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Abstract

Large Language Models (LLMs) are increasingly
being deployed on edge devices for long-context
settings, creating a growing need for fast and ef-
ficient long-context inference. In these scenar-
ios, the Key-Value (KV) cache is the primary
bottleneck in terms of both GPU memory and
latency, as the full KV cache must be loaded for
each decoding step. While speculative decod-
ing is a widely accepted technique to accelerate
autoregressive decoding, existing methods often
struggle to achieve significant speedups due to
inefficient KV cache optimization strategies and
result in low acceptance rates. To address these
challenges, we propose a novel self-speculative
decoding framework, QuantSpec, where the draft
model shares the architecture of the target model
but employs a hierarchical 4-bit quantized KV
cache and 4-bit quantized weights for accelera-
tion. QuantSpec maintains high acceptance rates
(>90%) and reliably provides consistent end-
to-end speedups upto ∼ 2.5×, outperforming
other self-speculative decoding methods that use
sparse KV cache for long-context LLM inference.
QuantSpec also reduces the memory requirements
by ∼ 1.3× compared to these alternatives.

1. Introduction
Large Language Models (LLMs) have been widely used in
recent years, revolutionizing natural language processing
(NLP) and artificial intelligence (AI) applications. As their
applications expand, there is a growing demand to deploy
LLMs in long-context settings – handling extended text
inputs such as document summarization, lengthy conver-
sations, or comprehensive instructions. The model must
maintain coherence in such contexts and track intricate de-
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Figure 1. Throughput in tokens/sec of various decoding methods.
QuantSpec achieves > 1.78× speedup over the autoregressive
baseline across several context lengths. Benchmarked on LWM-
Text-Chat-128k.

tails across extended sequences. However, long-context
inference presents significant challenges in terms of effi-
ciency and scalability. For example, token eviction (Zhang
et al., 2024d; Ge et al., 2023; Liu et al., 2024b) and KV
cache quantization (Liu et al., 2024c; Kang et al., 2024;
Hooper et al., 2024) have been proposed to improve the
efficiency for long-context inference. However, they often
entail noticeable degradation in generation quality.

One promising alternative to enhance the efficiency of LLMs
while preserving generation quality is speculative decod-
ing (Leviathan et al., 2023; Chen et al., 2023; Kim et al.,
2024). This method accelerates inference by using a smaller
(draft) model to rapidly generate candidate tokens, and uses
the original (target) model to verify these tokens to ensure
generation quality. However, the efficient application of
speculative decoding in long-context settings has not been
thoroughly explored.

Traditional speculative decoding approaches often rely on
using smaller models as the draft model in order to mini-
mize the memory-bandwidth overhead of loading the model
weights of the larger target model. In long-context scenarios,
however, the primary bottleneck shifts from model weights
to the KV cache, which grows linearly with the context
length. Additionally, since small models do not usually pos-
sess good long-context understanding ability, the acceptance
rates of the candidate tokens by the target model drop signifi-
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cantly, leading to suboptimal speedup. Moreover, traditional
speculative decoding methods maintain the KV cache for
both the target model and the draft model, causing a large
memory footprint. Therefore, finding a solution that both
optimizes the KV cache’s memory efficiency and improves
the acceptance rate within speculative decoding is essential
for performant LLMs in long-context applications.

To mitigate these issues and to enable efficient and accu-
rate long-context inference, we propose QuantSpec, a self-
speculative decoding method that utilizes 4-bit weights and
a 4-bit hierarchical KV cache to speedup long-context infer-
ence. In particular we make the following contributions:

• We perform a comprehensive analysis of LLM infer-
ence to identify bottlenecks across various context
lengths, demonstrating that quantizing the KV cache
improves efficiency for long contexts, while quantizing
model weights is more beneficial for short contexts
(see Section 3.1).

• We introduce a novel hierarchical quantization tech-
nique that enables bit-sharing between the target and
draft models’ KV caches, eliminating the need for ad-
ditional memory for the draft model (see Section 4.2).

• We propose a double full-precision cache buffer used
for storing the most recent KV cache in full precision
to improve acceptance rates and also eliminate waste-
ful quantization and dequantization operations (see
Section 4.3).

• We show that using a quantized KV cache leads to
better acceptance rates between the target and the draft
model, and thus leads to better overall speedups (see
Section 5.2).

• We implement custom CUDA kernels for attention with
our hierarchical quantized KV cache achieving up to
∼ 2.88× speedups at 4-bit precision relative to FP16
FlashAttention kernels. (see Section 5.2.1)

2. Related Work
2.1. Efficient Long-Context Inference

An important challenge in optimizing long-context infer-
ence lies in reducing memory and computation requirements
while retaining high performance on tasks that involve long
sequences. Sparse attention mechanisms (Liu et al., 2021;
Xiao et al., 2023b; Yao et al., 2024; Tang et al., 2024; Yang
et al., 2024; Liu et al., 2024b; Ge et al., 2023; Jiang et al.,
2024) have been widely adopted to manage the quadratic
complexity of traditional full attention in long contexts.
These techniques typically maintain efficiency by dropping
non-essential Key-Value (KV) pairs from the cache. To-
ken pruning (Fu et al., 2024) selectively computes the KV

for tokens relevant for next token prediction. KV Predic-
tion (Horton et al., 2024) improves prompt processing time
by predicting the KV cache needed for autoregressive gener-
ation. Retrieval-augmented generation (Tan et al., 2024; Liu
et al., 2024a) enhances the accuracy of language model out-
puts by combining generative models with external retrieval
mechanisms whose context length is very long.

2.2. Quantization

Quantization has emerged as a powerful technique to re-
duce the memory footprint and computational complexity in
large-scale neural networks. Weight-only quantization (Lin
et al., 2024; Kim et al., 2023a; Shao et al., 2023; Chee et al.,
2024) focuses on reducing the precision of model weights to
reduce the memory requirements of the model. As models
grow larger, the memory footprint of KV caches can become
substantial, especially for long input sequences. KV cache
quantization (Liu et al., 2024c; Hooper et al., 2024; Kang
et al., 2024) addresses this issue by quantizing the key and
value caches to enable longer sequence inference.

2.3. Speculative Decoding

Speculative decoding has become an important technique
for improving the inference efficiency of LLMs (Leviathan
et al., 2023; Chen et al., 2023; Kim et al., 2024). It uses a
smaller draft model to rapidly generate candidate tokens,
which are then verified by a larger target model to ensure
correctness. Parallelization in speculative decoding has
also been studied to enhance the efficiency by predicting
multiple tokens at one time (Cai et al., 2024; Bhendawade
et al., 2024; Li et al., 2024b; Chen et al., 2024b). We include
additional related works in Appendix B.

