
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 2914–2921
November 7–11, 2021. c©2021 Association for Computational Linguistics

2914

What’s Hidden in a One-layer Randomly Weighted Transformer?

Sheng Shen†∗, Zhewei Yao†∗, Douwe Kiela‡, Kurt Keutzer† and Michael W. Mahoney†
†UC Berkeley; ‡Facebook AI Research

{sheng.s,zheweiy}@berkeley.edu, dkiela@fb.com

Abstract

We demonstrate that, hidden within one-layer
randomly weighted neural networks, there
exist subnetworks that can achieve impres-
sive performance, without ever modifying
the weight initializations, on machine trans-
lation tasks. To find subnetworks for one-
layer randomly weighted neural networks,
we apply different binary masks to the
same weight matrix to generate different lay-
ers. Hidden within a one-layer randomly
weighted Transformer, we find that subnet-
works that can achieve 29.45/17.29 BLEU
on IWSLT14/WMT14. Using a fixed pre-
trained embedding layer, the previously found
subnetworks are smaller than, but can match
98%/92% (34.14/25.24 BLEU) of the perfor-
mance of, a trained Transformersmall/base on
IWSLT14/WMT14. Furthermore, we demon-
strate the effectiveness of larger and deeper
transformers in this setting, as well as the im-
pact of different initialization methods.1

1 Introduction
Modern deep learning often trains millions or
even billions of parameters (Devlin et al., 2018;
Shoeybi et al., 2019; Raffel et al., 2019; Brown
et al., 2020) to deliver good performance for a
model. Recently, Frankle and Carbin (2018);
Frankle et al. (2020) demonstrated that these
over-parameterized networks contain sparse sub-
networks, when trained in isolation, that can
achieve similar or better performance than the
original model.

Furthermore, recent studies revisit the initial-
ization stage of finding these subnetworks in vi-
sion models (Zhou et al., 2019; Ramanujan et al.,
2020). Such a mask, which is used to mask out
a part of the entire network to those subnetworks,

1We released the source code at https://github.
com/sIncerass/one_layer_lottery_ticket.

∗Equal contribution.

W1 W2 W3 W4

M1 M2 M3 M4

Input: 
I am happy.

Output: 
Ich bin fröhlich

M1 M2 M3 M4

W1

Normal Subnework

One-Layer Subnework

Figure 1: Illustration plot for a normal subnetwork and
a one-layer subnetwork.

is referred to as a “Supermask.” That is to say,
subnetworks of a randomly weighted neural net-
work (NN) can achieve competitive performance,
which may act as a good “prior” (Gaier and Ha,
2019) and connect to the long history of leverag-
ing random features (Gamba et al., 1961; Baum,
1988) and/or random kernel methods (Rahimi and
Recht, 2008, 2009) in machine learning. Here,
we examine the following question: how does
a fully randomized natural language processing
(NLP) model perform in the multi-layer setting,
and particularly in the (so far under-explored) one-
layer setting?

In this work, we first validate that there ex-
ist subnetworks of standard randomly weighted
Transformers (Reservoir Transformers in (Shen
et al., 2021)) that can perform competitively with
fully-weighted alternatives on machine transla-
tion and natural language understanding tasks.
With 50% randomized weights remaining, we
found a subnetwork that can reach 29.45/17.29
BLEU on IWSLT14/WMT14, respectively. We
also investigate the special case of finding sub-
networks in one-layer randomly weighted Trans-
formers (see Fig. 1). To obtain the subnetworks,
we repeatedly apply the same randomized Trans-
former layer several times with different Super-
masks. The resulting subnetwork of a one-layer
randomly-weighted Transformer has similar per-
formance as the multi-layer counterparts with a
30% lower memory footprint. We also study the

https://github.com/sIncerass/one_layer_lottery_ticket
https://github.com/sIncerass/one_layer_lottery_ticket


2915

impact of different depths/widths of Transformers
along with the effectiveness of two initialization
methods. Finally, using the pre-trained embed-
ding layers, we find that the subnetworks hidden in
one layer randomly weighted Transformerwide/wider
are smaller than, but can match 98%/92% of the
performance of, a trained Transformersmall/base on
IWSLT14/WMT14. We hope our findings can of-
fer new insights for understanding Transformers.

