

a, a1, a2, I′ 94 94 51, 243, 119, 309
b, b1, b2, b3, b4 124 124 214, 200, 250, 165, 285
c, c1, c2, VIII 94 124 109, 16, 195, 43
d, d1, d2, d3, II, II′� 124 94 228, 9, 203, 259, 18, 342

*All discrete states listed in one row have the same u1 and u2 values
but different t values, which are listed in the last column in the same
order in which the names of the discrete states are given.

Table 3

Characteristics and performance of the different sets of states used in this work.

Number Complexity
of states index 〈crms〉* 〈a〉† 〈b〉† 〈c〉†

S1 4 2 5.29 2.25 (0.62) 1.56 (1.12) 1.91 (1.25)
S2 5 2.5 4.27 2.15 (0.62) 1.20 (0.88) 1.71 (1.21)
S3 5 2.5 4.26 2.00 (0.60) 1.49 (1.11) 1.68 (1.07)
S4 6 3 3.48 1.41 (0.56) 1.50 (1.08) 1.52 (0.98)
S5 7 3.5 3.11 1.36 (0.56) 1.20 (0.87) 1.43 (0.96)
S6 8 4.0 3.90 1.51 (0.56) 1.42 (1.10) 1.62 (0.87)
S7 11 5.5 2.22 1.09 (0.56) 0.98 (0.72) 1.09 (0.67)
S8 13 6.5 1.93 0.97 (0.56) 0.84 (0.58) 0.96 (0.65)

*Average crms over all the proteins in the database used (see Materials and methods). †Average ‘local’ crms for a-helix (〈a〉), b-strand (〈b〉), and
loop/coil (〈c〉). These were computed after superimposing the secondary structure element of the rebuilt protein on the same secondary structure
element of the X-ray structure. The numbers in parentheses are the ‘context-free’ crms values obtained when the secondary structure was excised
out and rebuilt independently of the rest of the protein.



Interestingly, when built within the context of the native
structure, the average in-context crms was best for the b-
strands and poorest for the a-helices (Table 3). This con-
trasting behavior implies that the build-up procedure was
forced to use non-a-helical discrete states for some
a-helical residues in order to minimize the overall crms. A
similar observation was made earlier by Rooman et al. [5]
in their study with the discrete f–c angle sets. Thus, the
requirement for an overall crms minimization introduces
an interdependence among the reproduction qualities of
different secondary structural elements; a poor ability to
reproduce the b-strand and loop/coil structures also leads
to low quality a-helices, which otherwise could have been
correctly built.

More complex models
By selecting different combinations of additional t values,
we generated and tested 30 different models with varying
complexity. In this paper, we describe only a small subset
(listed in Table 1). The t angle values that define differ-
ent states used in these models are given in Table 2.
These were selected according to the scheme described
in the Materials and methods. The complexity indexes
and different performance measures of these models are

summarized in Table 3. Other models use somewhat dif-
ferent t angles and/or different combinations of them.
Their characteristics are broadly similar to those of the
models given in the table.

The minimal set S1 consists of four states, one state to
represent each of the four u1–u2 clusters A, B, C, and D.
Set S2 uses two states for cluster B, while S3 uses two
states for cluster A. States b1 and b2 of S2 both represent
the broad b-strand peak in the t distribution of cluster B
(Figure 5b). On the other hand, state a1 of S3 represents a
non-a-helical turn conformation in cluster A (Figure 5a).
Set S4 is an extension of S3 and represents the wide t dis-
tribution of the non-a-helical conformations of cluster A
(Figure 5a) by two states, a1 and a2. Both of these repre-
sent rather low peaks in the distribution, but their pres-
ence seems to give rise to a surprisingly large
improvement in the reproduction quality (see below). Set
S5 is a combination of sets S2 and S4.

The four states used in S6, in addition to the minimal set,
are based on the b-turn types identified by Hutchinson
and Thornton [13]. These authors described eight b-turn
types. We discarded the three type VI turns, which have a
cis-proline at position i+2 of the turn, because of their very
low occurrence in known protein structures [13]. The
u1–t–u2 angles for the remaining five b-turn types, I, II,
I′, II′, and VIII, were determined from the reported
average f–c angle values and discretized according to the
procedure described in the Materials and methods. We
then discarded type I because this type became essen-
tially the same as state a in terms of the discretized
u1–t–u2 angles.