Self-speculative decoding is the class of speculative de-
coding methods in which the draft model shares the same
architecture as that of target model for better alignment.
Recent works like Magicdec (Sadhukhan et al., 2024) and
TriForce (Sun et al., 2024) have shown that self-speculation
with sparse KV can effectively speedup the draft model
in long-context settings, where KV is the main bottle-
neck. While this design avoids loading the entire KV cache
throughout the autoregressive generation process, KV cache
sparsification can lead to noticeable performance degrada-
tion as evidenced in previous works (Zhang et al., 2024d;
Liu et al., 2024b; Ge et al., 2023; Zhou et al., 2024). This
can potentially yield a mismatch between the draft and tar-
get model’s predictions (i.e., lower acceptance rate), which
is a critical factor in overall speedup. QuantSpec addresses
this limitation by proposing a draft model with a novel hi-
erarchical quantized KV cache, which maintains a higher
acceptance rate between the draft and target models, there-
fore leading to better speedup. Note that our method can
be combined with sparse KV methods (Sun et al., 2024;
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Sadhukhan et al., 2024) for additional speedup, which we
leave for future work.

3. LLM Inference Bottlenecks
3.1. Arithmetic Intensity

To understand the primary bottlenecks in LLM inference
and to motivate our method, we perform a thorough analysis
of inference under several different regimes. These regimes
include a combination of small versus large batch sizes and
short versus long context lengths during both the prefill and
decoding stages. We use arithmetic intensity as the central
metric in our analysis, where arithmetic intensity is defined
as the number of floating point operations (FLOPs) that can
be performed per byte loaded from memory, or memory
operations (MOPs) (Williams et al., 2009):

Arithmetic Intensity =
# FLOPs
# MOPs

.

Arithmetic intensity allows us to classify which regimes
of LLM inference are compute-bound or memory-bound
and determine appropriate optimizations to improve latency.
Compute-bound operations are limited by the hardware’s
peak FLOP/s (FLOPs per second) performance and benefit
from algorithmic improvements that reduce computational
complexity (e.g., subquadratic attention). On the other hand,
memory-bound operations are limited by the hardware’s
memory bandwidth (GB/s) and benefit from techniques that
optimize memory load-store operations, such as quantizing
the weights of a model even if they are later scaled up to a
higher precision during computation to preserve accuracy.

For a finer-grained analysis, we break down the major
operations in the Transformer into two categories: lin-
ear, which consists of the weight-to-activation matrix
multiplications (i.e., WQ,WK ,WV ,Wout, mlp up proj,
mlp down proj, and the linear classification layer), and
attention, which consists of the activation-to-activation ma-
trix multiplications (i.e., query × key and attention weights
× values). Note that the aggregate of all Transformer oper-
ations includes the above operations as well as non-linear
operations like activation functions in the feed-forward net-
work, softmax in the attention mechanism, and layer normal-
ization. Because we are interested in studying the linear and
attention operations, we do not explicitly focus on the non-
linear operations and classification layer in our asymptotic
analysis, although we include them in our final results.

3.1.1. ASYMPTOTIC ANALYSIS OF ARITHMETIC
INTENSITY FOR PREFILL AND DECODING

During prefill, the model weights are only loaded once to
process all tokens in the input and generate the first token.
Because the context length can range from a couple thou-

sand to hundreds of thousands of tokens, this phase consists
of large matrix-matrix multiplications (matmuls) with high
arithmetic intensities. Table 1 shows asymptotic analysis
of arithmetic intensity for prefill and decoding broken up
into linear, attention, and aggregate operations for batch
size B, sequence length SL, hidden dimension d, and a
generation length of k tokens. During prefill, the aggregate
arithmetic intensity is similar to the arithmetic intensity of
the linear projections when SL ≪ d because self-attention
is relatively inexpensive for short contexts. Thus the linear
projections dominate latency in this regime. However, as
the context length increases and SL ≫ d, the aggregate
arithmetic intensity reflects the arithmetic intensity of atten-
tion, which begins to dominate latency since self-attention
incurs additional cost with longer context lengths. Note that
our analysis assumes the use of FlashAttention (Dao et al.,
2022), such that the attention scores matrix which grows
on the order of O(B · SL

2) is never fully materialized, and
thus the memory operations for this matrix are limited to
O(B · SL).

On the other hand, in the decoding stage, generating k
tokens requires loading and storing the weights and KV
cache k times. Since the input at each iteration is a single
token per sequence in the batch (x ∈ RB×1×d), these oper-
ations mainly consist of small matmuls with low arithmetic
intensity. For short context lengths where SL ≪ d, the ag-
gregate arithmetic intensity for decoding again reflects the
arithmetic intensity of the linear projections as loading and
storing a small KV cache is relatively inexpensive compared
to loading and storing the model weights. However, as the
context length grows (SL ≫ d), the load-store operations
for the large KV cache exacerbate and dominate latency,
and the aggregate arithmetic intensity reflects the arithmetic
intensity of attention. Ultimately, the aggregate arithmetic
intensity for decoding is much lower than that of prefill:

{
O(B · SL), SL ≪ d

O(SL), SL ≫ d︸ ︷︷ ︸
prefill

≫

{
O(B), SL ≪ d

O(1), SL ≫ d︸ ︷︷ ︸
decode

.

While the aggregate arithmetic intensity for prefill scales
proportionally to the context length which can be in the
hundreds of thousands, the aggregate arithmetic intensity
for decoding does not scale with the context length at all.
Moreover, using larger batch sizes only seems to increase
the arithmetic intensity for decoding in the short-context
setting. For long contexts, decoding has an extremely low
arithmetic intensity irrespective of the batch size since every
sequence in the batch undergoes self-attention separately
and therefore cannot benefit from batching in the same way
linear layers do.
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Table 1. Asymptotic analysis of arithmetic intensity for linear, attention, and aggregate operations under prefill and decoding for batch
size B, sequence length SL, hidden dimension d, and generation length of k tokens.

Prefill

Linear Attention Aggregate

FLOPs O(B · SL · d2) O(B · SL
2 · d) O(B ·SL ·d2) +O(B ·SL

2 ·d)

MOPs O(B · SL · d)︸ ︷︷ ︸
activations

+ O(d2)︸ ︷︷ ︸
weights

O(B · SL)︸ ︷︷ ︸
flash-attn scores

+ O(B · SL · d)︸ ︷︷ ︸
activations {Q,CK ,CV }

O(B · SL · d) +O(d2)

Arithmetic Intensity ≈

{
O(B · SL), SL ≪ d

O(d), SL ≫ d
≈

{
O(SL), SL ≪ d

O(SL), SL ≫ d
≈

{
O(B · SL), SL ≪ d

O(SL), SL ≫ d

Decode

Linear Attention Aggregate

FLOPs O(k ·B · d2) O(k ·B · SL · d) O(k ·B ·d2) +O(k ·B ·SL ·d)

MOPs O(k ·B · d)︸ ︷︷ ︸
activations

+ O(k · d2)︸ ︷︷ ︸
weights

O(k ·B ·SL)︸ ︷︷ ︸
attention scores

+ O(k ·B ·SL ·d)︸ ︷︷ ︸
activations {CK ,CV }

O(k · d2) +O(k ·B · SL · d)

Arithmetic Intensity ≈

{
O(B), SL ≪ d

O(B), SL ≫ d
≈

{
O(1), SL ≪ d

O(1), SL ≫ d
≈

{
O(B), SL ≪ d

O(1), SL ≫ d

3.1.2. COMPUTE VERSUS MEMORY-BOUND REGIMES

The asymptotic analysis suggests that in general, decoding
suffers from low arithmetic intensities compared to prefill
in all regimes. However, to decide which optimizations will
most effectively improve latency, all regimes must be classi-
fied as either compute-bound or memory-bound. Whether
an operation is compute or memory-bound depends on the
hardware it is being run on as well as the magnitude of the
arithmetic intensity achieved by the operation.