2 Related Work

Lottery Tickets Hypothesis. Frankle and Carbin
(2018) found that NNs for computer vision con-
tain subnetworks that can be effectively trained
from scratch when reset to their initialization.
Subsequent works (Zhou et al., 2019; Ramanu-
jan et al., 2020; Wortsman et al., 2020) demon-
strated that so-called winning tickets can achieve
performance without training, where the mask
for finding the subnetwork at initialization is
called “supermask.” In NLP, previous works
find that matching subnetworks exist early in
training with Transformers (Yu et al., 2019),
LSTMs (Renda et al., 2020), and fully-weighted
per-trained BERT (Chen et al., 2020; Prasanna
et al., 2020) or Vison-and-Language model (Gan
et al., 2021), but not at initialization.
Random Feature. In the early days of neural net-
works, fixed random layers (Baum, 1988; Schmidt
et al., 1992; Pao et al., 1994) have been studied in
reservoir computing (Maass et al., 2002; Jaeger,
2003; Lukoševičius and Jaeger, 2009), “random
kitchen sink” kernel machines (Rahimi and Recht,
2008, 2009), and so on. Recently, random fea-
tures have also been extensively explored for mod-
ern neural networks in deep reservoir computing
networks (Scardapane and Wang, 2017; Gallicchio
and Micheli, 2017; Shen et al., 2021), random ker-
nel feature (Peng et al., 2021; Choromanski et al.,
2020), and applications in text classification (Con-
neau et al., 2017; Wieting and Kiela, 2019), sum-
marization (Pilault et al., 2020) and probing (Voita
and Titov, 2020).
Compressing Transformer. A wide range of neu-
ral network compression techniques have been ap-
plied to Transformers. This includes pruning (Fan
et al., 2019; Michel et al., 2019; Sanh et al., 2020;
Yao et al., 2021) where parts of the model weights
are dropped, parameter-sharing (Lan et al., 2020;
Dehghani et al., 2018; Bai et al., 2019) where the
same parameters are used in different parts of a

model, quantization (Shen et al., 2020; Li et al.,
2020) where the weights of the Transformer model
are represented with fewer bits, and distilliation
(Sun et al., 2020; Jiao et al., 2020) where a com-
pact student model is trained to mimic a larger
teacher model. To find the proposed subnetwork at
initialization, we develop our method in the spirit
of parameter sharing and pruning.

3 Methodology
Finding a Supermask for Randomly Weighted
Transformer. In a general pruning framework,
denote weight matrix as W ∈ Rd×d (W could
be a non-square matrix), input as x ∈ Rd and
the network as f(x;W). A subnetwork defined
is f(x;W �M), where M ∈ Rd×d is a binary
matrix and � is the element-wise product. To find
the subnetwork for a randomly weighted network,
M ∈ Rd×d is trained while W is kept at a ran-
dom initialization. Following Ramanujan et al.
(2020), denote S ∈ Rd×d as the associated impor-
tance score matrix of W, which is learnable dur-
ing training. We keep top-k percents of weights by
the importance score of S to compute M, i.e.,

M = Topk(S),where Topk(Si,j) =

{
1 Si,j in top k%,
0 else.

Note that Topk is an undifferentiated function. To
enable training of S, we use the straight-through
gradient estimator (Bengio et al., 2013), in which
Topk is treated as the identity in backpropagation.
During inference, we can simply construct and
store the binary Supermask M and the floating-
point W while dropping S for future usage.
One-layer randomly weighted Transformer.
We use the Transformer architecture (see Vaswani
et al. (2017) for more details). For a general
randomly weighted Transformer model with Su-
permask, there exist Mls and Wls for all layers
l ∈ {1, ...L}. Due to the natural property of layer
stacking in Transformers, all Wls have the same
shape with the same initialization method. This
leads to an unexplored question: “What’s hid-
den in a one-layer (instead of L-layer) randomly
weighted transformer?”