In set S7, clusters C and D are each represented by three
states. Finally, set S8 is obtained by adding two more b-
strand states to set S7. The relation between the overall
reproduction quality of these different models and their
complexity is shown in Figure 6.

b-strand reproduction qualities
As noted earlier, the main peak in the t angle distribution
of cluster A is rather sharp, but that of cluster B is broad
(Figure 5a,b). Thus, a-helix is expected to be well repre-
sented by one t angle, but the b-strand is not. The quality
of the b-strand reproduction can be followed by the
context-free crms values (numbers in parentheses in
Table 3). The effect of using more than one state to repre-
sent the b-strand can be seen by comparing these crms
values for sets S1, S3, S4, and S6 on the one hand and
those for S2 and S5 on the other. Thus, when b-strands
are rebuilt independently of the rest of the protein, S1
gives the crms value of 1.12 Å and this accuracy is not
improved by the use of a more complex set, S3, S4, or S6,
which all use only one state to represent the b-strand. In
contrast, sets S2 and S5, which have complexities that are
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Figure 6

Average crms obtained as a function of the complexity index for
different models. The solid circles represent our models, with
increasing complexity from S1 to S8. (The points for models S2 and
S3, both with complexity 2.5, are superimposed.) The cross and the
open circle are the data for the set of Rooman et al. [5] with (circle)
and without (cross) the bump check. These calculations were made
using our data set of proteins. The solid line is the plot of equation 2.
The dotted line is the plot of equation 1, which represents the best fit
line for the data of Park and Levitt [8].
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comparable to these sets but which use two states to rep-
resent the b-strand, give the noticeably lower crms values
of 0.88 and 0.87 Å.

It is interesting that there is a slight further improvement
between sets S5 and S7, even though they both use the
same two states, b1 and b2, to represent the B cluster. The
reason that addition of linker states improves the repro-
duction quality of b-strands is probably related to the fact
that both b1 and b2 states use only one u angle, ub; use of
the linker states introduces another u angle, which proba-
bly helps the reproduction quality by increasing the
degree of freedom. Use of four states, b1, b2, b3, and b4,
in S8 further improves the b-strand reproduction ability to
a level similar to that for the a-helix. (Compare the
numbers in parentheses in columns 5 and 6 in Table 3.)
This last improvement was partly due to a better handling
of b-bulges. For example, the b-strand from residues 163
to 174 of xylanase (1bcx) has a b-bulge. Its context-free
crms is 0.94 Å when S7 is used to represent it, but drops to
0.59 Å when S8 is used (see Figure 7).

The accuracy with which the b-strands can be reproduced
in the context of the whole protein (in-context reproduc-
tion) generally follows the same trend as that for the
context-free reproduction (Table 3, column 6). However,
the crms values for the former are 30–50% higher than
those for the latter. The quality of the in-context repro-
duction is similarly worse than that of the context-free
reproduction for the loop/coil residues and considerably
worse for the helical residues. This again implies that the
local structure had to be deliberately distorted from the
best achievable for a given model set in order to optimize
the reproduction quality of the overall structure.

A notable feature, when comparing S1 and S2, is that the
addition of a B cluster state significantly improves the in-
context reproduction quality of a-helices and coils also.
This is partly due to the interdependence among repro-
duction qualities mentioned earlier; a better representa-
tion of b-strands makes it possible to build non-b-strand
structures better also. Another reason, though, is simply
that more states are available in S2 for use in building the
coil structures. Indeed, we find that 24% of the coil/loop
residues are modeled using the b state when S1 is used,
whereas 33% of them are modeled using the b1 and b2
states when S2 is used. Similar improvements in the in-
context reproduction qualities of a-helices and coil/loop
residues are observed upon addition of two more B
cluster states in going from S7 to S8, in which case the
number of such states used in coils increases from 19% for
S7 to 29% for S8. 

Helix and turn reproduction qualities
Helices can be built with very high accuracy even with the
minimal set when rebuilt independently of the rest of the
protein. This is to be expected in view of the rather
narrow width of the main peak in Figure 5a. However, the
in-context reproduction quality is particularly poor for
helices. For example, the average crms for helices in the
S1 model is 2.25Å (Table 3), which is more than 3.5 times
the average context-free crms of 0.62 Å. Thus, substantial
improvements in the quality of reproduction of helices can
come only from improving the b-strand and the loop/coil
conformations.

Splitting the b state into two (S2 compared to S1 and S5
compared to S4) does produce small improvements in
the reproduction quality of helices and turns (Table 3).
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Figure 7

The superposition of the rebuilt (red) and the
native (green) structures, using (a) model S7
and (b) model S8, for the b-strand of residues
163–174 of xylanase (1bcx), which has a b-
bulge. 