We utilize an analytical roofline model (Williams et al.,
2009; Kim et al., 2023a;b) to help determine which regimes
are compute or memory-bound in a practical inference set-
ting. The roofline model defines a ridge point which is
calculated as

peak compute performance (FLOP/s)
peak memory-BW (GB/s)

.

Note that the ridge point has the same units as arithmetic
intensity (FLOPs/byte). In the roofline model, any operation
with an arithmetic intensity smaller than the ridge point is
memory-bound, and any operation with an arithmetic inten-
sity greater than the ridge point is compute-bound. For our
analysis, we extrapolate this to a ridge plane and use hard-
ware specifications for an NVIDIA A6000 GPU to study
inference for the Llama-2-7B model in 16 bit precision.

For optimizing speculative decoding, we specifically focus
on the decoding phase, although we include results for prefill
in Appendix C.1. Figure 2 shows the arithmetic intensity for

generating 1k tokens at different context lengths and batch
sizes for the Linear/Attention components as well as the ag-
gregate arithmetic intensity. To decide the ideal quantization
strategy for different regimes, we consider the aggregate
arithmetic intensity, which is colored by the percentage of
the total latency taken up by attention and provides a com-
plete view of decoding in all regimes. Based on these results,
we can clearly see that in the small batch + short context
regime, the memory operations for the linear projections
dominate latency, so weight quantization could provide
considerable speedup in this regime. In the small batch +
long context, large batch + short context, and large batch +
long context regimes, attention dominates latency due to the
expensive load-store operations for the large KV cache. KV
cache quantization could help provide performance im-
provements in these regimes. In the small batch + medium
context and short context + medium batch regimes, the lin-
ear and attention operations are approximately equivalent in
their contributions to total latency. Thus, both weight and
KV cache quantization are ideal here.

4. QuantSpec
4.1. Overview of QuantSpec

In this section, we introduce QuantSpec, a self-speculative
decoding framework designed to accelerate both short- and
long-context generation by quantizing the model weights
and KV cache into INT4 precision. We begin by noting
that self-speculative decoding is particularly well-suited
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Figure 2. Breakdown of how arithmetic intensity changes during decoding as the context length and batch size are scaled logarithmically
for linear, attention, and aggregate operations. All regimes lie below the ridge plane and thus are memory-bound. The ridge plane is
calculated for an NVIDIA A6000 GPU. The colors for the linear and attention surface plots simply represent the magnitude of the
arithmetic intensity. The aggregate plot is colored by attention’s runtime as a percentage of the total latency. Prefill results in Appendix C.1.

for long-context generation, as the draft model shares the
same architecture as the target model. This architectural
alignment improves both the acceptance rate and the model’s
ability to handle long contexts effectively. However, a naive
implementation of self-speculative decoding (e.g. based
on sparse KV) would require maintaining a separate, fully
quantized copy of the KV cache, leading to inefficiencies in
memory usage and computational overhead.

To address this limitation, QuantSpec introduces a novel
hierarchical KV cache design, which we discuss in detail
in Section 4.2. This design enables dynamic switching
between INT4 and INT8 representations of the KV cache
without the overhead of on-the-fly quantization. By elimi-
nating redundancy between the draft and target models’ KV
caches, our method significantly reduces the total memory
footprint while preserving efficiency. We also address the
inefficient combination of conventional quantization strate-
gies with the reject-and-revert-back mechanism specific to
speculative decoding methods by proposing a full-precision
KV cache buffer in QuantSpec. As we further explain in
Section 4.3, this helps achieve high acceptance rates for the
draft model and thus results in greater end-to-end speedup.

4.2. Hierarchical KV Cache

We propose a 4-bit hierarchical KV cache wherein we strate-
gically structure each tensor’s representation such that the
draft and target models are able to dynamically reconstruct
their KV cache without any on-the-fly quantization over-
head. Firstly, we observe that using an INT8 KV cache for
the target model is comparable in terms of accuracy and
performance with the same target model using an FP16 KV
cache. To demonstrate this, we conduct a perplexity analysis
for Llama-2-7B on the WikiText-2 (Merity et al., 2016) and
C4 (Raffel et al., 2020) datasets in Table 2, which shows that
the target model with an INT8 KV cache maintains com-

petitve generation quality with respect to the FP16 baseline
while using half the KV cache’s memory.

Datasets

KV Cache WikiText2 C4

FP16 (Baseline) 6.4595 7.2617
INT8 (QuantSpec target) 6.4696 7.2620

Table 2. Perplexity evaluations of Llama-2-7B with FP16, INT8
with group size = 128, residual length = 256 on different datasets.

Having observed this, we further note that an INT8 KV
cache can be represented as an INT4 KV cache plus its
INT4 residual. This works by decomposing an INT8 value
into two INT4 components corresponding to its first and
second 4-bit segments, which we call the upper and lower
4-bits. This effectively allows us to use a hierarchical design
to represent the KV cache of the draft model in INT4 and
the target model in INT8 at the same time, removing the
need to store a separate INT4 copy.

Our method is visualized in Figure 3. During prefill,
QuantSpec quantizes the FP16 KV cache to form the up-
per and lower INT4 representations. To obtain the upper
4-bits C INT4

U and lower 4-bits C INT4
L values, we first calcu-

late C INT4
U , then quantize the quantization error EINT4

U to
get C INT4

L . C INT4
U ∈ [0, 15] uses asymmetric and round-

to-nearest quantization. Since the distribution of EINT4
U

is symmetric and has an expectation close to zero, for
C INT4

L ∈ [−8, 7] we use symmetric and round-to-nearest
quantization to better match the distribution of errors.

Then during decoding, when using the draft model to gener-
ate candidate tokens, we only load the upper 4-bit representa-
tion in our kernel and dequantize it for inference. When ver-
ifying the drafted tokens using the target model, we utilize
both the upper and lower 4-bit representations to reconstruct
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Input Tokens
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(a) During prefill, our hierarchical KV cache quantizes the FP16 KV
cache to get the upper and lower INT4 representations.