Let us use a toy example to explain why there is
no need for L redundant Wls. Assume that, for a
random weighted matrix Wl, the probability that
it has a “good” subnetwork is p2. Furthermore, as-
sume that for two different layers, the probability

2Here, the “good” can be any defined metric, e.g., (M �
Wl)x ≈ W∗x for all x and a pre-defined W∗.



2916

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Remaining Parameter Ratio

0

5

10

15

20

25

BL
EU

 S
co

re

Prune Randomly Weighted Transformer on WMT

6-layer random Transformerbase

1-layer random Transformerbase

6-layer fully weighted Transformerbase

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Remaining Parameter Ratio

0

5

10

15

20

25

30

35

BL
EU

 S
co

re

Prune Randomly Weighted Transformer on IWSLT

6-layer random Transformersmall

1-layer random Transformersmall

6-layer fully-weighted Transformersmall

Figure 2: Prune Randomly Weighted Transformer performance on WMT14 (left) and IWSLT14 (right).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Remaining Parameter Ratio

0

5

10

15

20

25

BL
EU

 S
co

re

Prune Randomly Weighted Transformer on WMT

1-layer random Transformerbase

embed 1-layer random Transformerbase

6-layer fully-weighted Transformerbase

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Remaining Parameter Ratio

0

5

10

15

20

25

30

35

BL
EU

 S
co

re

Prune Randomly Weighted Transformer on IWSLT

1-layer random Transformersmall

embed 1-layer random Transformersmall

6-layer fully-weighted Transformersmall

Figure 3: The effectiveness of pre-trained embedding layers on WMT14 (left) and IWSLT14 (right).

that both have the “good” subnetworks is indepen-
dent. Then for L different layers, the probabil-
ity that all Wls have the “good” subnetworks is
pL. Meanwhile, since W1 has the same initializa-
tion method as Wl, the probability that W1 has a
“good” subnetwork for l-th layer is also p. Thus,
for L different layers, the probability that using
W1 to generate all “good” subnetworks is also pL.

In this paper, we investigate the scenario where
one randomized layer is applied for L times re-
peatedly with L different Supermasks. As a result,
this can reduce the memory footprint since all Su-
permasks can be stored in the binary format.

4 Experiments

Model Architecture. For model architec-
tures, we experiment with Transformersmall and
Transformerbase, following the same setting as
in Ott et al. (2018): 6 encoder layers and 6 de-
coder layers on IWSLT14 and WMT14. We also
vary the depth and width of the Transformer model
on machine translation tasks. On IWSLT14, we
use 3 different random seeds and plot the mean
accuracy ± one standard deviation. All the em-
bedding layers (including the final output projec-
tion layer) are also randomized and pruned unless
otherwise specified. Moreover, on all figures, the

“fully-weighted model” denotes the standard full
model (all weights remaining).
Machine Translation results. In Fig. 2, we
present results for directly pruning a randomly
weighted Transformer on IWSLT14 and WMT14
tasks. Specifically, we vary the ratio of remaining
parameters in the randomized model.

