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Abstract

A large body of recent work in scientific machine learning (SciML) aims to tackle
scientific tasks directly by predicting target values with neural networks (e.g.,
physics-informed neural networks, neural ODEs, neural operators, etc.), but attain-
ing high accuracy and robustness has been challenging. We explore an alternative
view: use large language models (LLMs) to write code that leverages decades of
numerical algorithms. We introduce two new datasets: a diagnostic dataset of adver-
sarial “misleading” problems; and a large-scale benchmark of 1,000 diverse ODE
tasks. The diagnostic set contains problems whose superficial appearance suggests
stiffness, and that require algebraic simplification to demonstrate non-stiffness;
and the large-scale benchmark spans stiff and non-stiff ODE regimes. We evaluate
open- and closed-source LLM models along two axes: (i) unguided versus guided
prompting with domain-specific knowledge; and (ii) off-the-shelf versus fine-tuned
variants. Our evaluation measures both executability and numerical validity against
reference solutions. We find that with sufficient context and guided prompts, newer
instruction-following models achieve high accuracy on both criteria. In many cases,
recent open-source systems (e.g., the Qwen3 family) perform strongly without
fine-tuning, while older or smaller models still benefit from fine-tuning. Overall,
our preliminary results indicate that careful prompting and fine-tuning can yield a
specialized LLM agent capable of reliably solving simple ODE problems.

1 Introduction

Recently, several approaches have used machine learning to solve scientific tasks by predicting solu-
tions directly with neural networks. Notable works include: Physics-Informed Neural Networks [1],
neural ODEs [2, 3], neural operators [4, 5, 6, 7, 8, 9], Finite-Dimensional operators [10, 11, 12],
neural FEMs [13, 14], Fourier Neural Operators [15, 16], and neural discrete equilibria [17] to name
a few. Although these approaches have their strengths, training these models to output the solution
with high accuracy can be challenging [18].

By contrast, decades of numerical analysis offer robust algorithms for scientific computing problems.
This raises a natural question: instead of predicting target values directly, why not use AI models to
write code that leverages established numerical solvers?

Prior work has focused on algorithmic correctness and unit tests, but scientific computing introduces
additional requirements of numerical suitability tied to problem structure. Currently, no benchmark
systematically evaluates the scientific validity of LLM-generated ODE solvers, leaving open how
well models reason about mathematical properties to select optimal strategies.

In this work, we address this gap through the following contributions.
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• Robustness Evaluation of Symbolic Reasoning. We design adversarial, misleading ODEs whose
superficial form suggests stiffness, but which algebraically simplifies to a non-stiff ODE. The task
probes whether models perform genuine symbolic reduction rather than pattern matching, and
whether they choose explicit methods when appropriate. We find that while older models struggle
more with these examples, newer models demonstrate strong “reasoning” capabilities. In addition,
we observe that providing the model with a guided prompt can significantly boost performance.

• ODE-1000 Benchmark. To evaluate scientific code generation capability of these models, we
create the ODE-1000 benchmark, comprising 1,000 diverse ODE problems. We evaluate the
performance by (i) checking if the generated code compiles correctly, and (ii) computing the
resulting error of the final numerical solution against the ground truth.

• Prompting vs. Fine-Tuning. Using the ODE-1000 dataset, we conduct a detailed empirical
analysis across a wide range of open- and closed-source LLMs, considering several scenarios: (i)
zero-shot/bare minimum prompt, (ii) guided prompt, and (iii) fine-tuned models. We find that with
careful guidance, LLMs can act as practical and reliable SciML agents for a wide range of simple
ODE tasks. Newer, larger models are particularly adept at this, often achieving high accuracy with
prompting alone, while smaller models still benefit significantly from fine-tuning.

These preliminary results establish initial evidence that careful prompting and targeted fine-tuning
can yield practical SciML coding agents for simple ODE problems, and that they can provide a
foundation for evaluating scientific code generation beyond syntactic correctness.

Due to the page limit, we provide a detailed discussion of related work in Appendix A.