(b) During decoding, our hierarchical KV Cache loads the Upper INT4 KV
Cache for the draft model and loads all 8-bits for the target model.

Figure 3. How our Hierarchical KV Cache works in the speculative decoding setting.

the KV cache in the higher INT8 precision. To represent
the INT8 KV cache C INT8 as the upper INT4 KV cache
C INT4

U and the lower INT4 cache C INT4
L , the INT8 KV cache

can be expressed as C INT8 = 24C INT4
U + C INT4

L , where we
multiply by 24 to align their represented values. The asym-
metric quantization for the KV cache can be represented as
CFP32 = C INT8SINT8 + Z INT8, where SINT8 is the scaling
factor, Z INT8 is the zero point, and C INT8 ∈ [0, 28 − 1]. In
this scenario, its 4-bit representation can be viewed as

CFP32 = (24C INT4
U + C INT4

L )SINT8 + Z INT8

= C INT4
U SINT4 + C INT4

L

SINT4

24
+ Z INT4,

where Z INT4 = Z INT8, SINT4 = 24SINT8.

4.3. KV Cache with Double Full Precision Buffer

4.3.1. CHALLENGES WITH KV CACHE QUANTIZATION
AND SPECULATIVE DECODING

The key and value caches have each been found to exhibit
unique characteristics indicating that they should be quan-
tized with different strategies (Liu et al., 2024c). Specifi-
cally, quantizing the key cache along the channel axis and
quantizing the value cache along the token axis minimizes
quantization error (as shown in Table 3), and therefore leads
to a higher acceptance rate in speculative decoding. We ap-
ply asymmetric quantization and per-group quantization to
both the key and value caches in INT4 precision, and we set
the group size G to be equal to the head dimension to reduce
overhead. These quantization techniques are illustrated in
Appendix D Figure 8.

However, these quantization strategies for the key and value
caches pose efficiency challenges when combined with spec-
ulative decoding. Regarding the value cache wherein the
values are quantized along the token axis, the naive strategy
of directly quantizing newly generated tokens at each decod-
ing step is expensive, as it introduces high computational
overhead that occurs very frequently. Moreoever, regarding
the key cache for which we apply quantization along the
channel axis, the naive approach is to store multiple tokens

Key Cache

Value Cache token-wise channel-wise

token-wise 6.587 6.507
channel-wise 7.041 6.911

Table 3. Perplexity of Llama-2-7B on WikiText-2 dataset with
different quantization strategies. Group size G = 128. Channel-
wise quantization for key cache and token-wise quantization for
value cache gives the best performance.

in full precision until they equal the quantization group size,
and then quantize them. However, since the KV cache for
the most recent tokens is no longer preserved in full preci-
sion after quantization, this strategy adversally affects the
acceptance rate, thus reducing the effectiveness of specula-
tive decoding. Moreover, since speculative decoding may
result in frequent rollbacks due to the target model rejecting
the draft tokens, the quantized KV cache for the rejected
tokens need to be discarded and replaced with new tokens in
the quantization group. This leads to repeated quantization
and dequantization, slowing down the decoding process.

4.3.2. ADAPT TO SPECULATIVE DECODING USING
FULL PRECISION BUFFER

To enhance efficiency and ensure compatibility with spec-
ulative decoding, we propose maintaining a double full-
precision buffer of size 2G, where G is the quantization
group size. This buffer is divided into two equal parts: CF1

and CF2
, each of size G. During prefill, we quantize the

input tokens in batches of G while ensuring that at least
G but no more than 2G of the most recent tokens remain
in full precision. This ensures that CF1 is always filled.
In the decoding stage, newly generated tokens are stored
in full precision in the second buffer, CF2

. Once the full-
precision buffer reaches its maximum capacity of 2G, we
wait for the target model to verify the generated tokens. If
any tokens are rejected, we first remove the corresponding
full-precision KV cache entries. Then, we quantize CF1

and append it to the quantized KV cache. We then move
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Our method

①  Quantize the first half of 
the full precision cache buffer

Quantized Cache (INT4)

he
ad

 d
im

Full Precision 
cache buffer

Verified Tokens

sequence length 

he
ad

 d
im

②  Move the second half to the first 
half when the second half is full

Quantized Cache (INT4)

First Half of the Full 
precision cache buffer

Second Half of the Full 
precision cache buffer

Tokens verified by 
the Target Model

Allocated Static Cache 
(Currently Empty)

INT4 Quantized KV Cache

③  Move the rest 
to the second half 
of the cache buffer

(b) Our KV cache with 2 full precision cache buffer for recent KV cacheFigure 4. Our KV cache with 2 full precision cache buffers for recent KV cache.

CF2
to CF1

, which fully occupies CF1
while leaving CF2

empty and ready for tokens generated in future decoding
steps. This whole process is visualized in Figure 4.

Using this design, we ensure that (1) at every step CF1
is

always filled, so there are at least recent G tokens kept in
full precision, which is beneficial for the acceptance rate.
(2) Quantization and KV cache movement will only happen
every G decoding steps, which significantly reduces the
overhead. (3) The design is compatible with speculative
decoding since we can discard the KV cache for rejected
tokens very flexibly by only operating on the second full-
precision buffer CF2

and without needing extra quantize
and dequantize operations. We also show that our method is
fully compatible with FlashDecoding in Appendix E.

4.3.3. SUMMARY

In summary, QuantSpec allows the draft and target models
to share the same architecture in a self-speculative decoding
manner, ensuring greater consistency between drafting and
verification as opposed to traditional big-little speculative
decoding methods. Our approach is mainly designed for
long-context scenarios, where efficient KV cache manage-
ment is critical, but it also supports short contexts where
using weight quantization becomes more critical. We quan-
tize the KV cache using our hierarchical INT4 design and
use a double full-precision cache buffer for higher accep-
tance rates and flexibility with speculative decoding. Then
in the decoding stage, when generating draft tokens, we only
load the upper 4-bit of the KV cache and achieve speedup
by significantly reducing the memory load/store operations.
When verifying these draft tokens, we load both the upper
and lower 4-bit KV cache representations and dequantize
them into their INT8 representation to achieve performance
that is comparable with an FP16 KV cache. If the full-
precision buffer is saturated, after verification we quantize
and clear one-half of the full-precision buffer to prepare for
the next round of generation. The whole algorithm can be
visualized in Figure 3 (and Algorithm 1 in Appendix).

