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ABSTRACT
Principal Components Analysis (PCA) is the predominant
linear dimensionality reduction technique, and has been widely
applied on datasets in all scientific domains. We consider,
both theoretically and empirically, the topic of unsuper-
vised feature selection for PCA, by leveraging algorithms for
the so-called Column Subset Selection Problem (CSSP). In
words, the CSSP seeks the“best”subset of exactly k columns
from an m×n data matrix A, and has been extensively stud-
ied in the Numerical Linear Algebra community. We present
a novel two-stage algorithm for the CSSP. From a theoretical
perspective, for small to moderate values of k, this algorithm
significantly improves upon the best previously-existing re-
sults [24, 12] for the CSSP. From an empirical perspective,
we evaluate this algorithm as an unsupervised feature selec-
tion strategy in three application domains of modern sta-
tistical data analysis: finance, document-term data, and ge-
netics. We pay particular attention to how this algorithm
may be used to select representative or landmark features
from an object-feature matrix in an unsupervised manner.
In all three application domains, we are able to identify k
landmark features, i.e., columns of the data matrix, that
capture nearly the same amount of information as does the
subspace that is spanned by the top k “eigenfeatures.”

Categories and Subject Descriptors
G.1.3 [Mathematics of Computing]: Numerical Analy-
sis—Numerical Linear Algebra; E.m [Data]: Miscellaneous
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Algorithms, Theory, Experimentation
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1. INTRODUCTION
Principal Components Analysis (PCA) is the predominant

linear dimensionality reduction technique, and it has been
widely applied on datasets in all scientific domains, from the
social sciences and economics, to biology and chemistry. In
words, PCA seeks to map or embed data points from a high
dimensional space to a low dimensional space while keeping
all the relevant linear structure intact. PCA is an unsuper-
vised dimensionality reduction technique. The only input
parameters are the coordinates of the data points and the
number of dimensions that will be retained in the embed-
ding. A rigorous mathematical framework underlies PCA
and guarantees strong optimality properties for the result-
ing low-dimensional embedding.

We consider, both theoretically and empirically, the topic
of unsupervised feature selection for PCA. Standard moti-
vations for feature selection include facilitating data visu-
alization, reducing training times, avoiding overfitting, and
facilitating data understanding. The vast majority of exist-
ing work on this topic focuses on supervised feature selection
methods. However, in the context of an unsupervised dimen-
sionality reduction technique such as PCA, it is only natural
to consider unsupervised feature selection algorithms.

We start with a brief description of PCA. Assume that we
are given a dataset consisting of m objects, described with
respect to n features or, equivalently, an m × n matrix A.
Let k ¿ n be the dimensionality of the space that we seek to
embed our data in, and assume that the columns (features)
of A are mean-centered. Then, PCA returns the top k left
singular vectors of A (an m×k matrix Uk) and projects the
data on the k-dimensional subspace spanned by the columns
of Uk. Let PUk = UkUT

k be the projector matrix on this
subspace. It is well-known [23] that the resulting projection
is optimal in the sense that the residual

‖A− PUkA‖ξ (1)

is minimized over all possible k-dimensional subspaces. Here
ξ = 2 or F denotes the spectral or Frobenius norm.

We seek efficient, i.e., polynomial in m and n, feature se-
lection algorithms that identify, in an unsupervised manner,
a subset of exactly k (out of the n) features, such that if
PCA is applied only on these k features, then the resulting
embedding is “close” to the embedding that emerges when
PCA is applied on all n features. To formally define our
metric of “closeness”, let C be the m × k data matrix that
includes only those columns of A that correspond to the
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chosen features. We measure the error of a feature selection
strategy for PCA by comparing the residual

‖A− PCA‖ξ (2)

for ξ = 2, F to the optimal residual of eqn. (1). Here PC =
CC+ denotes the projector matrix onto the k-dimensional
space spanned by the columns of C (C+ denotes the pseu-
doinverse of the matrix C). Equipped with this error mea-
sure our problem is equivalent to the so-called Column Sub-
set Selection Problem (CSSP) [9]:

Definition 1. Given a matrix A ∈ Rm×n and a positive
integer k, pick k columns of A forming a matrix C ∈ Rm×k

such that the residual ‖A− PCA‖ξ, is minimized over all

possible
(

n
k

)
choices for the matrix C for ξ = 2 or F .

In modern statistical data analysis, selecting actual features
from high dimensional data points can sometimes be advan-
tageous to selecting linear combination of actual features.
For example, recent applied work has focused on selecting in
a principled manner actual columns (as opposed to, e.g., the
more traditional eigencolumns) from an object-by-feature
data matrix. Static and dynamic data analysis in large
sparse graphs ([40]), classification of hyperspectral medical
data ([29]), analysis of gene expression data ([27, 1]), can all
be handled by techniques that are based on feature selection
instead of feature extraction.

1.1 Our contributions
This work draws the connection between unsupervised

feature selection for PCA and the CSSP. The extensive lit-
erature on the CSSP in the Numerical Analysis community
provides provably accurate algorithms for unsupervised fea-
ture selection. To the best of our knowledge there are no
algorithms with similar guarantees in the unsupervised fea-
ture selection literature. From a theoretical perspective,
we present a novel two-stage algorithm for the CSSP that
improves on existing results. (See Section 3 for a detailed
description of Algorithm 1, our main algorithm for approxi-
mating the CSSP.) The following theorem (due to space con-
siderations the detailed proof may be found in [6]) bounds
the accuracy of our algorithm.

Theorem 1. The randomized two-phase Algorithm 1 takes
as input an m×n matrix A of rank ρ and a positive integer
k, runs in O(min{mn2, m2n}) time, and returns as output
an m×k matrix C consisting of exactly k columns of A such
that with probability at least 1− 10−20:

‖A− PCA‖2 ≤ O
(
k

3
4 log

1
2 (k) (ρ− k)

1
4

)
‖A−Ak‖2

‖A− PCA‖F ≤ O
(
k
√

log k
)
‖A−Ak‖F .