2 SciML Agent Setup
2.1 Task Definition

We focus mainly on the following task: given a natural-language description of a physical or
mathematical system governed by an ODE, how can we make an LLM generate a complete and
executable Python program that can numerically solve the ODE? A successful LLM output should
(of course) return executable code, correct parameters, and a relatively low numerical error. However,
the code should also be “scientifically appropriate,” e.g., meaning that the LLM should demonstrate
an understanding of the underlying mathematical properties of the ODE to make informed decisions.

2.2 Benchmark datasets

We introduce a benchmark suite composed of two novel datasets. First, we present a specialized
Diagnostic Dataset that contains problems that are intentionally “misleading” to probe the LLM’s
ability for deeper mathematical reasoning, rather than solely relying on superficial pattern matching.
Second, we present a large-scale dataset of 1,000 diverse ODE problems called ODE-1000 that derived
from natural-language descriptions, designed to test the end-to-end task of generating complete and
numerically accurate solver code. Further details on the construction, examples, and evaluation
metrics of these datasets can be found in Appendix B and Appendix C, respectively. The distribution
of the data of the ODE-1000 dataset can be found in Appendix F.

2.3 Models

Our evaluation includes a wide array of both open- and closed-source LLM families, to ensure broad
coverage of the current LLM landscape. Open-source models we tested include the Llama series
(Llama2, Llama3, Llama3.1) and the Qwen series (Qwen1, Qwen1.5, Qwen2, Qwen2.5, Qwen3). For
a closed-source model, we tested OpenAI’s GPT-4.1. We investigated a wide range of model sizes,
and distinguished between “older” models (released in 2023–2024) and “newer” instruction-following
models (from 2025) to track the evolution of capabilities over successive generations.

2.4 Prompting Methods

While pretrained language models possess strong symbolic capabilities, we observe that these
abilities often remain underutilized in zero-shot settings, at least without a proper prompting structure.
To explore this, we assess model performance under two different prompting methodologies to
understand the effect of contextual guidance. Base Prompt only provides only minimal instructions,
while Guided Prompt is engineered to provide substantial guidance by explicitly instructing the
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model to perform step-by-step reasoning and simplify expressions algebraically. Details on these two
prompts can be found in Appendix G.

2.5 Fine-Tuning

While newer, larger models often perform well with guided prompting, fine-tuning can be essential for
improving the reliability of smaller models. We employ a supervised fine-tuning (SFT) approach to
create specialized ODE-solving agents. The training data is derived from our ODE-1000 benchmark.
We use 900 examples for training and reserve the remaining 100 for testing. For the Qwen models, the
fine-tuning data included the intermediate reasoning traces to better leverage their native reasoning
capabilities, whereas for the Llama models, only the final Python code was used. We performed full
parameter fine-tuning for 3 epochs across 8 GPUs.

3 Results

3.1 Symbolic-Equivalence Diagnostic Dataset Evaluation

Older Model Performance on Diagnostic Dataset We first evaluate models released in 2023 and
2024, including the LLaMA series (2, 3, 3.1, and 3.3) and Qwen series (1, 1.5, 2, and 2.5). Results
are summarized in Table 1. We observe the following trends.

• Rapid improvement across LLaMA generations. The reasoning ability of LLaMA models
improves significantly from LLaMA 3 to LLaMA 3.3.

• Architecture matters more than size. Newer-generation models often outperform earlier ones,
even when smaller in size. For example, the smallest model in a newer generation frequently
performs better than the largest model from the previous generation.

• Scale-performance correlation. Reasoning ability generally improves with model size.

Newer Model Performance on Diagnostic Dataset We next evaluate models released in 2025,
including the Qwen 3 series and GPT-4.1. For both Qwen3-8B and Qwen3-0.6B, we compare their
reasoning ability with and without the “thinking mode” (where the model is prompted to reason step
by step before producing a final answer). These results are summarized in Table 1, and they lead to
the following key observations. The overall trend is visualized in Appendix H.

• Thinking mode significantly enhances reasoning performance. The thinking mode leads
to notable improvements in accuracy, particularly on the algebraic subset. For instance, the
performance of Qwen3-0.6B improves from 37.04% to 75.93% when using thinking mode.

• Newer models exhibit stronger implicit reasoning. As shown in Appendix J, there are traces
of failed reasoning in which the model incorrectly assumes that a superficially large coefficient
directly implies stiffness, without further mathematical derivation. We observed that, compared to
earlier models, newer ones tend to perform intermediate reasoning rather than relying solely on
pattern matching.