5. Evaluation
In this section, we evaluate the performance of QuantSpec
across multiple datasets and context lengths. Our evalua-
tion focuses on three key dimensions: (1) the acceptance
ratio between the draft and target models, (2) GPU mem-
ory consumption, and (3) end-to-end serving speedup. We
begin by presenting a detailed benchmarking of acceptance
rate, memory usage, and end-to-end speedup across dif-
ferent datasets. Then, we highlight the performance gains
achieved by our custom kernels for quantized KV cache. Fi-
nally, We also present an extensive ablation study focusing
on the contribution of weight versus KV cache quantization
to the final speed-up.

5.1. Setup

All experiments are performed on a node equipped with
8 NVIDIA RTX A6000 GPUs. We evaluate QuantSpec
using long-context variants of LLaMA-2 and LWM mod-
els as target models. For benchmarking decoding speedup,
we use PG-19 (Rae et al., 2019), (an open-vocabulary lan-
guage modeling benchmark derived from books) and two
long context summarization datasets, namely∞BENCH Sum
(Zhang et al., 2024c; Yen et al., 2024) and Multi-LexSum
(Shen et al., 2022; Yen et al., 2024). More details about the
datasets are provided in Appendix F. Following Sadhukhan
et al. (2024), we compare against two recent sparse KV-
based self-speculative decoding baselines: StreamingLLM
(Sadhukhan et al., 2024; Xiao et al., 2023a) and SnapKV
(Sadhukhan et al., 2024; Li et al., 2024a). To ensure a fair
comparison, the draft KV budget for the baselines is set to
one-fourth of the context length, matching our 4-bit quan-
tized KV cache. We fix the quantization group size at 128,
the residual length R for the KV cache at 256, and limit
the number of output tokens to 90. The optimal speculation
length γ for each dataset is determined through a hyperpa-
rameter search for each dataset-model pair. Details of the
hyperparameter search are provided in Appendix G.
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Table 4. Efficiency result of QuantSpec on Llama-2-7B-32K-Instruct and LWM-Text-Chat-128k. We benchmark on multiple context
length settings, ranging from 4k to 128k for batch size 1, and take their average across 10 different examples. Speedup ratio is compared
with autoregressive generation of the target model (AR). We compare with Sparsity-based self-speculative baselines that use StreamLLM
and SnapKV to quantize the KV cache. Acceptance rate of each method is shown for the respective optimal γ. We outperform these
baselines and achieve a maximum of 2.49× speedup compared with autoregressive generation.

Llama-2-7B-32K-Instruct

Dataset Context Length # GPUs Method Acceptance Rate (%) ↑ Peak GPU Memory (GB) ↓ Speedup (× AR) ↑

PG19

4k 1
StreamingLLM 88.87 15.20 1.13

SnapKV 93.59 15.39 1.17
QuantSpec 92.46 16.26 1.35

8k 1
StreamingLLM 90.31 17.75 1.27

SnapKV 94.39 18.10 1.31
QuantSpec 89.88 17.66 1.44

Multi-LexSum

8k 1
StreamingLLM 90.78 17.75 1.27

SnapKV 55.55 18.10 1.01
QuantSpec 91.23 17.66 1.61

32k 1
StreamingLLM 91.19 32.61 1.84

SnapKV 72.54 33.96 1.63
QuantSpec 91.16 25.84 2.08

LWM-Text-Chat-128k

Dataset Context Length # GPUs Method Acceptance Rate (%) ↑ Peak GPU Memory (GB) ↓ Speedup (× AR)↑

∞BENCH Sum

16k 1
StreamingLLM 87.41 22.63 1.49

SnapKV 88.61 23.33 1.50
QuantSpec 91.64 20.36 1.78

32k 1
StreamingLLM 85.38 32.63 1.15

SnapKV 84.55 33.98 1.78
QuantSpec 90.99 25.86 1.99

Multi-LexSum

64k 2
StreamingLLM 78.95 52.96 2.16

SnapKV 82.79 55.66 2.11
QuantSpec 92.18 38.18 2.23

128k 2
StreamingLLM - OOM -

SnapKV - OOM -
QuantSpec 94.31 61.22 2.49

5.2. Speedup Evaluation

Table 4 shows the acceptance rate, GPU memory required,
and speedup achieved compared to autoregressive decod-
ing. We observe that QuantSpec provides consistently better
speedups for all context lengths. For short and medium
context lengths (e.g. 8k and 32k prompt length), QuantSpec
achieves ∼1.61× to ∼2.08× speedups respectively on the
Multi-LexSum dataset. For longer context lengths (e.g.
128k), our speedups are even greater, up to ∼2.49×, all
while using lower GPU memory than the baselines. We also
see that acceptance rates of QuantSpec are considerably
higher than the baselines for summarization tasks (refer to
Appendix H for detailed comparison); this shows that for
such tasks where the whole context is important, sparse KV
cache methods are much more lossy, whereas quantization
preserves most of the information in the context. Conse-
quently, QuantSpec proves to be a more reliable choice, de-
livering consistent speedups across varying context lengths
and query complexities.

5.2.1. KERNEL SPEEDUPS

In Table 5 we show the speedup achieved using our custom
attention kernel that makes use of quantized KV cache ver-
sus the standard FP16 FlashAttention kernels. For a context
length of 128k, our INT4 attention kernel is ∼ 2.88× faster
than the standard FlashAttention kernel.

Table 5. Latency benchmark of our custom attention kernels
for calculating attention with quantized hierarchical KV cache.
QuantSpec INT4 refers to only loading the upper-4-bit, QuantSpec
INT8 refers to loading both the upper and lower 4-bit. Bench-
marked on kernel level.

Context Length

Kernels 64k 256k

FlashAttention (FP16) 3.07 ms 6.16 ms
QuantSpec INT 8 1.08 ms (1.44x) 4.06 ms (1.51x)
QuantSpec INT 4 0.54 ms (2.88x) 2.15 ms (2.86x)
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Figure 5. Speedup ratio of QuantSpec compared to autoregressive
baseline as we scale the context length. We report QuantSpec with
KV cache-only quantization, weight-only quantization, and both.
Benchmarked on Llama-2-7B-32k-Instruct using PG-19.

5.3. Ablation Results

We present an extensive ablation study of QuantSpec focus-
ing on the contribution of weight versus KV cache quantiza-
tion to the final speed-up.

Weight versus KV Quantization: Figure 5 illustrates the
speedup ratio of QuantSpec compared to autoregressive
baseline as context length increases. The figure benchmarks
QuantSpec with KV cache-only quantization, weight-only
quantization, and both. The results are aligned with the
analysis done in Section 3.1, showing that for short contexts
most of the speedup comes from quantizing weights, for
medium length prompts both weight and KV cache quanti-
zation contribute to the final speedup, and KV cache quanti-
zation is most effective for long contexts.