Addition of the a1 turn state to the minimal set (S3 com-
pared to S1) produces larger improvements, particularly
in the quality of the context-free reproduction of turn
residues (from 1.25 to 1.07 Å in crms, a 20% reduction).
Addition of one more A cluster state, a2 (S4 compared to
S3), produces an unexpectedly large improvement (from
2.00 to 1.41 Å in average crms) in the quality of the in-
context reproduction of helices. S4 performs substan-
tially better than S1, both in terms of the overall crms,
3.48 Å, and in terms of the local in-context secondary
structure crms values, 1.41 Å, 1.50 Å, and 1.52 Å, for the
a-helix, b-strand, and loop/coil, respectively.

A glimpse of the mechanism by which these improve-
ments (S4 over S1) are brought about can be obtained
from the following observations. We found that the per-
centage of a-helical residue quartets modeled using the
proper helical state, a, was 68% in S4, compared to 53% in
S1. This implies that the two new states in S4, a1 and a2,
were used to build nonhelical structures better so that
less distortion was necessary when building the helices.
Indeed, the usage of the two new states in different sec-
ondary structures were 24%, 23%, and 53%, respectively,
for the a-helices, b-strands, and loop/coils. Since the total
number of residue quartets in the database is 34% a-
helical, 23% in b-strands, and 43% in loop/coil states, the
two new states are preferentially used in the loop/coils
and less in a-helices. Thus, at least part of the improve-
ment in the reproduction quality of the a-helices was
brought about because the a1 and a2 states helped to
allow better position and orientation for them. At the
same time, and partly because of this, over 80% of the a-
helical residue quartets use the A cluster states in S4
compared to 53% for S1. Since A cluster states use the
proper u values for the a helix, this will also help improve
the quality of helix reproduction. It is notable that this
improvement in the reproduction quality of a-helices was
achieved with a substantially smaller improvement in that
of the turn conformations; the improvement in the in-
context reconstruction of a-helices is 37% (1.41 Å for S4
versus 2.25 Å for S1) whereas the improvement for the
turn residues is only ~ 20% for both the context-free
(0.98 Å versus 1.25 Å) and in-context (1.52 Å versus 1.91 Å)
reproductions.

The a1 and a2 states are obviously not the only way to
represent the turn conformations. Instead of these states,
we tried in S6 the four states derived from the turn con-
formation list of Hutchinson and Thornton [13]. S6 repro-
duces the turn conformations better when they are
isolated (0.87 Å versus 0.98 Å crms) and the b-strands
better in the context of the whole protein (1.42 Å versus
1.50 Å crms). Surprisingly, however, it produces worse
results than S4 in all other categories despite the fact that
its complexity index is higher than that of S4. It is proba-
ble that this result is, at least in part, due to fact that the u

angles were changed from the original turn conformations
in order to discretize them in accordance with the connec-
tivity constraint.

The majority of turn residues are, of course, in clusters C
and D. These clusters have wide t distributions
(Figure 5c,d) which require a large number of discrete
states for their fair representation. Set S7 includes three
discrete states for each of these clusters. This expansion
in the number of states over S5 results in a substantial
improvement in the quality of the context-free recon-
struction of the turns (0.67 Å versus 0.96 Å average crms,
Table 3) and b-strands (0.72 Å versus 0.87 Å average
crms), but no improvement for the a-helices. On the
other hand, the in-context average crms values improve
more for the turns and helices than for the b-strands so
that they are now quite similar to each other (1.09 Å,
0.98 Å, and 1.09 Å for the a-helix, b-strand and loop/coil
residues, respectively).

Discussion
When a small number of discrete states are used to repre-
sent a protein structure, the structure is necessarily dis-
torted. The results of the studies reported herein show
that there are at least three levels to this distortion. At
the most elementary level, the use of the discrete states
will introduce distortions to the individual secondary
structural elements even when they are isolated from the
protein structure and rebuilt independently of the rest of
the structure. This level of distortion is reflected in the
reported context-free crms values (Table 3). Additional
distortions are introduced when these structures are built
as a part of the whole structure, as can be seen from the
fact that the in-context crms values are considerably
poorer than the context-free crms values. As pointed out
by Rooman et al. [5] before us, this implies that struc-
tures are deliberately distorted away from the best possi-
ble local structure in order to achieve the globally best
fit. Finally, even when the different secondary structural
elements are built relatively well locally, their relative
global arrangement can be poor. This results in a further
deterioration in the overall crms of the whole structure
(Table 3) over and above the ‘local’ crms values of the
individual secondary structures. Distortions are signifi-
cant at each of these levels. With set S8, for example, the
overall crms value is nearly twice the in-context crms
values for individual secondary structural elements,
which are in turn approximately twice their context-free
crms values.