The Role of Prompting on the Diagnostic Dataset We analyze model performance using a base
prompt and a guided prompt (recall Section 2.4). We observe that when using the base prompt, the
model exhibits limited performance on the Diagnostic Dataset. As shown in Table 1, by switching to
a guided prompt that explicitly encourages step-by-step reasoning and expression simplification, we
observe a greatly improved performance and reveal the following observations.

• Larger models demonstrate stronger instruction-following capabilities. Within the same model
family, we observe that models with more parameters consistently achieve better performance. This
suggests that scaling up model size enhances their ability to follow prompts effectively.

• Mathematical simplification abilities have improved significantly in recent models. Compared
to earlier generations, newer models such as the Qwen3 series and GPT-4.1 achieve over 80%
accuracy—even for relatively small models like Qwen3-0.6B. This indicates substantial progress in
the models’ capacity for step-by-step reasoning and symbolic manipulation.
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Table 1: Accuracy (%) across three mathematical diagnostic datasets (Trigonometric, Algebraic, Inverse
Function) under Base vs Guided prompts. Providing guided instructions significantly improves performance,
particularly for newer models with stronger instruction-following capabilities.

Llama Models Qwen Models

Model Trig Alg Inv Model Trig Alg Inv
Base Guided Base Guided Base Guided Base Guided Base Guided Base Guided

Small Models

Llama2-7B 1.85 0 0 5.56 1.85 0 Qwen1-7B 4.35 10.87 12.96 5.56 3.64 16.36
Llama3-8B 6.5 6.5 18.5 31.5 3.6 14.6 Qwen2-7B 0 4.35 11.11 14.81 0 5.45

Llama3.1-8B 10.9 21.7 27.8 44.4 5.5 31.5 Qwen2.5-7B 28.3 47.8 61.1 77.8 18.2 36.4

Big Models

Llama3-70B 2.2 28.3 38.9 87.0 0 25.5 Qwen2.5-72B 26.1 78.3 53.7 83.3 54.5 60.0
Llama3.3-70B 54.4 82.6 81.5 92.6 74.5 90.9 Qwen3-235B 89.1 97.8 100 100 96.4 100
Llama3.1-405B 17.4 56.5 50.0 83.3 10.9 67.3 GPT-4.1 21.7 100 92.6 100 76.4 100

Reasoning Models (Qwen3)

Qwen3 0.6B 58.7 65.2 37.0 51.9 81.8 80.0 Qwen3 8B 54.4 89.1 77.8 79.6 89.1 98.2
Qwen3 0.6B† 69.6 73.9 75.9 79.6 83.6 80.0 Qwen3 8B† 100 100 100 100 100 100
† Guided = reasoning mode activated

Importantly, model failure is not simply due to insufficient knowledge or representational capacity,
but rather due to the absence of explicit guidance and structured reasoning incentives. As shown in
Appendix G, the guided prompt adds an explicit instruction, guiding the model toward multi-step
reasoning and suppressing pattern-matching behaviors.

3.2 ODE Dataset Evaluation

We evaluate on ODE-1000 using three metrics: (i) Code execution rate — fraction of code that
compiles and runs end-to-end; (ii) Accuracy — fraction of runnable cases with relative L2 error
< 0.01; and (iii) Mean relative L2 error — average error (clamped at 1 to reduce outlier effects).

We observe that fine-tuning produces quantitative improvements for small models. See Table D.1
in Appendix for a summary. For example, for the Qwen-3-0.6B model, the code execution rate
jumps from 27% to 97%, the mean relative L2 drops from 0.3705 to 0.1043, and the accuracy among
successful runs increases from 62.96% to 87.63%. Llama2-7B shows a similar improvement, where
execution goes from 21%→100% and accuracy 47.62%→87%.

These improvements can be mainly classified into two categories.

• Fewer syntax errors. Fine-tuning the models with the ODE-1000 dataset can greatly reduce syntax
errors, which is necessary for ODE solvers to produce executable code.

• Improved numerical validity. Fine-tuning also greatly improves numerical accuracy by enhancing
the model’s ability to correctly derive and set up an equation and choose the correct solvers.