As can be seen, there is no significant per-
formance difference between a one-layer random
Transformer versus a 6-layer standard random
Transformer across different percents of remain-
ing weights on IWSLT14 and WMT14. We also
observe that having the remaining randomized
weight percents approach 0 or 100 leads to the
worst performance across the settings. This is ex-
pected since the outputs will be random when we
have 100% randomized weights, and the model
will not perform well when only limited weights
are unpruned (close to 0%). The best perform-
ing subnetwork of a one-layer randomized Trans-
former has 50% weights remained. Connected to
the search space of the employed method where
we are choosing σ% out of 100% randomized
weights, σ = 50 leads to the largest search space.
Effectiveness of Pre-trained Embeddding lay-
ers. Embedding layers are critical since they
can be viewed as the inputs for an NLP model,



2917

Task Model BLEU Memory
Remaining

Param Ratio
Param

(no mask)

IWSLT

Transsmall 34.66 (±0.11) 148MB 100.0 39M
One-layer

Random Transsmall
30.95 (±0.12) 28MB 50.0 7M

One-layer
Transwide

34.14 (±0.08) 71MB 50.0 18M

One-layer
Random Transdeep

31.51 (±0.10) 29MB 50.0 7M

WMT

Trans-base 27.51 328MB 100.0 86M
One-layer

Random Transbase
20.35 96MB 50.0 25M

One-layer
Random Transwider

25.24 227MB 50.0 57M

One-layer
Random Transdeeper

21.76 98MB 50.0 25M

Table 1: Machine Translation result for a fully-
weighted Transformer versus one-layer random Trans-
former with pre-trained embedding layer (retain 50%
weights). IWSLT14 results are averaged over 3 random
seeds, standard deviations are in brackets.

which are analogous to the image pixels in vi-
sion. Plenty of prior studies have explored how
to obtain the pre-trained embedding in an un-
supervised way (Mikolov et al., 2013; Penning-
ton et al., 2014). We experiment with this prac-
tical setting where we could have access to the en-
coder/decoder embedding layers, which are pre-
trained from the public checkpoint in fairseq3, and
we present the results in Fig. 3. We observe
a significant performance boost for a one-layer
randomized transformer across different remain-
ing weights. The difference is much larger for
the bigger WMT14 dataset (around +3.0 BLEU
for WMT14 and +1.0 BLEU for IWSLT14). The
best one-layer randomized Transformer reaches
89%/74% of the fully-weighted Transformer per-
formance on IWSLT14/WMT14, respectively.
Effectiveness of Depth and Width. In Tab. 1,
we report the parameter size, BLEU score, and
memory size of different one-layer randomized
Transformers with 50% remaining weights, where
Transdeep/deeper are 12 encoder/decoder layers vari-
ant of Transsmall/base. Transwide/wider have 2x hid-
den size as the Transsmall/base. The results are
gathered with pre-trained encoder/decoder embed-
ding layers.4

Either increasing the depth or enlarging the
width can improve the performance of our
one-layer random transformer. Particularly,

3https://github.com/pytorch/fairseq/
4We use the checkpoint from FairSeq for Transbase/big on

WMT14, and Transsmall on IWSLT14 to obtain the pre-trained
embedding layer for one-layer Transbase/wider and one-layer
Transsmall. For one-layer Transwide on IWSLT14, we pre-train
fully-weighted model and then dump the embedding layer.
Transdeep/deeper share the same embedding of the Transsmall/base.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Remaining Parameter Ratio

0

5

10

15

20

25

30

35

BL
EU

 S
co

re

Prune Randomly Weighted Transformer on IWSLT

1-layer random Transformersmall

1-layer random Transformerwide

1-layer random Transformerdeep

6-layer fully-weighted Transformersmall

Figure 4: The effectiveness of depth and width.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Remaining Parameter Ratio

0

5

10

15

20

25

30

35

BL
EU

 S
co

re

Prune Randomly Weighted Transformer on IWSLT

kaiming_uniform 1-layer random Transformersmall

xavier_uniform 1-layer random Transformersmall

6-layer fully-weighted Transformersmall

Figure 5: The effectiveness of different initialization.

the deeper transformer can already achieve
79%/90% of the fully-weighted baseline models
on WMT14/IWSLT14, respectively. For wider
models, those numbers even increase to 92%/98%.
This is mainly due to the larger search space intro-
duced by the larger weight matrix. Another impor-
tant point is that even when we increase/enlarge
the depth/width of the model, the total memory
consumption of these models is actually smaller
than the standard baseline, since we only have one
repeated layer and all the masks can be stored in a
1-bit setting.