6. Conclusions
In this paper, we have introduced a novel approach to en-
hance the efficiency and scalability of Large Language
Models (LLMs) in long-context settings through quantized
speculative decoding. Our method addresses the increas-
ing memory and computational demands by optimizing the
Key-Value (KV) cache operations, which become a sig-
nificant bottleneck as the context length grows. We pro-
pose a double full-precision cache buffer to resolve conflicts
between per-group quantization and speculative decoding.
Our comprehensive approach shows that by integrating ad-
vanced quantization techniques with speculative decoding,
it is possible to significantly improve processing speed with-
out compromising the accuracy and performance of LLMs.
This work paves the way for more scalable and effective
deployment of LLMs in applications that require extensive
contextual understanding, offering a robust solution to the
challenges posed by long-context settings.
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tention: Fast and memory-efficient exact attention with io-
awareness, 2022. URL https://arxiv.org/abs/
2205.14135.

Dao, T., Haziza, D., Massa, F., and Sisov, G.
Flash-decoding for long-context inference:
https://crfm.stanford.edu/2023/10/
12/flashdecoding.html, 2023.

Fishman, M., Chmiel, B., Banner, R., and Soudry, D. Scal-
ing fp8 training to trillion-token llms. arXiv preprint
arXiv:2409.12517, 2024.

Fu, Q., Cho, M., Merth, T., Mehta, S., Rastegari, M.,
and Najibi, M. Lazyllm: Dynamic token pruning for
efficient long context llm inference. arXiv preprint
arXiv:2407.14057, 2024.

Ge, S., Zhang, Y., Liu, L., Zhang, M., Han, J., and Gao,
J. Model tells you what to discard: Adaptive kv cache
compression for llms. arXiv preprint arXiv:2310.01801,
2023.

Hooper, C., Kim, S., Mohammadzadeh, H., Mahoney,
M. W., Shao, Y. S., Keutzer, K., and Gholami, A.
Kvquant: Towards 10 million context length llm infer-
ence with kv cache quantization. Advances in Neural
Information Processing Systems, 2024.

Horton, M., Cao, Q., Sun, C., Jin, Y., Mehta, S., Rastegari,
M., and Nabi, M. Kv prediction for improved time to
first token, 2024. URL https://arxiv.org/abs/
2410.08391.

Jiang, H., Li, Y., Zhang, C., Wu, Q., Luo, X., Ahn, S., Han,
Z., Abdi, A. H., Li, D., Lin, C.-Y., et al. Minference 1.0:
Accelerating pre-filling for long-context llms via dynamic
sparse attention. arXiv preprint arXiv:2407.02490, 2024.

Kang, H., Zhang, Q., Kundu, S., Jeong, G., Liu, Z., Krishna,
T., and Zhao, T. Gear: An efficient kv cache compression
recipefor near-lossless generative inference of llm. arXiv
preprint arXiv:2403.05527, 2024.

Kim, S., Hooper, C., Gholami, A., Dong, Z., Li,
X., Shen, S., Mahoney, M. W., and Keutzer, K.
Squeezellm: Dense-and-sparse quantization. arXiv
preprint arXiv:2306.07629, 2023a.

Kim, S., Hooper, C., Wattanawong, T., Kang, M., Yan, R.,
Genc, H., Dinh, G., Huang, Q., Keutzer, K., Mahoney,

M. W., Shao, Y. S., and Gholami, A. Full stack opti-
mization of transformer inference: a survey, 2023b. URL
https://arxiv.org/abs/2302.14017.

Kim, S., Mangalam, K., Moon, S., Malik, J., Mahoney,
M. W., Gholami, A., and Keutzer, K. Speculative decod-
ing with big little decoder. Advances in Neural Informa-
tion Processing Systems, 36, 2024.

Leviathan, Y., Kalman, M., and Matias, Y. Fast inference
from transformers via speculative decoding. In Inter-
national Conference on Machine Learning, pp. 19274–
19286. PMLR, 2023.

Li, Y., Huang, Y., Yang, B., Venkitesh, B., Locatelli, A.,
Ye, H., Cai, T., Lewis, P., and Chen, D. Snapkv: Llm
knows what you are looking for before generation. arXiv
preprint arXiv:2404.14469, 2024a.

Li, Y., Wei, F., Zhang, C., and Zhang, H. Eagle: Speculative
sampling requires rethinking feature uncertainty. arXiv
preprint arXiv:2401.15077, 2024b.

Lin, J., Tang, J., Tang, H., Yang, S., Chen, W.-M., Wang,
W.-C., Xiao, G., Dang, X., Gan, C., and Han, S. Awq:
Activation-aware weight quantization for on-device llm
compression and acceleration. Proceedings of Machine
Learning and Systems, 6:87–100, 2024.

Liu, D., Chen, M., Lu, B., Jiang, H., Han, Z., Zhang, Q.,
Chen, Q., Zhang, C., Ding, B., Zhang, K., et al. Re-
trievalattention: Accelerating long-context llm inference
via vector retrieval. arXiv preprint arXiv:2409.10516,
2024a.

Liu, L., Qu, Z., Chen, Z., Ding, Y., and Xie, Y. Trans-
former acceleration with dynamic sparse attention. arXiv
preprint arXiv:2110.11299, 2021.

Liu, Z., Desai, A., Liao, F., Wang, W., Xie, V., Xu, Z., Kyril-
lidis, A., and Shrivastava, A. Scissorhands: Exploiting
the persistence of importance hypothesis for llm kv cache
compression at test time. Advances in Neural Information
Processing Systems, 36, 2024b.

Liu, Z., Yuan, J., Jin, H., Zhong, S., Xu, Z., Braverman,
V., Chen, B., and Hu, X. Kivi: A tuning-free asym-
metric 2bit quantization for kv cache. arXiv preprint
arXiv:2402.02750, 2024c.

Merity, S., Xiong, C., Bradbury, J., and Socher, R. Pointer
sentinel mixture models, 2016.
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Appendix

A. Attention Module’s Inference Workflow
The inference of LLMs can be divided into 2 parts: the prefill stage and the decoding stage. In the prefill stage, for the input
sequence X ∈ RB×SL×d, the KV cache update rule can be calculated as

Q = XWQ, CK = XWK , CV = XWV ,

where we denote the query, key, and value weight matrices as WQ,WK ,WV ∈ Rd×d and denote the key and value caches
as CK and CV respectively. B refers to batch size, SL refers to sequence length, and d refers to hidden size. We then
calculate the multi-head attention (MHA) as:

O = MultiHeadAttn(Q, CK , CV ).

In the decode stage, for input token x ∈ RB×1×d, we first calculate the query, key, and value of the current token:

q = xWQ, ck = xWK , cv = xWV ,

then concatenate the KV cache with the current token’s key and value to update the KV cache:

CK = concat(CK , ck), CV = concat(CV , cv).

Then, the multi-head attention output is calculated:

O = MultiHeadAttn(q, CK , CV ).

B. More Related Works
We list some related works that we find interesting, but can not elaborate on in the related works section due to space
limitations.