For both of these reasons, our results demonstrate that, for smaller and/or older models, fine-tuning
can be an effective way to improve performance. On the other hand, for newer reasoning models
that are sufficiently large (such as Qwen3-8B), fine-tuning is often not necessary; instead, careful
prompting with in-context examples (evaluation prompt in Appendix E) is enough to achieve near
100% performance.*

4 Conclusion and Future Work

We asked whether LLMs can serve as SciML agents that translate natural-language ODE descriptions
into runnable, scientifically appropriate code. To study this, we introduced two benchmarks: a
Symbolic-Equivalence diagnostic suite that probes algebraic simplification and solver choice, and
ODE-1000, a large-scale collection of diverse problems. Our evaluation, measuring both executabil-
ity and numerical validity against reference solutions, shows that careful guidance substantially

*It is important to note that further fine-tuning may be also required if the Agent has to generate code in
completely new domains, on which the base model has not been extensively trained. However, the scope that we
considered here involves common ODEs for which pretrained models have some general knowledge.
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improves performance: newer instruction-following models often achieve high accuracy with domain-
aware prompting, while smaller or older models benefit markedly from fine-tuning. Together, these
results indicate a practical path to specialized LLM agents that leverage mature numerical solvers
rather than predicting solutions directly, and they establish a foundation for assessing scientific code
generation beyond syntactic correctness.
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A Related Work

LLM based Coding Agents. A variety of benchmarks have been introduced to evaluate LLMs’
coding capabilities. Classic datasets such as APPS [19], HumanEval [20], and MBPP [21] assess
function-level code generation through unit tests, while DS-1000 [22] emphasizes data science code
synthesis with Python libraries. More recent benchmarks such as SWE-bench [23] capture real-world
bug fixing in software repositories, ChronoLLM[24] customize LLMs to generate PyChrono virtual
experiments, and CodeJudgeBench [25] investigates the reliability of LLMs as judges for code
generation, repair, and test generation.

Coding Agents for Scientific Problems. LLMs have recently been applied to scientific computing,
showing strong capabilities in symbolic reasoning and code generation. Benchmarks such as Ineq-
Math [26], NeqLIPS [27],HypoGeniC [28], Mamo [29] and ASyMOB [30] underscore the expanding
role of LLMs in mathematical problem solving; while systems like PAL [31] and LOGIC-LM [32]
combine LLMs with interpreters or symbolic solvers to improve arithmetic and logical reasoning. In
the scientific computing domain, frameworks like CodePDE [33] have shown that LLMs can generate
executable solvers for PDEs through reasoning, debugging, and test-time scaling, in some cases
surpassing both human experts and specialized neural PDE solvers on benchmarks. Another work
is PDE-Controller [34] which leverages LLMs to allow control PDE-based tasks through natural
language.

Another important work in this direction is [35] which recently benchmarked DeepSeek, ChatGPT,
and Claude on a wide range of scientific computing and SciML tasks, including ODEs, PDEs, FEMs,
and PINNs. Our work complements theirs: while [35] studies cross-model performance differences
of closed-source models, we focus on studying the reasoning capability of open/closed-source models,
and explore the impacts of guided prompting vs finetuning of these models on the coding capability
of these models on a new set of datasets that we introduce.

B Symbolic-Equivalence Diagnostic Dataset

In numerical ODE integration, explicit solvers advance the state directly from the current value. They
are simple and efficient, but they can become unstable on stiff systems. In contrast, implicit solvers
require solving for the unknown future state. They are typically more stable (though costlier), making
them preferable for stiff or constrained dynamics — see Appendix I for an empirical study examining
how accuracy and runtime vary with equation stiffness. In practice, scientific computing experts first
assess whether a problem is stiff, which then strongly influences their solver choice.

Here, we test whether current LLMs can correctly classify ODEs as stiff or non-stiff, an essential
step for choosing the right algorithm when generating code, and whether they rely on superficial cues
(e.g., large coefficients) or perform nontrivial symbolic reasoning.

Dataset Construction. The Diagnostic Dataset comprises three subsets that appear stiff before
simplification, but that reduce to non-stiff forms: a trigonometric subset, an inverse function subset,
and an algebraic subset, described as follows.