Furthermore, we explore the effect of the dif-
ferent ratios of remaining parameters for different
models on IWSLT14 in Fig. 4. As can be seen, for
the wider model, its performance is always better
than the standard one across all different settings.
However, for the deeper model, there is a sharp
transition that happens at 50%–60% remaining pa-
rameters. The reason is that, given that our deeper
model is twice as deep as the original, when we
retain more random parameters (>50%), the prob-
ability that the layer has a good “subnetwork” de-
creases significantly. This will lead the final prob-
ability to be p2Lsmaller (psmaller < p), which is much
smaller than pL (see Section 3).
Different Initialization. Weight initialization is
one of the critical components to the success of

https://github.com/pytorch/fairseq/


2918

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Remaining Parameter Ratio

76

78

80

82

84

86

88

90

Ac
cu

ra
cy

Prune Randomly Weighted Transformer on QQP

12-layer random RoBERTabase

1-layer random RoBERTabase

1-layer random RoBERTalarge

12-layer fully-weighted RoBERTabase

Figure 6: Prune Randomly Weighted Transformer per-
formance on QQP .

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Remaining Parameter Ratio

60

65

70

75

80

Ac
cu

ra
cy

Prune Randomly Weighted Transformer on MNLI

12-layer random RoBERTabase

1-layer random RoBERTabase

1-layer random RoBERTalarge

12-layer fully-weighted RoBERTabase

Figure 7: Prune Randomly Weighted Transformer per-
formance on MNLI.

the random feature (Wieting and Kiela, 2019; Ra-
manujan et al., 2020; Shen et al., 2021). We ex-
periment with kaiming uniform (Ramanujan et al.,
2020) and Xavier uniform (Vaswani et al., 2017)
initialization methods, and we scale the standard
deviation by

√
1/σ when we retain σ random-

ized weights. As shown in Fig. 5, the perfor-
mance of the one-layer randomized Transformer
decreases when we switch to the Xavier uniform.
The degradation becomes larger when more ran-
domized weights retain in the network.

QQP and MNLI results. On QQP and
MNLI, we experiment with RoBERTasmall and
RoBERTalarge, following Liu et al. (2019).
We use the pre-trained embedding layer of
RoBERTabase/large (Liu et al., 2019). In Fig. 6
and 7, we show consistent results on QQP and
MNLI, except that the best performing one-
layer randomly weighted RoBERTa is achieved
when we retain 70% randomized weights, it
reaches 79%/91% fully-weighted RoBERTabase
accuracy on QQP and MNLI, respectively. The
performance approaches 84%/92% of the afore-

mentioned fully-weighted model performance
when using the larger hidden size with one-layer
randomly weighted RoBERTalarge.

Implementation Details. We evaluate on
IWSLT14 de-en (Cettolo et al., 2015) and
WMT14 en-de (Bojar et al., 2014) for machine
translation; QQP (Iyer et al., 2017) and MultiNLI-
matched (MNLI) (Williams et al., 2017) for
natural language understanding.5 We use 8
Volta V100 GPUs for WMT, and one V100 for
IWSLT, QQP, and MNLI. The hyperparameters
on IWSLT14 and WMT14 for training a one-layer
randomized Transformer were set the same to the
best-performing values from Ott et al. (2018) for
training fully-weighted Transformer. The QQP
and MNLI experiments followed Liu et al. (2019).

5 Conclusions

In this paper, we validate the existence of ef-
fective subnetworks in a one-layer randomly
weighted Transformer on translation tasks. Hid-
den within a one-layer randomly weighted
Transformerwide/wider with fixed pre-trained em-
bedding layers, we find there exist subnetworks
that are smaller than, but can competitively match,
the performance of a trained Transformersmall/base
on IWSLT14/WMT14.