The wider conformational possibilities of the b-strands
and turns mean that more discrete states are required to
represent these structures than the a-helices. Therefore,
S1, which uses one state for each of the A, B, C, and D
clusters, produces poor context-free crms values for b-
strands and turns. Strikingly, the poor ability of this model
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to reproduce the b-strands and turns results in the poorest
in-context fidelity of reproduction for the helices. An even
distribution of the context-free reproduction qualities
across different local structural types occurs only after
inclusion of a sufficient number of non-a-helical states in
the discrete set. These sets (S7 and S8) also give a simi-
larly even distribution of the in-context reproduction qual-
ities for different local structural types.

The overall accuracy of the structure reproduction will
generally increase with the number of states included in
the discrete set. Park and Levitt [8] found that the overall
crms values obtained using many different models they
generated decreased smoothly with the complexity of the
model and closely follow equation 1. The overall crms
values of our models are plotted against the complexity
index in Figure 6. It shows that they also fall smoothly
with the complexity index, but that the rate of fall is sig-
nificantly faster than expected from Park and Levitt’s
formula. The data can be fitted to equation 2:

log(〈crms〉) = –0.839 * log(complexity) + 2.214 (2) 

with a correlation coefficient of 0.997. Set S6 is clearly an
exception and was left out of this correlation.

In order to see why our models show more rapid improve-
ment with the increase in complexity index, it is instruc-
tive to review Park and Levitt’s argument for expecting
approximately the m–1/2 dependence that they observe,
where m is the complexity index. Suppose that the protein
chain has been perfectly built up to residue i+1. If the
protein chain is built one residue at a time, the next
residue, i+2, can now be placed at m different places on
the surface of the sphere of radius b, the fixed Ca–Ca dis-
tance, centered at residue i+1. The average distance
between different choices will then be given by the
square-root of the search area (the surface area of the
sphere) divided by m. This gives the m–1/2 dependence to
this average distance and, presumably, to the overall crms
of the model. 

Suppose, however, that after building residue i+1,
residue i+2 can now be placed at m different places on
the perimeter of a circle instead of the surface of a
sphere. Following the line of reasoning of Park and
Levitt, the crms will now depend on m–1. Our build-up
procedure does not exactly place residue i+2 on a circle,
since both u and t are varied. However, the main source
of variation among our different models comes from t.
Therefore, the expected dependence will be between
m–1 and m–1/2, as observed. In any case, the best fit curve
of our data and that of Park and Levitt meet between the
complexity indices of 2.5 and 3.0 and all the sets that
include the a1 and a2 states perform better than
expected by Park and Levitt’s formula.

We note also that set S6 is an exception and performs
worse than expected from either formula. There are other
sets among the 30 that we tried that perform similarly
poorly. We have not investigated the reason why some
sets give poor results, but one possibility is that one or
more of the states included in such sets is rarely used in
the final structure. In the case of S6, the I′ state is in fact
used very little; only 3% of all residue quartets in the
reconstructed structure are in the I′ state. It is probable
that states like I′ are critical for the attainment of the
finely tuned final structure of a protein molecule. During
initial folding attempts at low resolution, however, it may
be more important to reduce complexity by substituting
other more versatile states for these rarely occurring spe-
cialized states.

The complexity of the f–c dihedral angle set of Rooman
et al. [5] is 6 and produces an average crms of 2.17Å when
applied to our set of proteins with bump check and 1.84Å
when used without the bump check. This latter value is
comparable to the 1.74Å value reported for this set by
Park and Levitt using their protein structure database.
The value of 2.17Å is only slightly worse than expected
from equation 2, which is a correlation using the crms
values obtained after the bump check.

Sets S5, S7, and S8 are probably suitable for initial folding
trials. These sets produce a-helices, b-strands, and turns
with roughly equal accuracy. The overall crms is 3.1 Å or
better on average. In a recent article, Orengo et al. [14]
reported on comparison studies of a series of protein struc-
tures whose similarities vary from 1.9Å to 6.4Å. However,
for the vast majority of the comparisons, the crms was
below 4.0Å. In the same study, the authors use a threshold
of 4.5Å to identify recurring structural motifs in proteins.
This suggests that, if an ab initio folding program produces
a structure that is 4.0–4.5Å crms away from the true struc-
ture, the latter may be recognizable from the calculated
structure. This level of accuracy may be achievable with
discrete sets S5, S7, and S8 since their average inherent
fidelity of reproduction is at least 1 Å better than this level
of accuracy.