1. Trigonometric subset uses trigonometric identities, such as sin(t+ π/2) + cos t = 0, to
simplify the equation.

2. Inverse-function subset uses inverse operators collapse, such as arcsin(sin t) = t on
[−π/2, π/2], to simplify the equation.

3. Algebraic subset uses expansions/factorizations, such as (x+1)3−6(x2+1)−(x−1)3 =
0, that remove large coefficients after simplification.

In each case, the coefficients appear large, but they can be simplified through mathematical identities.
Consequently, the correct choice is always an explicit method. We report accuracy as the proportion
of instances for which the model selects an explicit solver. This setup probes basic symbolic reduction
capability, rather than more simple pattern matching, by the LLM.
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C ODE-1000 Dataset

Overview. The ODE-1000 dataset is a curated dataset consisting of 1,000 ODE problems paired
with executable Python solutions. The dataset is designed to evaluate the ability of LLMs to derive a
correct ODE and problem setup from a natural-language description, and to produce syntactically
valid, numerically stable solver code with an appropriate method choice (e.g., implicit vs. explicit
solver). Below, we describe the generation pipeline, example structure, and coverage.

Generation. We synthesize candidate problems with GPT 4.1 (prompt templates in Appendix E)
by letting the model (1) derive the ODE from a realistic scenario, where the description is natural
language, (2) specify an appropriate solver method and the reasoning trace behind the choice, and (3)
produce the equation and the initial conditions in SymPy format, and the Python code to solve the
equation using the solve_ivp function in SciPy library. The prompt is designed to enforce diversity
across: stiff vs. non-stiff dynamics, orders, time intervals, magnitudes and signs of coefficients, and
solver coverage. The target distribution is visualized in Figure F.1 and Appendix F.

Example structure. We present an example of the created dataset for clarity. Each item is stored
as JSON with five fields, as follows.

• description: A capacitor is initially charged to 10 volts and is discharging through
a resistor. The voltage V(t) across the capacitor decreases at a rate proportional to the
voltage itself, with a time constant of 2 seconds. Find V(t) for t from 0 to 10 seconds,
using 200 evaluation points.

• sympy_eq: Eq(Derivative(y(t), t), -y(t)/2)
• initial_condition: y(0): 10
• reasoning: This is a classic first-order linear ODE for exponential decay: dV/dt =

-V/2. The time constant is given as 2 seconds. The equation is not stiff, so RK45
is suitable. The time interval and number of points allow us to observe the voltage
decay smoothly.

• code:
def f(t, V):

return -V / 2

t_eval = np.linspace(0, 10, 200)
sol = solve_ivp(f, [0, 10], [10], t_eval=t_eval , method='RK45')

Verification and filtering. After the dataset creation, for each candidate, we run the provided code
in a sandbox to ensure it is syntactically valid, and solve_ivp returns a solution on the supplied
t_eval. Candidates that fail to execute are discarded.

We then obtain yanalytical(t) using SymPy dsolve from sympy_eq and initial_condition. We
evaluate both the numerical solution ynumerical(ti) and the analytical solution on the same grid and
compute the relative L2 error:

Rel L2 =
∥yanalytical − ynumerical∥2

∥yanalytical∥2
.

Examples with Rel L2 > 0.01 are rejected and filtered out, as they are numerically unstable and
thus not suitable for benchmarking. After filtering, this process yields 1000 verified examples that
emphasize realistic phrasing and solver sensitivity.

D Fine-tuning Result on ODE-1000 Dataset

This section reports fine-tuning results on the ODE-1000 dataset. Following the setup described in
the main paper, we fine-tuned Qwen2-7B, Qwen3-0.6B, Llama-7B, Llama2-7B, and Llama3-8B,
with detailed results provided in Table D.1.
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Table D.1: Performance of various models on the ODE dataset. We can clearly see that fine-tuning helps,
particularly for older or smaller models. However, as we saw in Table 1, newer models can achieve high accuracy
without finetuning if given enough context and instructions.

Model Code Execution Rate Accuracy Relative L2 Error

Qwen2-7B 93% 91.40% 0.0841
+ Finetuning 99% 94.95% 0.0459

Qwen3-0.6B 27% 62.96% 0.3705
w/ reasoning 27% 70.37% 0.2913
+ Finetuning 97% 87.63% 0.1043

Llama-7B N/A N/A N/A
+ Finetuning 100% 87% 0.1261

Llama2-7B 21% 47.62% 0.4645
+ Finetuning 100% 87% 0.1169

Llama3-8B 96% 89.58% 0.0734
+ Finetuning 98% 94.9% 0.0516

N/A means the model does not have instruction following ability.