Acknowledgements

We thank anonymous reviewers for their com-
ments and suggestions. SS and KK were sup-
ported by grants from Samsung, Facebook, and the
Berkeley Deep Drive Consortium. We would like
to acknowledge DARPA, IARPA, NSF, and ONR
for providing partial support of this work.

References
Shaojie Bai, J Zico Kolter, and Vladlen Koltun. 2019.

Deep equilibrium models. Advances in Neural In-
formation Processing Systems, 32:690–701.

Eric B Baum. 1988. On the capabilities of multilayer
perceptrons. Journal of complexity, 4(3):193–215.

Yoshua Bengio, Nicholas Léonard, and Aaron
Courville. 2013. Estimating or propagating gradi-
ents through stochastic neurons for conditional com-
putation. arXiv preprint arXiv:1308.3432.

5For IWSLT, we follow the pre-processing steps in
Edunov et al. (2018). The train/val/test split is 129k/10k/6.8k
sentences. For WMT, we follow pre-process as in Ott et al.
(2018), with 4.5M/16.5k/3k sentences in train/val/test.



2919

Ondřej Bojar, Christian Buck, Christian Federmann,
Barry Haddow, Philipp Koehn, Johannes Leveling,
Christof Monz, Pavel Pecina, Matt Post, Herve
Saint-Amand, Radu Soricut, Lucia Specia, and Aleš
Tamchyna. 2014. Findings of the 2014 workshop
on statistical machine translation. In Proceedings of
the Ninth Workshop on Statistical Machine Trans-
lation, Baltimore, Maryland, USA. Association for
Computational Linguistics.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

M. Cettolo, J. Niehues, S. Stüker, L. Bentivogli, and
Marcello Federico. 2015. Report on the 11 th iwslt
evaluation campaign , iwslt 2014. In Proceedings of
IWSLT.

Tianlong Chen, Jonathan Frankle, Shiyu Chang, Si-
jia Liu, Yang Zhang, Zhangyang Wang, and
Michael Carbin. 2020. The lottery ticket hypoth-
esis for pre-trained bert networks. arXiv preprint
arXiv:2007.12223.

Krzysztof Choromanski, Valerii Likhosherstov, David
Dohan, Xingyou Song, Jared Davis, Tamas Sarlos,
David Belanger, Lucy Colwell, and Adrian Weller.
2020. Masked language modeling for proteins via
linearly scalable long-context transformers. arXiv
preprint arXiv:2006.03555.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loic
Barrault, and Antoine Bordes. 2017. Supervised
learning of universal sentence representations from
natural language inference data. arXiv preprint
arXiv:1705.02364.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals,
Jakob Uszkoreit, and Lukasz Kaiser. 2018. Uni-
versal transformers. In International Conference on
Learning Representations.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Sergey Edunov, Myle Ott, Michael Auli, David Grang-
ier, and Marc’Aurelio Ranzato. 2018. Classical
structured prediction losses for sequence to se-
quence learning. In Proceedings of the 2018 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), New
Orleans, Louisiana. Association for Computational
Linguistics.

Angela Fan, Edouard Grave, and Armand Joulin. 2019.
Reducing transformer depth on demand with struc-
tured dropout. In International Conference on
Learning Representations.

Jonathan Frankle and Michael Carbin. 2018. The lot-
tery ticket hypothesis: Finding sparse, trainable neu-
ral networks. arXiv preprint arXiv:1803.03635.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel
Roy, and Michael Carbin. 2020. Linear mode con-
nectivity and the lottery ticket hypothesis. In In-
ternational Conference on Machine Learning, pages
3259–3269. PMLR.

Adam Gaier and David Ha. 2019. Weight agnostic neu-
ral networks. arXiv preprint arXiv:1906.04358.

Claudio Gallicchio and Alessio Micheli. 2017. Echo
state property of deep reservoir computing networks.
Cognitive Computation, 9(3):337–350.