The accuracy of reproduction that we cite above is
average crms values over the 139 proteins. Since we deal
with only one protein at a time in any real folding experi-
ment, it is of interest to know the spread of accuracy over
different proteins. The distribution of crms values over
different proteins is shown in Figure 8 for the different
models. It can be seen that the distribution tightens as
the average crms value decreases. All models, except S8,
build some proteins with a crms greater than 3 Å. This
suggests that, in order to build the structure of a given
protein that can later be refined to a useful degree of
accuracy, one probably has to use a model that is at least
as complex as S8.

Research Paper  Discrete representation de la Cruz et al. 231



The results of Figure 6 also indicate that accuracies better
than these can be achieved only by increasing the com-
plexity substantially. As pointed out by Park and Levitt
[8], the reproduction accuracy increases progressively
more slowly as the number of states in the set increases,
particularly after the crms reaches the 2–3Å range. Fortu-
nately, higher accuracy may not be needed. The quality of

the reproduction with set S8 is generally excellent when
inspected visually. Two examples are shown in Figure 9.
Dandekar and Argos [6,7] used the set of Rooman et al.
[5], which has the comparable complexity index of 6, in a
series of structure prediction studies and showed that it
can yield the correct topology for a collection of proteins.
Our representation, which uses four residue units at a
time, should perform better since it includes built-in cor-
relation between adjacent residues. Such correlation is of
course absent in the f–c angle model, which handles each
residue independently. The u1–t–u2 representation incor-
porates the correlation between adjacent residue quartets
as well, through the requirement of the connectivity con-
straint. The price that must be paid for these advantages is
that the peptide group must be built after the Ca chain has
been built. This can be done by an efficient algorithm
(unpublished data) that builds peptide groups in optimum
orientation for a given Ca chain.

Materials and methods
The protein database
The set of proteins we used were obtained using the OBSTRUCT

program [15]. This program allows the selection of a subset of pro-
teins from the PDB [16] according to a series of criteria provided by
the user. The selection criteria we used were: no NMR structures,
number of residues between 50 and 300, sequence identity <25%,
and resolution >1.8 Å. From the set of proteins given by OBSTRUCT, we
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Figure 9

Superposition of the rebuilt (red) and the
native (green) structures of (a) erythrocruorin
(1eca) and (b) retinoic acid binding protein
(1cbs). The reconstruction used model S8.

Figure 8

The distribution of crms values over the database of 139 proteins for
models S1 to S8.
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eliminated the ones having missing residues. The final number of
protein chains was 139.

Division of the u1–u2 space and the determination of ua and ub
In order to determine the two discrete values of u used in this study,
the data of Figure 3 were projected onto the u1 or u2 axis. Since u1 of
a quartet of consecutive residues is u2 of the previous quartet, the two
projections give identical results. The common u distribution for the
whole data set (Figure 4) shows a minimum at u angles in the range
between 102° and 108°. We chose the value of 108° for both u1 and
u2 to divide the u1–u2 plane into four rectangular regions, A, B, C, and
D, as shown in Figure 3. The figure indicates that a lower value might
have been a better choice, but choosing 104°, for example, changes
the ua, ub, and t values (see below) by at most 3°, which would make
no difference in the quality of the structure reproductions. The A, B, C,
and D regions include the points representing the a-helix, b-strand, a-
to-b linkers, and b-to-a linkers, respectively. The values of ua and ub

were obtained as the average of all u angles with u < 108° and with
u > 108°, respectively.

Discretization of the t angle
The discrete state for a quartet of residues was obtained by assigning
discrete values to the u1–t–u2 angles for the quartet. All of the dis-
crete states described in this paper are listed in Table 2. The u1 and u2
values were determined as described above. The t angles were deter-
mined as follows.