PC = CC+ denotes a projection onto the column span of the
matrix C, and Ak = PUkA denotes the best rank-k approxi-
mation to the matrix A.

Our spectral norm bound provides the first asymptotic im-
provement of the best known results for the CSSP since the
seminal paper of Gu and Eisenstat [24]. In particular, we

improve the result of [24] by a factor of O(n1/4), assuming
k is a small constant. Our Frobenius norm bound improves

existing results [12] by a factor of (k!)1/2. A novel feature

of the algorithm of this paper is that it combines in a non-
trivial manner recent algorithmic developments in the the-
oretical computer science community with more traditional
techniques from the numerical linear algebra community in
order to obtain improved bounds for the CSSP.

From an empirical perspective, we evaluate our main
algorithm as an unsupervised feature selection strategy for
PCA in a range of data sets from three different applica-
tion domains in modern statistical data analysis: finance,
term-document analysis, and genetics. Our first dataset is
a matrix consisting of the prices of the stocks of the S&P
500 index over 1153 days from 2003 through 2007 [44]; our
second dataset consists of document-term matrices from the
Open Directory Project [32]; and our third dataset comes
from the HapMap project [41] and consists of genetic Single
Nucleotide Polymorphism data for 90 individuals of Chi-
nese and Japanese ancestry. First, we thoroughly evaluate
the performance of our algorithm from a numerical perspec-
tive when compared to six existing algorithms for the CSSP.
All six algorithms come with some provable accuracy guar-
antees, and are explicitly designed to optimize the objec-
tive function of eqn. (2). Thus, they are the appropriate
choice for an experimental comparison instead of the unsu-
pervised feature selection algorithms of Section 2 that opti-
mize (either provably or heuristically) very different objec-
tive functions. In all three cases, our algorithm consistently
outperforms existing algorithms with respect to accuracy,
while being three to five times slower in terms of running
time. We note that accuracy is more important than run-
ning time, since feature selection is typically an off-line task.
Then, we pay particular attention to how our algorithm may
be used to select representative or landmark features from
an object-feature matrix in an unsupervised manner. In all
three application domains, we are able to identify a small
number of landmark features, i.e., columns of the data ma-
trix, that capture nearly the same amount of information as
does the subspace that is spanned by the top k “eigenfea-
tures.” In cases where the PCA embedding of the original
data to the k dimensional space resulted to, e.g., separa-
tion of the data in different classes, then the chosen features
could be used to reproduce this separation. For example, for
the ODP data, which consist of collections of documents on
two different topics (classes) we demonstrate that if a low
(say k = 3 or 4) dimensional projection via PCA suffices to
separate documents from the two different classes, then, us-
ing our algorithm for the CSSP, we can select three or four
terms that very accurately describe the two topics.

2. BACKGROUND AND PRIOR WORK
Notation. Let [n] denote the set {1, 2, . . . , n}. For any
matrix A ∈ Rm×n, let A(i), i ∈ [m] denote the i-th row

of A as a row vector, and let A(j), j ∈ [n] denote the j-th
column of A as a column vector. In addition, let ‖A‖2F =∑

i,j A2
ij denote the square of its Frobenius norm, and let

‖A‖2 = supx∈Rn, x6=0 |Ax|2 / |x|2 denote its spectral norm.

If A ∈ Rm×n, then the Singular Value Decomposition (SVD)
of A can be written as

A = UAΣAV T
A = UA

(
Σk 0
0 Σρ−k

) (
V T

k

V T
ρ−k

)
. (3)

In this expression, ρ ≤ min{m, n} denotes the rank of A,
UA ∈ Rm×ρ is an orthonormal matrix, ΣA is a ρ×ρ diagonal
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Year & ref. Authors p(k, n)

1965 [22] Golub
√

(n− k)2k

1986 [18] Foster
√

n(n− k)2n−k

1987 [8] Chan
√

n(n− k)2n−k

1992 [25] Hong-Pan
√

k(n− k) + k

1994 [10] Chan-Hansen
√

(k + 1)n2k+1

1994 [11] Chand.-Ipsen
√

(k + 1)(n− k)

1996 [24] Gu-Eisenstat
√

k(n− k) + 1

Gu-Eisenstat O(
√

k(n− k) + 1)

1998 [5] Bischof-Orti O(
√

(k + 1)2(n− k))

O(
√

(k + 1)(n− k))

1999 [34] Pan-Tang O(
√

(k + 1)(n− k))

O(
√

(k + 1)2(n− k))

O(
√

(k + 1)2(n− k))

2000 [33] Pan O(
√

k(n− k) + 1)

Table 1: Accuracy of deterministic algorithms for
the CSSP. The error bound for the algorithm of [22]
appeared in [24]. The algorithm of [22] runs in
O(mnk) time, the algorithms of [18, 8, 10, 33] and
the second algorithm of [24] run in O(mn2) time, and
the remaining algorithms either run in O(nk) time,
or the authors do not provide a running time bound.

matrix, and VA ∈ Rn×ρ is an orthonormal matrix. Also,
Σk denotes the k × k diagonal matrix containing the top
k singular values of A, Σρ−k denotes the (ρ− k) × (ρ− k)
matrix containing the bottom ρ − k singular values of A,
Vk denotes the n × k matrix whose columns are the top
k right singular vectors of A, and Vρ−k denotes the n ×
(ρ− k) matrix whose columns are the bottom ρ − k right
singular vectors of A. Finally, A+ = VAΣ−1

A UT
A denotes the

pseudoinverse of the matrix A.
Prior work on the CSSP. Solving the CSSP exactly is
a hard combinatorial problem, and thus research has his-
torically focused on computing approximate solutions to the
CSSP. Since ‖A−Ak‖ξ provides an immediate lower bound

for ‖A− PCA‖ξ, for ξ = 2, F and for any choice of C, a large
number of approximation algorithms have been proposed to
select a subset of k columns of A such that the resulting
matrix C satisfies

‖A−Ak‖ξ ≤ ‖A− PCA‖ξ ≤ p(k, n) ‖A−Ak‖ξ

for some function p(k, n). Within the numerical linear alge-
bra community, most of the work on the CSSP has focused
on spectral norm bounds (ξ = 2) and is related to the so-
called Rank Revealing QR (RRQR) factorization [22]. It is
straightforward to prove that any algorithm that constructs
an RRQR factorization of a matrix A with provable guaran-
tees also provides provable guarantees for the CSSP. Table
1 summarizes existing results (see also a survey in [19]).