Efficient Long Context Inference Some research maintains the full key-value pairs but dynamically loads them from
high-bandwidth memory (Yang et al., 2024; Tang et al., 2024), and usually achieves higher performance at the cost of higher
memory consumption. Shared KV cache across tokens (Nawrot et al., 2024) and layers (Brandon et al., 2024) provides a
new way to reduce the KV cache budget through sharing.

Quantization Any Precision representation (Park et al., 2024) incorporates multiple precision levels (e.g., INT2, INT4,
and INT8) within a single representation, eliminating the need to store separate KV caches for each precision and allowing
the framework to dynamically select the optimal precision based on the complexity of the task. Training quantization (Peng
et al., 2023; Xi et al., 2024b; Fishman et al., 2024; Xi et al., 2024a) reduces the bit precision of various model parameters,
gradients, and activations to accelerate training. Attention quantization (Chen et al., 2024a; Zhang et al., 2024b;a; Weng
et al., 2020; Shah et al., 2024) reduces the computational overhead associated with attention computations, which becomes
dominant in the prefill stage of the long-context inference setting.

Speculative Decoding Zhao et al., (Zhao et al., 2024) explored complementary quantization schemes in speculative
decoding with QSpec, enhancing efficiency without significant performance degradation. Sirius (Zhou et al., 2024) finds
that contextual sparsity will lead to poor performance under the speculative decoding setting since the model performance is
degraded, and thus it cannot accelerate LLM inference.

C. Additional LLM Inference Bottlenecks Analysis
C.1. Prefill Arithmetic Intensity Analysis

Keeping in line with the asymptotic analysis in Table 1, the arithmetic intensity of attention during prefill does not scale
with batch size at all, as attention is unable to benefit from batching in the same way that linear operations do. Moreover,
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for long contexts, attention entirely dominates the linear operations due to the quadratic nature of self-attention. For short
contexts however, this quadratic cost is relatively inexpensive when compared to the linear operations. As shown in Figure 6,
the arithmetic intensity for all prefill operations in all regimes is above the ridge plane, which means that prefill is entirely
compute-bound.

Figure 6. During prefill, all regimes lie above the ridge plane and thus are compute-bound.

C.2. Modern GPU Hardware VRAM Size Constraints

Figure 7. KV cache memory usage by Llama-2-7B on a single node (8 GPUs) as context length and batch size are scaled logarithmically.
The surface plot’s color represents the ratio of KV cache memory to the model weights memory. The dotted-lines represent GPU DRAM
capacities for several different GPUs. At (B = 16, SL = 262k), the KV cache takes up 160x more memory than the model weights.

The relatively higher linear arithmetic intensities observed in decoding for batch sizes greater than 8 in Figure 2 are
misleading due to the limited VRAM sizes in modern GPUs. As shown in Figure 7, the size of the KV cache for a
Llama-2-7B model exceeds the total VRAM capacities of a single node equipped with 8 A100/H100 GPUs with 80 GB of
memory each. This means that simply scaling the batch size for decoding will not translate the memory-bound nature of
generation to being compute-bound.
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D. Quantization Strategies for KV cache
Here we provide a visualization of our quantization scheme in Figure 8. We apply asymmetric quantization for both the
keys and values cache, and apply channel-wise quantization to the key cache and apply token-wise quantization to the value
cache.

Figure 8. We apply asymmetric and per-group quantization for both the key cache and value cache, along the channel axis and token axis,
respectively. This figure describes how it works when only the upper-4 bit cache is applied.

E. Compatibility with Flash Decoding
Our full-precision buffer design, as shown in Figure 4, is fully compatible with Flash Decoding (Dao et al., 2023), a fast
attention implementation available for the decoding stage. In this setup, the quantized section divides naturally into several
chunks, aligning perfectly with the structure of Flash Decoding. For the full-precision buffer, given its upper bound length
of 2G, it can be processed independently with minimal overhead. This full-precision segment can be treated as an additional
chunk, which can then be summed with the quantized segments and seamlessly integrated into the Flash Decoding algorithm.

F. Details about the Datasets Used
We provide an overview of the datasets used in our experiments, highlighting their key characteristics.

• WikiText-2 (Merity et al., 2016): WikiText-2 is a widely used dataset for language modeling. It is a subset of the larger
WikiText dataset and consists of high-quality, clean, and well-structured English text extracted from Wikipedia articles.

• C4 (Raffel et al., 2020): C4 is a large scale web-crawled language modelling dataset mostly used for pretraining LLMs.

• PG-19 (Rae et al., 2019): It is a dataset of books from Project Gutenberg, designed for long-context language modeling.

• ∞BENCH Sum (Zhang et al., 2024c): InfiniteBench benchmark is tailored for evaluating the capabilities of language
models to process, understand, and reason over super long contexts. We used one of its summarization datasets where
the task is to summarize a fake book created by core entity substitution. The average length of input prompt is ∼171k.

• Multi-LexSum (Shen et al., 2022): Multi-LexSum is a multi-doc summarization dataset for civil rights litigation
lawsuits. The average length of prompt in this dataset is ∼90k.
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G. Hyperparameter Search
Here we present details about the hyperparameter search done to select optimal γ for each experiment. We search γ for
each dataset and method pair using a prompt length of 8192 and use the same value for all other context length experiments.
Table 6 shows the results of the search. We find that sparse-based methods achieves a maximum performance when γ equals
to 1, while our quantization-based method usually achieves the best performance with a larger γ, such as 4 or 6.

Table 6. Hyperparameter Search for Llama-2-7B-32K and LWM-Text-Chat-128k models on PG19, Multi-LexSum, and ∞BENCH Sum
datasets. Context length is kept as 8k.