E Prompt Engineering for ODE-1000 Dataset

In this section, we present prompts we adopt to generate and evaluate the ODE-1000 dataset.

ODE Dataset Evaluation Prompt

You are an expert in solving ODEs using Python. Your job is to generate code to solve an
ODE problem by making a call to solve_ivp with the correct parameters: correct function
code, correct method (RK45, RK23, BDF, Radau, LSODA, DOP853, etc.), correct t_eval,
correct number of evaluation points, etc.

Here’s an example problem: Population P(t) grows logistically according to dP/dt =
0.5*P*(1 - P/1000) with initial population 50. Find P(t) from t = 0 to t = 40 using 250
evaluation points.

Here’s the corresponding example solution: def f(t, P): return 0.5 * P * (1 - P /
1000) t_eval = np.linspace(0, 40, 250) sol = solve_ivp(f, [0, 40], [50], t_eval=t_eval,
method=’RK45’)

Now, here’s the problem you need to solve: example["description"]
In the final output, only return the correct code (function and call to solve_ivp), nothing else.
Use "sol" to refer to the solution. Make sure that the code is syntactically correct, and do not
output any other text.
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ODE Data Generation Prompt

Generate batch_size diverse examples of ODEs that can be solved using scipy’s solve_ivp.
Each example should include:
1. A clear description of the ODE in terms of variables of your choice (you should always
give away t_eval and number of evaluation points)
2. The correct corresponding sympy equation
3. The correct initial condition (in valid sympy format)
4. Reasoning to set up/solve the ODE with the correct solve_ivp parameters
5. The correct Python code using solve_ivp with appropriate parameters

The sympy equation and initial conditions should be in terms of y(t) even if the original
equation is given in terms of different variables.

The examples should be diverse in terms of:
- Different types of ODEs (different orders, stiff, non-stiff, etc.)
- Different correct usages of numerical methods (BDF, Radau, LSODA for stiff problems and
RK45, RK23, DOP853 for non-stiff problems)
- Different time intervals
- Different initial conditions

IMPORTANT:
-Generate real-world problems. The ODE should not be given and needs to be derived from
the description. Make it as hard as possible; it should be very challenging to correctly derive
the ODE, requiring substantial reasoning.
-In the problem description, do not give away if the ODE is stiff or not stiff.
-Generate an equal number of stiff and non-stiff problems.
-When generating a problem with a given method, make sure that the the problem results in a
high error or solver instability if solved using a different method.
-Ensure each example has a known closed-form solution that can be found.

Format the output as a JSON array with each example having only the following fields:
description, sympy_eqs, initial_conditions, reasoning, code.
Here is an example:
{
"description": "A population P(t) grows at a rate proportional to its current size with a
proportionality constant 0.3. The initial population is 100. Find P(t) from t = 0 to t = 20 using
200 points.",
"sympy_eq": "Eq(Derivative(y(t), t), 0.3 * y(t))",
"initial_condition": "y(0): 100",
"reasoning": "The ODE is directly given: dP/dt = 0.3*P. This is a classic exponential growth
equation, non-stiff and first order. RK45 is appropriate. The time domain [0, 20] and 200
evaluation points will capture the exponential curve well. The initial condition is mapped
directly.",
"code": "import numpy as np from scipy.integrate import solve_ivp def f(t, y): return
0.3 * y t_eval = np.linspace(0, 20, 200) sol = solve_ivp(f, [0, 20], [100], t_eval=t_eval,
method=’RK45’)"
}

Make sure the examples are challenging and diverse. Return ONLY the JSON ar-
ray, with no additional text before or after. It must be a valid JSON array.
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F ODE Dataset Statistics

In this section, we present the distribution and statistics for solver methods and ODE orders for the
ODE-1000 dataset.

Figure F.1: ODE-1000 dataset distribution of solver methods and ODE orders (1st/2nd).
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G Prompt Engineering for Diagnostic Dataset

In this section, we discuss prompts for the Diagnostic Dataset.