Within the theoretical computer science community, much
work has followed that of Frieze, Kannan, and Vempala [20]
on selecting a small subset of representative columns of A,
forming a matrix C, such that the projection of A on the
subspace spanned by the columns of C is as close to A as pos-
sible. Several distinctive features of work in this community
are worth noting. First, these algorithms are randomized
instead of deterministic, and thus they have a failure prob-
ability. Second, these theorems typically focus on bounding

the Frobenius norm, and not the spectral norm, of the error
matrix A − PCA. Third, these algorithms provide a strong
tradeoff between the number of selected columns (which is
always more than k) and the desired accuracy of approx-
imation. See [15] and references therein for details. The
strongest such result states that there exists an algorithm
running in O(min{mn2, m2n}) time such that

‖A− PCA‖F ≤ (1 + ε) ‖A−Ak‖F (4)

holds with probability at least 1− 10−20, where C contains
at most O(k log k/ε2) columns of A [14, 15].
Prior work on unsupervised feature selection. [31,
13] propose heuristic approaches for unsupervised feature
selection for clustering algorithms. Their goal is to select
a subset of features such that clustering using the full set
of features and clustering using only the selected subset of
features returns similar results. This is relevant to our work,
but somewhat different. Notice that we seek to reproduce
the structure of the data in the low-dimensional subspace
that is computed via PCA without any assumptions on the
clusterability of the data. The aforementioned papers use
different metrics (e.g., entropy) in order to determine which
features to select or, alternatively, wrap the feature selection
technique around a clustering algorithm in order to filter
out the irrelevant features. [16] presents an expectation-
maximization based scheme for unsupervised feature selec-
tion that comes with some provable guarantees under as-
sumptions. Similarly, [7] models the unsupervised feature
selection as an optimization problem and provides heuris-
tic solutions. [26] addresses the problem of selecting fea-
tures that capture the same information as the top principal
components, and proposes a two-step heuristic for this task.
More recently, [39, 42, 43, 28] present algorithms based on
spectral methods, that, to the best of our understanding, do
not come with provable guarantees of the type that we seek
here. Finally, [2] presents heuristic ideas that are similar in
spirit to our approach and applies them to microarray data.

3. A TWO-PHASE ALGORITHM FOR THE
CSSP

In this section, we present and describe Algorithm 1, our
main algorithm for approximating the solution to the CSSP.
Our main quality-of-approximation theorem for this algo-
rithm is Theorem 1. Its proof is omitted due to space con-
siderations and is available at [6].

Algorithm 1 takes as input an m×n matrix A and a rank
parameter k. After an initial setup, the algorithm has two
phases: a randomized phase and a deterministic phase. In
the randomized phase, a randomized procedure is run to se-
lect O(k log k) columns from the k × n matrix V T

k , i.e., the
transpose of the matrix containing the top-k right singular
vectors of A. The columns are chosen by randomly sam-
pling according to a judiciously-chosen nonuniform proba-
bility distribution that depends on information in the top-k
right singular subspace of A. Then, in the deterministic
phase, a deterministic procedure is employed to select ex-
actly k columns from the O(k log k) columns of V T

k chosen
in the randomized phase. The algorithm then outputs ex-
actly k columns of A that correspond to those columns cho-
sen from V T

k . Theorem 1 states that the projection of A
on the subspace spanned by these k columns of A is (up to
bounded error) close to the best rank k approximation to A.
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Algorithm 1

Input: m× n matrix A, integer k.
Output: m× k matrix C with k columns of A.

1. Initial setup:

• Compute the top k right singular vectors of A,
denoted by Vk.

• Compute the sampling probabilities pj , for j =
1, . . . , n, using eqn. (5).

• Let c = O(k log k).

2. Randomized Phase:

• For j = 1, . . . , n, keep the j-th index with proba-
bility min{1, cpj}. If the j-th index is kept, keep

the scaling factor
√

min{1, cpj}.
• Form the sampling matrix S1 and the rescaling

matrix D1 (see description in text).

3. Deterministic Phase:

• Run Algorithm 1 of Pan [33] (see also Lemma 3.5
in [33]) on the matrix V T

k S1D1 in order to select
exactly k columns of V T

k S1D1, thereby forming
the sampling matrix S2.

• Return the corresponding k columns of A, i.e.,
return C = AS1S2.

4. Repeat the randomized phase and the deterministic
phase 40 times and return the columns that minimize
the residual error ‖A− PCA‖ξ.