For states other than I′, II, II′, and VIII, the discrete t angle values were
chosen from the frequency distribution along the t coordinate (Figure 5)
for each of the four clusters of data points in regions A, B, C, and D of
the u1–u2 plane. For most of the states, the discrete value chosen was
the weighted average of the data points that define chosen peaks in
these distributions. Peaks were defined by the minimum and maximum t
values (in degrees) as follows: a (10, 90); a1 (215, 280); a2 (90, 155);
b (145, 305); c (45, 170); c1 (–25, 45); c2 (170, 230); d (145, 315);
d1 (–45, 60); d2 (145, 235); and d3 (235, 315). Since there is only
one broad peak in the t angle distribution for region B, the above strat-
egy could not be used to discretize the data points in this region.
Instead, the b state was initially split into two that are 50° apart to gen-
erate the b1 and b2 states. Later, two more states, b3 and b4, were
added which were 35° further out in either direction along the t axis.

For states I′, II, II′, and VIII, the four-residue Ca chain structure was con-
structed using the f–c angles of these turn types as given by Hutchin-
son and Thornton [13]. The t angles were then measured from these
structures. The u1 and u2 values were also measured and then re-set
to either ua or ub, whichever was closer to the measured value.

Complexity index 
When the state of a residue quartet (i to i+3) is fixed, the state of the
next quartet (i+1 to i+4) is restricted since the u1 angle for the latter
must be the same as the u2 angle for the former. For example, the S1
model uses four states, a, b, c, and d (Table 1). If a quartet of residues
(i to i+3) is in the a state in this model, its u2 value is ua and the state
of the next residue quartet (i+1 to i+4) can only be either another a or
the a-to-b linker state, c. We define the complexity index of a set of dis-
crete states as the number of connectable states available to a residue
quartet once the state of the preceding quartet has been fixed. This
number is significantly smaller than the total number of discrete states
used in the model (see Table 3). For some models, the number of con-
nectable states available to a quartet varies depending on the state of
the last one built. For such models, the complexity index was computed
as the straight average of all possible values. Therefore, this number
can be calculated from the composition of the discrete states of the
model, before any actual build-up trials. The complexity index is similar
to the ‘effective complexity’ described by Park and Levitt [8]. The
average number of available states is slightly higher than this number
due to the end effect.

Build-up procedure
The protein structures were reconstructed using the build-up proce-
dure described by Park and Levitt [8] after some slight changes in the
run parameters. In the first step, all (discrete) conformations of the first
six N-terminal residues were generated and the 200 conformations
with the best crms relative to the crystal structure were saved. Then,
one residue was added to each one of the saved conformations and
the allowed states for the last residue quartet were exhaustively
searched. Again, the best new 200 structures were kept. For each
generated structure, a bump check was made in order to prevent close
non-native contacts. The minimum distance between a pair of non-adja-
cent Ca atoms was assumed to be 3.8 Å. The Ca–Ca virtual bond dis-
tance was set to the same value.

Assessment of the quality of the reproduction
We use the coordinate root-mean-square deviation (crms) as the only
quantitative measure of the quality of the reproduced structure. These
were computed after best superposition of the rebuilt structure to the
native structure using the procedure of Kabsch [17,18]. This measure
was used for individual proteins during the build-up procedure and as
an average over the data set to assess the quality of each model
tested. The percentage of native contacts is another quality measure
[8], but initial testings indicated that this measure entirely paralleled the
crms measure for our series of models. The root-mean-square deviation
of the u and t angles can also be used. However, since good reproduc-
tion of the overall structure requires choosing some of these angles
very differently from those of the native structure, we believe that this is
not a good quality measure for discrete state models of low complexity.

The degree with which the secondary structures are reproduced was
monitored using crms values calculated in two different ways. In
method 1, the a-helices, b-strands, and loops in the structures that
were built in the usual manner were superimposed individually onto
their respective counterparts from the native structure. This produces
the ‘local’ ‘in-context’ crms values, which measure the degree with
which the different structural elements were reproduced within the
context of the whole protein. In method 2, the secondary structural ele-
ments were excised out of the protein and rebuilt independently from
the rest of the structure. The crms between the structure built this way
and its native counterpart is the ‘context-free’ crms, which measures
the degree with which a given model is capable of reproducing the
secondary structural element. The context-free crms calculations were
made using only four representative proteins: erythrocruorin (PDB ID,
1eca) and interleukin-10 (1ilk), which are predominantly a-helical, and
xylanase (1bcx) and retinoic acid binding protein (1cbs), which are pre-
dominantly b-sheet structures. In the results shown in the last three
columns of Table 3, the crms values computed this way are in paren-
theses. The secondary structure assignments used for these calcula-
tions were made using the program DSSP [19]. As the number of states
assigned by this program is more than three, we transformed the DSSP

output to a three-state assignment using the criteria given by [20].
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