The guided prompt introduces two key forms of inductive structure:

• It embeds domain-specific heuristics for stiffness (e.g., "eigenvalues ≪ −1000 imply
stiffness"), giving the model actionable thresholds for decision-making.

• It enforces algebraic and symbolic simplification of the coefficients.

These differences are highlighted in red.

Base System Prompt

You are an expert in numerical methods for solving Ordinary Differential Equations (ODEs).
Your task is to determine whether an explicit or implicit solver should be used for the given
ODE. Consider the following criteria:
- Explicit solvers (like RK45, RK23, DOP853) are suitable for non-stiff ODEs
- Implicit solvers (like BDF, Radau) are suitable for stiff ODEs
- LSODA automatically switches between stiff and non-stiff solvers, making it ideal for
ODEs with varying stiffness.
You will be given an ODE ode_example and corresponding time_interval.
Please analyze the ODE step by step:
1. First, provide your detailed reasoning about why this ODE is stiff or non-stiff.
2. Then, provide your final answer as either "explicit solver" or "implicit solver". Don’t
mention anything else, just the solver choice.
Please format your response in json format as follows. IT MUST BE VALID JSON:
{
"reason": "Your detailed analysis here",
"answer": "explicit solver/implicit solver"
}
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Guiding System Prompt

You are an expert in numerical methods for solving Ordinary Differential Equations (ODEs).
Your task is to determine whether an explicit or implicit solver should be used for the given
ODE. Consider the following criteria:
- Explicit solvers (like RK45, RK23, DOP853) are suitable for non-stiff ODEs
- Implicit solvers (like BDF, Radau) are suitable for stiff ODEs
- LSODA automatically switches between stiff and non-stiff solvers, making it ideal for
ODEs with varying stiffness.
- Stiff ODEs typically have large negative eigenvalues (much less than -1000)- Non-stiff
ODEs have eigenvalues greater than -100
You will be given an ODE ode_example and corresponding time_interval.
Please analyze the ODE step by step:
1. Given that the ODE is in the form of dy/dt = p(t)y + q(t), please first try to simplify the p(t)
and q(t) to make it easier to solve.
2. Then, provide your detailed reasoning about why this ODE is stiff or non-stiff.
3. Finally, provide your final answer as either "explicit solver" or "implicit solver". Don’t
mention anything else, just the solver choice.
Please format your response in json format as follows. IT MUST BE VALID JSON:
{
"reason": "Your detailed analysis here",
"answer": "explicit solver/implicit solver"
}
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H Model Evaluation on Diagnostic Dataset

In this section, we visualize the full result on the diagnostic dataset.

(a) Trigonometric Dataset (Base Prompt) (b) Trigonometric Dataset (Guided Prompt)

(c) Inverse Function Dataset (Base Prompt) (d) Inverse Function Dataset (Guided Prompt)

(e) Algebraic Dataset (Base Prompt) (f) Algebraic Dataset (Guided Prompt)

Figure H.1: Evaluation of LLMs across varying release dates and model sizes. (a), (c) and (e) present results
on the trigonometric, inverse function and algebraic tasks using the base prompt, while (b), (d) and (f) present
results on the same tasks using the guided prompt. We can see a clear trend where newer models are able to
achieve higher accuracy. Furthermore, enabling thinking/reasoning mode can boost the accuracy by up to 25%.
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I Empirical Study on Explicit/Implicit Solver

In this section, we present additional results on explicit versus implicit solvers.
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Figure I.1: Empirical comparison of explicit and implicit solvers under varying stiffness. (a) Solver performance
on the first-order ODE dy

dt
= λy: left—runtime; right—RMSE. (b) Solver performance on the second-order

ODE d2y
dt2

+ a dy
dt

+ y = 0: left—runtime; right—RMSE.
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J Failure Cases from Pattern Matching

In this section, we present reasoning traces showing how GPT-4.1 falls into pattern matching
when determining the stiffness of ODEs across the trigonometric, inverse function, and algebraic
subsets. We also include some successful cases in which large language models perform the correct
mathematical reasoning and arrive at the correct result.