We emphasize here that 40 repetitions are chosen because
they suffice in order to provably reduce the failure probabil-
ity in Theorem 1 below 10−20. In more detail, Algorithm 1
first computes a probability distribution p1, p2, . . . , pn over
the columns of A, i.e., over the set {1, . . . , n}. The proba-
bility distribution depends on information in the top-k right
singular subspace of A. In particular, for all j = 1, . . . , n
define

pj =

∥∥∥(Vk)(j)

∥∥∥
2

2

2k
+

∥∥∥(A)(j)
∥∥∥

2

2
−

∥∥∥
(
AVkV T

k

)(j)
∥∥∥

2

2

2
(
‖A‖2F − ‖AVkV T

k ‖2F
) , (5)

and note that pj ≥ 0, for all j ∈ {1, . . . , n}, and that∑n
j=1 pj = 1. Thus, knowledge of Vk, i.e., the n× k matrix

consisting of the top-k right singular vectors of A suffices to
compute the pj ’s. The running time of our algorithm is dom-
inated by the computation of these pj ’s: O(min{mn2, m2n})
time suffices for our theoretical analysis. In practice, of
course, Lanczos/Arnoldi algorithms could be used to speed
up the algorithm.

In the randomized phase, Algorithm 1 employs a random-
ized column selection algorithm to choose O(k log k) columns
from V T

k to pass to the second phase. Let c = O(k log k) be
a positive integer. For each j ∈ {1, . . . , n}, independently,
the algorithm keeps the j-th column of V T

k with probabil-
ity min {1, cpj}. Additionally, if the j-th column is kept,

then a scaling factor equal to 1/
√

min {1, cpj} is kept as
well. Thus, at the end of this process, we will be left with
c̃ columns of V T

k and their corresponding scaling factors.

Notice that due to random sampling, c̃ will generally be dif-
ferent than c; however, with high probability, it will not be
much larger than c. In order to conveniently represent the c̃
selected columns and the associated scaling factors, we will
use the following sampling matrix formalism. First, define
an n× c̃ sampling matrix S1 as follows: S1 is initially empty;
for all j, in turn, if the j-th column of A is selected by the
random sampling process, then ej (an n-vector of all-zeros,
except for its j-th entry which is set to one) is appended to
S1. Next, define the c̃ × c̃ diagonal rescaling matrix D1 as
follows: if the j-th column of A is selected, then a diagonal
entry of D1 is set to 1/

√
min {1, cpj}. Thus, we may view

the randomized phase as outputting the matrix V T
k S1D1

consisting of a small number of rescaled columns of V T
k , or

simply as outputting S1 and D1.
Then, in the deterministic phase, Algorithm 1 employs a

deterministic column selection algorithm to the output of
the first phase in order to choose exactly k columns from
the input matrix A. To do so, theoretically, we run the
Algorithm 1 of [33] on the k × c̃ matrix V T

k S1D1, i.e., the
column-scaled version of the columns of V T

k chosen in the
first phase1. Thus, a matrix VkS1D1S2 is formed, or equiv-
alently, in the sampling matrix formalism described previ-
ously, a new matrix S2 is constructed. Its dimensions are
c̃×k, since it selects exactly k columns out of the c̃ columns
returned after the end of the randomized phase. The al-
gorithm then returns the corresponding k columns of the
original matrix A, i.e., after the second stage of the algo-
rithm is complete, the m× k matrix C = AS1S2 is returned
as the final output.

4. EXPERIMENTS
We evaluate our algorithm on datasets from three different

domains. Our datasets consist of (i) a date-by-stock matrix
of the S&P 500 index since 2003; (ii) document-by-term
matrices from the TechTC collection from the Open Direc-
tory Project, and (iii) a subject-by-SNP matrix (SNP, pro-
nounced snip, stands for Single Nucleotide Polymorphism)
from the HapMap project. We will seek a subset of stocks
that captures the behavior of S&P 500, a subset of terms
that accurately describes the content of the documents, and
a subset of SNPs that suffices to classify each individual to
an appropriate population of origin, respectively.

We evaluate our hybrid algorithm from two different per-
spectives. First, we are interested in the numerical error
incurred by our algorithm, as compared to the SVD and
existing deterministic approaches for the CSSP. Second, we
are interested in interpreting the selected stocks, terms, and
SNPs. In summary, the numerical results indicate that our
hybrid algorithm consistently outperforms the deterministic
methods, while providing easily interpretable low rank ap-
proximations with a small additional error when compared
to the SVD.

We briefly describe our experimental setup. Given the

1Most deterministic algorithms for the CSSP operate on ma-
trices that are m×n with m ≥ n. In our case, in the second
stage, we need to apply a deterministic column selection
algorithm to a matrix with more columns than rows. Even
though, to the best of our understanding, theoretical bounds
for most of the algorithms reviewed in Section 2 hold even
if m < n, we opt to employ Algorithm 1 and the related
Lemma 3.5 of [33] which is explicitly designed to work for
m < n.
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data matrix A, we fix k and compute the spectral norm
residual error for Ak (via the SVD) and for a fixed deter-
ministic method. Then, we run our hybrid algorithm, using
the same deterministic method in the second step. We ex-
periment with a range of values for the number of columns
that are selected in the randomized step and plot the error
of the hybrid approach as a function of this number.

4.1 Methods and software
We briefly describe the deterministic methods that are

used in our experiments. We also provide pointers to pub-
licly available software implementing these methods (see ta-
ble 2).

1. Pivoted QR: We employed Matlab’s qr function. This
function implements the algorithm described by Golub
in [22]; the best known bound for the spectral norm of
the residual error for this algorithm is proved in [24]:

‖A− PCA‖2 ≤
√

n− k2k ‖A−Ak‖2 .

2. SPQR: The Semi Pivoted QR (SPQR) method described
by Stewart in [38]. A Matlab implementation is avail-
able from [3]. We are not aware of provable a priori
bounds for this algorithm.

3. High RRQR: High RRQR was devised by Chan in [8].
A MatLab implementation is available from [17]. The
best known bound for the spectral norm of the residual
error for this algorithm is:

‖A− PCA‖2 ≤
√

k(n− k)2n−k ‖A−Ak‖2 .