(a) Llama-2-7B-32k on PG19

Method γ Acceptance Rate ↑ Speedup ↑

StreamingLLM
1 90.78 39.1
2 89.42 38.5
3 90.21 38.66

SnapKV
1 94.39 40.34
2 91.03 39.38
3 91.84 39.28

QuantSpec

1 91.88 41.52
2 89.88 44.51
4 83.17 43.84
6 77.07 41.88

(b) Llama-2-7B-32k on Multi-LexSum

Method γ Acceptance Rate ↑ Speedup ↑

StreamingLLM
1 90.78 39.17
2 86.82 37.84
3 83.29 36

SnapKV
1 55.55 31.05
2 43.96 24.39
3 36.61 19.78

QuantSpec

1 96.58 42.83
2 96.61 47.51
4 95.59 49.47
6 91.23 49.62

(c) LWM-Text-Chat-128k on ∞BENCH Sum

Method γ Acceptance Rate ↑ Speedup ↑

StreamingLLM
1 81.79 37.17
2 74.86 34.33
3 64.48 30.14

SnapKV
1 85.55 38.27
2 82.92 36.97
3 77.13 34.40

QuantSpec

1 93.83 42.01
2 94.38 46.74
4 90.33 47.30
6 82.13 45.51

(d) LWM-Text-Chat-128k on Multi-LexSum

Method γ Acceptance Rate ↑ Speedup ↑

StreamingLLM
1 83.96 37.80
2 77.41 35.13
3 71.28 32.37

SnapKV
1 89.25 39.04
2 83.53 37.22
3 80.04 35.48

QuantSpec

1 95.94 42.79
2 95.06 47.10
4 92.55 48.15
6 87.73 48.20

H. Comparing Acceptance Rates
Although the acceptance rates in Table 4 for the sparse KV baselines and QuantSpec do not seem exceedingly different, this
is misleading because the acceptance rates shown are for the optimal γ values observed from our hyperparameter search in
Table 6. Table 4 effectively compares the acceptance rates of the baselines at very low γ (e.g. 1) with those of QuantSpec
at much higher γ (e.g. 6). Here, we compare the acceptance rates of different self-speculative decoding algorithms. For
fair comparison, Figure 9 illustrates the acceptance rate between the draft and target models as a function of speculation
length. We observe that QuantSpec consistently outperforms sparse KV approaches in terms of acceptance rate. Notably, as
speculation length increases, the acceptance rate of sparse KV methods degrades much faster, whereas our method maintains
high acceptance rates.

16



QuantSpec: Self-Speculative Decoding with Hierarchical Quantized KV Cache

Figure 9. Acceptance rate of self-speculative decoding methods at different speculation length measured for model LWM-Text-Chat-128k
on Multi-LexSum dataset.

I. Additional Results
Here we present some additional results on newer model architectures. Table 7 shows acceptance rate and speedup
evaluations on Mistral and Llama 3.1 models. The results follow the same trends and conclusions as the results in the main
paper.

Table 7. Efficiency result of QuantSpec on Mistral-v0.3 and Llama 3.1 models on the Multi-LexSum dataset for different context lengths
on a single RTX A6000 GPU. We adopt the best speculative length γ for each method.

Mistral-7B-v0.3

Context Length Method Acceptance Rate ↑ (optimal γ) Peak GPU Memory (GB) ↓ Speedup (× AR) ↑

16k
StreamingLLM 0.86 (1) 16.25 0.94

SnapKV 0.86 (1) 16.70 0.93
QuantSpec 0.94 (6) 17.42 1.55

32k
StreamingLLM 0.89 (1) 18.67 1.07

SnapKV 0.85 (1) 19.79 0.98
QuantSpec 0.93 (6) 18.34 1.61

Llama-3.1-8B

Context Length Method Acceptance Rate ↑ (optimal γ) Peak GPU Memory (GB) ↓ Speedup (× AR) ↑

16k
StreamingLLM 0.63 (1) 17.73 0.82

SnapKV 0.66 (1) 18.18 0.85
QuantSpec 0.90 (6) 18.79 1.48

32k
StreamingLLM 0.81 (1) 20.15 0.93

SnapKV 0.73 (1) 21.27 0.90
QuantSpec 0.92 (6) 19.82 1.54

128k
StreamingLLM 0.89 (1) 34.91 1.06

SnapKV 0.80 (1) 39.95 1.06
QuantSpec 0.91 (6) 26.05 1.63
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J. Kernel Implementation Detail
In our approach, we implement the algorithm using a Flash Decoding framework. In the initial stage of the Flash Decoding
process, we compute the log-sum-exp (LSE) values over the INT4-quantized key-value (KV) cache. To facilitate parallelism,
the keys and values are partitioned into smaller chunks, with each chunk length set as a multiple of the quantization group
size. This segmentation enables parallel computation of attention between the query and each chunk. During this process,
the LSE values for individual chunks are recorded.

For the draft model, we begin by loading only the upper 4 bits of the INT4-quantized KV cache within each chunk, along
with the corresponding scaling factors and zero points. These are then dequantized in the kernel to reconstruct the KV cache,
and the LSE is computed following the standard Flash Decoding procedure. During the verification phase, both the upper
and lower bits of the INT4-quantized KV cache are loaded and dequantized. Simultaneously, a separate computation of the
LSE is performed using the full-precision KV cache retained in BF16 format. Since the residual cache length exceeds the
speculative length, the attention computation over the quantized region is inherently non-causal. Consequently, attention
masking is applied only to the full-precision segment.

Finally, in the second stage of the Flash Decoding algorithm, the LSE values obtained from both the quantized and BF16
segments are merged to form an integrated representation that captures information from the complete KV cache.
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Algorithm 1 QuantSpec Algorithm

Input: Model M , Upper 4-bit Cache CU , Lower 4-bit Cache CL, Full Precision Cache Buffer [CF1
, CF2

],
Input: Prefill Length SP , Target Decode Length SD, Prefill Context X = [x0, · · · , xSP−1], Speculate Length γ

Input: Number of Layers L, Sensitive Layer Number LS , Quantization Group Size G

Function: PREFILL, DRAFT, TARGET, VERITY, QUANTIZE, REJECTCACHE

Notation: Verified tokens xi, generated draft tokens gi, logits of draft model qi, logits of target model pi, number of
tokens already been generated in total N , number of tokens already been generated in this speculate step n, number of
tokens accepted in this speculate step v

Prefill Stage
1: XSP

, CKV ← PREFILL(M,X<SP
) ▷ KV Cache is written together for simplicity

2: CU , CL ← QUANTIZE(CKV:SP −G
, LS) ▷ Prepare the hierarchical quantized KV Cache

3: CF1
, CF2

← CKVSP −G:
,None ▷ Prepare the full-precision cache buffer for recent tokens

Decode Stage
4: while N < SD do
5: n← 0 and v ← 0
6: while n < γ do
7: qn+1, CF2 ← DRAFT(M,CU , CF1 , CF2 , LS , X≤SP+N + g<n)
8: Sample gn+1 ∼ qn+1 and n← n+ 1
9: end while

10: p1, · · · pγ , CF2
← TARGET(M,CU , CL, CF1

, CF2
, X≤SP+N + g<γ)

11: for i = 1 to γ do
12: if VERIFY(gi, pi, qi) then
13: xN+i ← gi and v ← v + 1
14: else
15: xN+i ← CORRECT(pi, qi) and v ← v + 1
16: CF2

← REJECTCACHE(CF2
, i) ▷ Clear the rejected KV cache from the full precision cache buffer

Break
17: end if
18: if i = γ then
19: xN+γ+1 ← pγ+1 and N ← N + 1
20: end if
21: end for

N ← N + v
22: if CF2 is full then
23: Concatenate QUANTIZE(CF1

) with CU and CL ▷ Quantize the first half of the full precision cache buffer
24: CF1

← CF2 :−G and CF2
← CF2 −G: ▷ Move the second part to the first part of full precision buffer

25: end if
26: end while
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