J.1 Trigonometric Subset

1. Failed Case

• ODE example: dy/dt = (50000*(cos(2*t) - 2*cos(t)**2 + 1))*y + sin(2*t),
• Traces of Failed Reasoning: This ODE has the derivative term dy/dt involving

a large coefficient (50000) multiplied by y and trigonometric functions of t. Such a
large coefficient creates rapid changes in y with respect to t and leads to the presence
of both fast and slow dynamics. This multiscale behavior is characteristic of stiff
ODEs, where explicit methods would require extremely small timesteps for stability,
making them inefficient. Therefore, an implicit solver is more appropriate.

2. Successful Case

• ODE example: dy/dt = (20000*(sin(t)**2 + cos(t)**2) - 20000)*y + cos(t),
• Traces of Successful Reasoning: The ODE simplifies (sin(t)2 + cos(t)2 =
1), so dy/dt = (20000*1 - 20000)*y + cos(t) = cos(t). This reduces to dy/dt = cos(t),
a very simple, non-stiff ODE with no dependence on the large coefficient (since
it cancels out). There are no rapidly decaying or strongly coupled components in
the equation; the solution is smooth and varies on the scale of cos(t), not 20000.
Therefore, stiffness is not an issue.

J.2 Inverse Function Subset

1. Failed Case

• ODE example: dy/dt = (4e7 * (sin(arcsin(t/2)) - t/2))*y + exp(t),
• Domain: t ∈ [0, 1],
• Traces of Failed Reasoning: The ODE’s coefficient of y contains a large con-

stant factor (4e7) that multiplies a function of t, which can lead to very rapid changes
in the solution (potentially large negative or positive eigenvalues in the Jacobian).
This is characteristic of stiff ODEs, as explicit methods may require prohibitively
small step sizes for stability over even a short interval. Thus, an implicit solver is
appropriate.

2. Successful Case

• ODE example: dy/dt = (1e7 * log(exp(t + 1)) - 1e7 * (t + 1))*y + cos(t),
• Domain: t ∈ [0, 1],
• Traces of Successful Reasoning: The log(exp(t + 1)) term equals t + 1, so

1e7 * log(exp(t + 1)) - 1e7 * (t + 1) cancels to 0. The Jacobian with respect to y is
0, so there are no stiff eigenvalues and the system is not stiff. Only the cos(t) term
remains, thus an explicit solver is appropriate.

J.3 Algebraic Subset

1. Failed Case
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• ODE example: dy/dt = ((t-5)**4 - t**4 + 20*t**3 - 150*t**2 + 500*t - 625)*y +
sqrt(t+3),

• Traces of Failed Reasoning: To determine stiffness, let’s analyze the ODE
dy/dt = ((t − 5)4 − t4 + 20 ∗ t3 − 150 ∗ t2 + 500 ∗ t − 625) ∗ y + sqrt(t + 3).
The right side shows linear dependence on y with a time-varying coefficient P (t) =
(t− 5)4− t4+20t3− 150t2+500t− 625. We should check for stiffness by looking
for rapidly changing or large negative real parts in the eigenvalue (which, for linear
scalar ODEs, is just P(t)). Evaluating P(t) at the endpoints: P(0) = 625, P(5) = (-625)
+ (2500) - (3750) + (2500) - (750) - (625) = large negative value. So, P(t) varies from
positive to large negative within a short interval, potentially becoming very large
in magnitude. Such large coefficients can make the ODE stiff, as the solution can
rapidly decay or grow depending on sign and magnitude, and explicit solvers may
need exceedingly small timesteps for stability.

2. Successful Case

• ODE example: dy/dt = ((t+5)**3 - t**3 - 15*t**2 - 75*t - 125)*y + sqrt(t+2),
• Traces of Successful Reasoning: To assess stiffness, examine the ODE’s

right-hand side: dy/dt = ((t + 5)3 − t3 − 15t2 − 75t − 125) ∗ y + sqrt(t + 2).
The coefficient of y simplifies as follows: (t + 5)3 − t3 − 15t2 − 75t − 125 =
(t3 + 15t2 + 75t+ 125)− t3 − 15t2 − 75t− 125 = 0. Therefore, dy/dt = sqrt(t+2).
This is a simple function of t, and there is no y dependency beyond the initial value;
thus, the ODE is not stiff. Its explicit integration is straightforward and does not
require an implicit solver.
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