4. Low RRQR: Low RRQR was proposed by Chan and
Hansen in [10]. A MatLab implementation is available
from [17]. The best known bound for the spectral norm
of the residual error for this algorithm is:

‖A− PCA‖2 ≤
√

(k + 1)n2k+1 ‖A−Ak‖2 .

5. qrxp: qrxp is the algorithm implemented as the LA-
PACK routine DGEQPX in ACM Algorithm 782 [5,
4]. We will use the MatLab implementation of the
Fortran routine DGEQPX from [19]. The best known
bound for the spectral norm of the residual error for
this algorithm is:

‖A− PCA‖2 ≤ 4
√

(k + 1)(n− k) ‖A−Ak‖2 .

6. qryp: qryp is the algorithm implemented as the LA-
PACK routine DGEQPY in ACM Algorithm 782 [5,
4]. We will use the Matlab implementation of the For-
tran routine DGEQPY from [19]. The best known
bound for the spectral norm of the residual error for
this algorithm is:

‖A− PCA‖2 ≤ (10/9)
√

(k + 1)2(n− k) ‖A−Ak‖2 .

The platform used was a 2.0 GHz Pentium IV with 1GB
RAM. Our code was implemented in MatLab 7.0.1. In this
extended abstract we do not report running times for the
different approaches, since they are less interesting than the
accuracy results. However, all approaches run in comparable
running times, with our approach being slower by small con-
stant factors (three to five), mainly due to the 40 repetitions
in Algorithm 1.

Method Reference Software

Pivoted QR [22] Mathworks
SPQR [38] [3]
High RRQR [8] [17]
Low RRQR [10] [17]
qrxp [5, 4] [19]
qryp [5, 4] [19]

Table 2: Summary of deterministic methods.

4.2 S&P 500 dataset
Yahoo! provides historical stock prices for the S&P 500

Index [44]. We collected historical prices for the 500 stocks
of the index from Jan 2, 2003 to August 1, 2007, a total of
1153 days. Thus we constructed an 1153×500 date-by-stock
matrix. The (i, j)-th element of this matrix represents the
value of the j-th stock at the i-th day. We discarded 19
stocks that had missing values for a large number of dates,
and we were left with a 1153 × 481 matrix. We normalized
this matrix by computing z-scores for each column and we
report results on this normalized date-by-stock matrix. The
resulting matrix is quite low-rank from a numerical perspec-
tive. In particular, we experimented with three different
choices for k = 10, 15, 20; notice that they correspond to
approximately 2.5%, 3.5%, and 5% of the non-zero singular
values of the matrix. However, the top 10, 15, and 20 singu-
lar values capture a significant percentage of the Frobenius
norm of the matrix: 89%, 92%, and 94% respectively.

In all three cases, the hybrid method consistently outper-
forms the corresponding deterministic method, and in many
cases significantly so. See Figures 1 and 2 for a comparison
between our hybrid approach and deterministic strategies
for k = 10 and 20; k = 15 returned intermediate results and
is not shown here.

A few remarks are necessary. First, the gains of employing
the hybrid approach are more pronounced for the smallest
choice of k = 10. As k grows, the performance of our hy-
brid algorithm drops; for example, for k = 20, our algorithm
does not outperform the Low RRQR algorithm. This seems
to agree with our theoretical bound, which worsens as k
grows. For example, notice that if k is a constant fraction
of n, our theoretical result does not outperform the existing
bounds for the CSSP. Second, the choice of the number of
columns that are selected in the randomized step of our ap-
proach is important. Our theoretical result necessitates that
O(k log k) columns of A are picked in the randomized step2.
On the other hand, the performance of the deterministic
step drops if the number of columns picked in the random-
ized step increases. Thus, there exists an optimal choice for
the parameter c in the randomized step. This optimal choice
is – asymptotically – O(k log k). This manifests itself in the
plots: at some point, picking more columns in the random-
ized step results to diminished performance. In most cases,
setting c to be a small constant times k suffices for accurate
approximations. Indeed, a practical implementation of our
approach should “explore” a small number of choices for c,
say c = 2k up to c = 10k in increments of k. Third, Low

2Pinning down the exact constant in the big-Oh notation
seems quite hard given state of the art results for approxi-
mate matrix multiplication that are used in our proof.
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Figure 1: Comparison of our algorithm with four
deterministic strategies and the SVD for k = 10. The
y-axis is normalized so that the spectral error of the
best rank-k approximation corresponds to one.

RRQR (despite the lack of strong theoretical guarantees)
turns out to be a solid deterministic strategy for the column
subset selection problem for small and medium values of k.
In particular, our hybrid algorithm only marginally outper-
forms it for k = 10 and k = 15, and does not outperform it
for k = 20.

Our unsupervised column selection methodology picks k
stocks that essentially have the same spectral norm residual
as the top k left singular vectors. However, it is not easy
to assign a meaning to the selected stocks, partly because a
natural interpretation of the top k principal components in
financial terms is not obvious. In particular, stocks in the
S&P 500 index are separated in ten sectors, e.g., Industrial,
Health Care, Consumer Discretionary, Financial, Informa-
tion Technology, Utilities, Materials, Consumer Staples, En-
ergy, and Telecommunication Services. However, when we
examined the projection of the stock matrix on its top ten
(or up to 20) singular vectors, we were not able to, for ex-
ample, match the axes corresponding to singular vectors to
sectors. Reifying the principal components of this data ma-
trix seemed hard, hence assigning a meaning to the selected
stocks is not straightforward. Table 3 shows the stocks that
achieved the minimal residual error among all six methods
and all different numbers of columns kept in the randomized
step. This result was observed using the qrxp method with
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Figure 2: Comparison of our algorithm with four
deterministic strategies and the SVD for k = 20. The
y-axis is normalized so that the spectral error of the
best rank-k approximation corresponds to one.

c set to 160 for the randomized step. Notice that four stocks
from the Industrials sector were picked; this seems to agree
with the fact that this particular sector is quite diverse, and
its behavior is representative of the S&P 500 as a whole.

4.3 TechTC datasets
Our second data application comes from the Open Di-

rectory Project (ODP) [32], a multilingual open content di-
rectory of WWW links that is constructed and maintained
by a community of volunteer editors. ODP uses a hierar-
chical ontology scheme for organizing site listings. List-
ings on similar topics are grouped into categories, which
can then include smaller subcategories. Gabrilovich and
Markovitch constructed a benchmark set of term-document
matrices from ODP, called TechTC (Technion Repository of
Text Categorization Datasets [21]), which they made pub-
licly available. Each matrix of the TechTC dataset consists
of a total of 150 to 200 documents from two different ODP
categories. The category that each document belongs to was
also made available. As expected, the TechTC matrices are
not numerically low-rank. The top 2.5%, 3.5%, and 5% of
the non-zero singular values of these matrices capture (on
average) 5.5%, 8%, and 12.5% of the Frobenius norm of the
matrices. This is to be contrasted with the same values for
the S&P 500 matrix, where 90% or more of the Frobenius
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Stock symbol Stock Name Sector

TE TECO Energy Utilities
RDC Rowan Cos. Energy
CTXS Citrix Systems Inf. Tech.
AFL AFLAC Inc. Financials
TER Teradyne Inc. Inf. Tech.
PCAR PACCAR Inc. Industrials
TYC Tyco Industrials
CHRW C.H. Robinson Industrials
CAT Caterpillar Inc. Industrials
SWK Stanley Works Consumer Disc

Table 3: The ten stocks that minimized the spectral
norm residual for k = 10.

(i) florida, evansville, their, consumer, reports
(ii) diego, evansville, pianos, which, services
(iii) florida, nanaimo, served, expensive, other
(iv) eureka, california, cobbler, which, insurance
(v) eureka, reliable, coldwell, rosewood, information
(vi) dallas, nanaimo, untitled, buffet, included
(vii) nanaimo, taiwan, megahome, great, states
(viii) agent, topframe, spacer, order, during
(ix) dublin, beach, estate, spacer, which
(x) canada, stone, mainframe, spacer, other

Table 4: Retrieved terms

norm of the matrix was captured with the same ratio of sin-
gular values. We note here that we preprocessed all matrices
by removing all words with at most four letters.

Despite this fact, we noticed that at least a few of the
100 matrices had the following property: the documents
clustered well when projected in a low dimensional space
spanned by the top few (e.g., four or five) left singular vec-
tors. We empirically measured this property by computing
low-rank approximations for all 100 matrices, and then ap-
plying k-means to the low-dimensional data. After measur-
ing the quality of the resulting clustering when compared
with the available ground truth, we focused on ten datasets
where unsupervised clustering techniques performed well in
predicting the two distinct clusters. This separation im-
plies that the documents are semantically well-represented
by low-rank approximation via the SVD, even though they
are not numerically low-rank. Since our goal is to discuss
unsupervised feature selection, we focused only on these ma-
trices. Figure 3 shows a projection of one of the ten matrices
on its top two left singular vectors. Notice that even in a
2D space some separation of the two classes is obvious. This
separation typically peaks when four or five singular vectors
are chosen. For simplicity and uniformity we always set the
parameter k of our algorithm to five.

The numerical results of our experiments are very simi-
lar to the ones for the S& P 500 and are omitted. Once
more, we observe that our hybrid method outperforms most
of the deterministic strategies3. Table 5 shows some statis-
tics for the ten document-term matrices that we included

3We should note that the available implementations of
the High and Low RRQR methods did not run in these
datasets. The available code is designed for matrices with
fewer columns than rows, and ran out of memory for the
TechTC matrices.
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Figure 3: Projection of documents from the 11346-
22294 categories of the TechTC dataset onto the top
two left singular vectors.

in our study. Table 4 shows the terms that minimized the
spectral norm residual using our hybrid algorithm. Obvi-
ously, the selected terms correlate reasonably well with the
content of each dataset. In particular, in most cases we pick
words that describe the content of each cluster of documents
represented in the data.

4.4 HapMap dataset
It is well-known that genetic markers can be used to infer

population structure and individual ancestry, two tasks that
remain central challenges in many areas of genetics such as
population genetics and the search of susceptibility genes for
common disorders. The Singular Value Decomposition has
recently regained favor for uncovering population structure,
since it can be efficiently used to extract the fundamental
structure of a dataset without the need for any modeling of
the data; see [36] and references therein for a detailed discus-
sion. SVD and PCA were first used in population genetics
by Cavalli-Sforza to infer axes of human variation [30].

Selecting the appropriate genetic markers to study is crit-
ical. Single Nucleotide Polymorhisms (SNPs) are the most
abundant forms of genetic variation. Each individual car-
ries two identical or distinct copies (alleles) for a given SNP.
Each copy is one of (at most) two alternate nucleotides that
may appear at any given SNP. The HapMap Project [41] has
genotyped millions of SNPs across the whole genome for cer-
tain populations. Identifying a minimal set of markers that
could effectively be used for inference of population struc-
ture will reduce genotyping costs. Several approaches have
been used to this end; see [35] for a detailed discussion. In
all cases, knowledge of individual membership to a studied
population is a prerequisite. When studying admixed pop-
ulations it may be difficult to define or sample the ancestral
populations. The origin of the study individuals may also be
unknown in studies involving large samples of blood donors.

In matrix language, our data consisted of n surveyed SNPs
for m individuals. In the dataset that we will analyze here,
n ≈ 2, 000, 000 and m = 90. Our 90 individuals come from
a Chinese population and a Japanese population. The en-
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id1 id2 #docs × #terms

(i) 10567 1 11346 2 139× 15170

(ii) 10567 1 12121 3 138× 11859

(iii) 11346 2 22294 4 125× 14392

(iv) 11498 5 14517 6 125× 15485

(v) 14517 6 186330 7 130× 18289

(vi) 20186 8 22294 4 130× 12708

(vii) 22294 4 25575 9 127× 10012

(viii) 332386 10 61792 11 159× 15860

(ix) 61792 11 814096 12 159× 16066

(x) 85489 13 90753 14 154× 14780
1 US: Indiana: Evansville
2 US: Florida
3 California: San Diego: Business, economy
4 Canada: British Columbia: Nanaimo
5 California: Politics: Candidates, campaigns
6 US: Arkansas
7 US: Illinois
8 US: Texas: Dallas
9 Asia: Taiwan: Business and Economy
10 Shopping: Vehicles
11 US: California
12 Europe: Ireland: Dublin
13 Canada: Business and Economy: Industries
14 Materials and Supplies: Masonry and Stone

Table 5: The 10 TechTC matrices of our
study.

tries in the m×n matrix are +1 (if both alleles are equal to
the first nucleotide), −1 (if both alleles are equal to the sec-
ond nucleotide), or 0 (if the two alleles are different). The
task at hand is to identify a small set of SNPs (columns)
and/or individuals (rows) that capture the structure of the
data, e.g., that suffice to accurately assign an individual to
a population of origin. We will seek to do this in an unsu-
pervised manner, e.g., by selecting the most representative
SNPs without any a priori knowledge of individual ancestry.

Once more, the given matrix is not numerically low-rank.
In particular, the top 2.5%, 3.5%, and 5% of the non-zero
singular values of our matrix capture 3%, 7%, and 13% of
its Frobenius norm. Figure 4 shows a projection of our data
(after mean-centering) in the top left singular vector of the
matrix A. Clearly, the Chinese and Japanese individuals
are well separated, with the exception of a single Japanese
subject who lies in the middle. Our goal is to find a small
subset of SNPs that reproduce this structure using our hy-
brid approach. In order to reduce the running time to a
few minutes, we modified Algorithm 1 to perform only ten
repetitions. Given the huge number of columns, none of the
existing codes for deterministic methods could run without
heavy modifications.

Since in this case k is equal to one, we are essentially seek-
ing a single column that minimizes the residual error when
the whole matrix A is projected on the chosen column. This
objective is clearly mundane: first, since k is equal to one,
we could solve the whole problem exhaustively (albeit in
O(mn2) time with n ≈ 2, 000, 000). Most importantly, the
goal of a geneticist is to identify a small set of SNPs (not
necessarily one) that suffices to determine the ancestry of
an individual. Hence, a much more meaningful evaluation
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Figure 5: Classification accuracy using selected
SNPs.

of our feature selection algorithm is to examine the perfor-
mance of the selected SNPs in separating individuals of Chi-
nese and Japanese ancestry. Figure 5 shows the performance
of k-means applied on a very small (e.g., 40 or 50 out of
2,000,000) set of SNPs selected using our hybrid algorithm.
Notice that selecting 40 SNPs and using them to cluster the
90 individuals in two clusters results to about 7 misclassifica-
tions when 1,000 SNPs are selected in the randomized phase.
Similarly, 50 SNPs result to only 4 misclassifications when
1,500 SNPs are selected in the randomized phase. When
compared to the best existing supervised method for the
same task (the measure of Informativeness for assignment
defined by Rosenberg in [37]), as well as randomly chosen
SNPs, we can easily see that our unsupervised algorithm is
essentially as good as the best existing supervised method.

5. FUTURE DIRECTIONS
It would be particularly interesting to design unsupervised

feature selection algorithms for other, non-linear, dimen-
sionality reduction methods. In recent years, we witnessed

68



an explosion in the design of non-linear dimensionality
reduction algorithms, including Laplacian Eigenmaps, Lo-
cally Linear Embedding (LLE), IsoMap, SemiDefinite Em-
bedding (SDE), diffusion geometries, etc. In words, dimen-
sionality reduction techniques seek to compress the data
while keeping all the relevant structure intact. An important
open problem is the development of efficient, unsupervised,
and provably accurate approaches that select a subset of
features from the data such that running the dimensional-
ity reduction algorithm only on this subset of features, as
opposed to the full set of features, achieves essentially the
same reconstruction.

6. REFERENCES
[1] A. d’Aspremont, L. El Ghaoui, M. I. Jordan, and G. R. G.

Lanckriet. A Direct Formulation for Sparse PCA Using
Semidefinite Programming. SIAM Review, 49(3), July 2007

[2] A. Ben-Hur and I. Guyon. Detecting stable clusters using
principal component analysis. Methods Mol Biol,
224:159–182, 2003.

[3] M.W. Berry, S.A. Pulatova, and G.W. Stewart. Computing
sparse reduced-rank approximations to sparse matrices.
ACM Trans on Math Soft, 31:252–269, 2005.

[4] C. H. Bischof and G. Qintana-Ort́ı. Algorithm 782: codes
for rank-revealing QR factorizations of dense matrices.
ACM Trans on Math Soft, 24:254–257, 1998.

[5] C.H. Bischof and G. Quintana-Ort́ı. Computing
rank-revealing QR factorizations of dense matrices. ACM
Trans on Math Soft, 24(2):226–253, 1998.

[6] C. Boutsidis, M.W. Mahoney, and P. Drineas. Manuscript
in preparation, 2008

[7] J. Cadima, J. O. Cerdeira, and M. Minhoto. Computational
aspects of algorithms for variable selection in the context of
principal components. Computational Statistics & Data
Analysis, 47(2):225–236, 2004.

[8] T. F. Chan. Rank revealing QR factorizations. Linear
Algebra Appl, 88/89:67–82, 1987.

[9] T.F. Chan and P.C. Hansen. Some applications of the rank
revealing QR factorization. SIAM J Sci and Stat Comp,
13:727–741, 1992.

[10] T. F. Chan and P.C. Hansen. Low-rank revealing
QR factorizations. Linear Algebra Appl, 1:33–44, 1994.

[11] S. Chandrasekaran and I. C. F. Ipsen. On rank-revealing
factorizations. SIAM J Matrix Anal Appl, 15:592–622, 1994.

[12] A. Deshpande, L. Rademacher, S. Vempala, and G. Wang.
Matrix approximation and projective clustering via volume
sampling. SODA, 2006

[13] M. Devaney and A. Ram. Efficient feature selection in
conceptual clustering. In ICML, 1997.

[14] P. Drineas, M. W. Mahoney, and S. Muthukrishnan.
Subspace sampling and relative-error matrix
approximation: Column-based methods,
APPROX-RANDOM, 2006.

[15] P. Drineas, M. W. Mahoney, and S. Muthukrishnan.
Relative-error CUR matrix decompositions.
http://arxiv.org/abs/0708.3696, 2007.

[16] J G. Dy and C E. Brodley. Feature selection for
unsupervised learning. J. Mach. Learn. Res., 5:845–889,
2004.

[17] R.D. Fierro, P.C. Hansen, and P. Hansen. UTV tools:
Matlab templates for rank-revealing UTV decompositions.
Numerical Algorithms, 20(2-3):165–194, 1999.

[18] L. V. Foster. Rank and null space calculations using matrix
decomposition without column interchanges. Linear
Algebra Appl, 74:47–71, 1986.

[19] L.V. Foster and Xinrong Liu. Comparison of rank revealing
algorithms applied to matrices with well defined numerical
ranks. manuscript, 2006.

[20] A. Frieze, R. Kannan, and S. Vempala. Fast Monte-Carlo
algorithms for finding low-rank approximations, FOCS,
1998

[21] E. Gabrilovich and S. Markovitch. Text categorization with
many redundant features: using aggressive feature selection
to make SVMs competitive with C4.5. ICML, 2004

[22] G. H. Golub. Numerical methods for solving linear least
squares problems. Numer Math, 7:206–216, 1965.

[23] G.H. Golub and C.F. Van Loan. Matrix Computations.
Johns Hopkins University Press, Baltimore, 1989.

[24] M. Gu and S.C. Eisenstat. Efficient algorithms for
computing a strong rank-revealing QR factorization. SIAM
J Sci Comp, 17:848–869, 1996.

[25] Y. P. Hong and C. T. Pan. Rank-revealing
QR factorizations and the singular value decomposition.
Math Comp, 58:213–232, 1992.

[26] W. J. Krzanowski. Selection of variables to preserve
multivariate data structure, using principal components.
Applied Statistics, 36(1):22–33, 1987.

[27] F.G. Kuruvilla and P.J. Park and S.L. Schreiber. Vector
algebra in the analysis of genome-wide expression data.
Genome Biology, 3, 2002.

[28] K. Z. Mao. Identifying critical variables of principal
components for unsupervised feature selection. IEEE
Transactions on Systems, Man, and Cybernetics, Part B,
35(2):339–344, 2005.

[29] M.W. Mahoney, M. Maggioni, and P. Drineas. Tensor-CUR
decompositions for tensor-based data, KDD, 2006.

[30] P. Menozzi, A. Piazza, and L. Cavalli-Sforza. Synthetic
maps of human gene frequencies in Europeans . Science,
201(4358):786–792, 1978.

[31] P. Mitra, C. A. Murthy, and S. K. Pal. Unsupervised
feature selection using feature similarity. IEEE Trans.
Pattern Anal. Mach. Intell., 24(3):301–312, 2002.

[32] Open Directory Project. http://www.dmoz.org/
[33] C. T. Pan. On the existence and computation of

rank-revealing LU factorizations. Linear Algebra Appl,
316:199–222, 2000.

[34] C. T. Pan and P. T. P. Tang. Bounds on singular values
revealed by QR factorizations. BIT Numerical
Mathematics, 39:740–756, 1999.

[35] P. Paschou, E. Ziv, E.G. Burchard, S. Choudhry, W.R.
Cintron, M.W Mahoney, and P. Drineas. PCA-Correlated
SNPs for Structure Identification in Worldwide Human
Populations, PLoS Genetics, 9(3), 2007.

[36] P. Paschou, M.W. Mahoney, A. Javed, J.R. Kidd, A.J.
Pakstis, S. Gu, K.K. Kidd, and P. Drineas. Intra- and
Inter-population genotype reconstruction from tagging
SNPs, Genome Research, 17: 96-107, 2007.

[37] N.A. Rosenberg, L.M. Li, R. Ward, and J.K. Pritchard.
Informativeness of genetic markers for inference of ancestry.
Am J Hum Genet, 73(6):1402–1422, 2003.

[38] G.W. Stewart. Four algorithms for the efficient
computation of truncated QR approximations to a sparse
matrix. Num Math, 83:313–323, 1999.

[39] H. Stoppiglia, G. Dreyfus, R. Dubois, and Y. Oussar.
Ranking a random feature for variable and feature
selection. J. Mach. Learn. Res., 3:1399–1414, 2003.

[40] J. Sun, Y. Xie, H. Zhang, and C. Faloutsos. Less is more:
Compact matrix decomposition for large sparse graphs,
SDM, 2007.

[41] The International HapMap Consortium. A haplotype map
of the human genome. Nature, 437:1299–1320, 2005.

[42] L. Wolf and A. Shashua. Feature selection for unsupervised
and supervised inference: The emergence of sparsity in a
weight-based approach. J. Mach. Learn. Res., 6:1855–1887,
2005.

[43] Z. Zhao and H. Liu. Spectral feature selection for
supervised and unsupervised learning. In ICML, 2007.

[44] http://finance.yahoo.com/

69