A. Gamba, L. Gamberini, G. Palmieri, and R. Sanna.
1961. Further experiments with papa. Il Nuovo Ci-
mento (1955-1965), 20(2):112–115.

Zhe Gan, Yen-Chun Chen, Linjie Li, Tianlong Chen,
Yu Cheng, Shuohang Wang, and Jingjing Liu. 2021.
Playing lottery tickets with vision and language.
arXiv preprint arXiv:2104.11832.

Shankar Iyer, Nikhil Dandekar, and Kornl Csernai.
2017. First quora dataset release: Question pairs,
2017. URL https://data. quora. com/First-Quora-
Dataset-Release-Question-Pairs.

Herbert Jaeger. 2003. Adaptive nonlinear system iden-
tification with echo state networks. In Advances in
neural information processing systems.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang,
Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
2020. Tinybert: Distilling bert for natural language
understanding. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing: Findings, pages 4163–4174.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. Albert: A lite bert for self-supervised learn-
ing of language representations.

Zhuohan Li, Eric Wallace, Sheng Shen, Kevin Lin,
Kurt Keutzer, Dan Klein, and Joey Gonzalez. 2020.
Train big, then compress: Rethinking model size
for efficient training and inference of transformers.
In International Conference on Machine Learning.
PMLR.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Mantas Lukoševičius and Herbert Jaeger. 2009. Reser-
voir computing approaches to recurrent neural net-
work training. Computer Science Review, 3(3).



2920

Wolfgang Maass, Thomas Natschläger, and Henry
Markram. 2002. Real-time computing without sta-
ble states: A new framework for neural computa-
tion based on perturbations. Neural computation,
14(11):2531–2560.

Paul Michel, Omer Levy, and Graham Neubig. 2019.
Are sixteen heads really better than one? Ad-
vances in Neural Information Processing Systems,
32:14014–14024.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Myle Ott, Sergey Edunov, David Grangier, and
Michael Auli. 2018. Scaling neural machine trans-
lation. arXiv preprint arXiv:1806.00187.

Yoh-Han Pao, Gwang-Hoon Park, and Dejan J Sobajic.
1994. Learning and generalization characteristics of
the random vector functional-link net. Neurocom-
puting, 6(2):163–180.

Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy
Schwartz, Noah Smith, and Lingpeng Kong. 2021.
Random feature attention. In International Confer-
ence on Learning Representations.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543, Doha,
Qatar. Association for Computational Linguistics.

Jonathan Pilault, Jaehong Park, and Christopher Pal.
2020. On the impressive performance of randomly
weighted encoders in summarization tasks. arXiv
preprint arXiv:2002.09084.

Sai Prasanna, Anna Rogers, and Anna Rumshisky.
2020. When bert plays the lottery, all tickets are
winning. arXiv preprint arXiv:2005.00561.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

Ali Rahimi and Benjamin Recht. 2008. Random fea-
tures for large-scale kernel machines. In Advances
in neural information processing systems, pages
1177–1184.

Ali Rahimi and Benjamin Recht. 2009. Weighted sums
of random kitchen sinks: Replacing minimization
with randomization in learning. In Advances in
neural information processing systems, pages 1313–
1320.

Vivek Ramanujan, Mitchell Wortsman, Aniruddha
Kembhavi, Ali Farhadi, and Mohammad Rastegari.
2020. What’s hidden in a randomly weighted neural

network? In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition,
pages 11893–11902.

Alex Renda, Jonathan Frankle, and Michael Carbin.
2020. Comparing rewinding and fine-tuning
in neural network pruning. arXiv preprint
arXiv:2003.02389.

Victor Sanh, Thomas Wolf, and Alexander Rush.
2020. Movement pruning: Adaptive sparsity by
fine-tuning. Advances in Neural Information Pro-
cessing Systems, 33.

Simone Scardapane and Dianhui Wang. 2017. Ran-
domness in neural networks: an overview. Wiley
Interdisciplinary Reviews: Data Mining and Knowl-
edge Discovery, 7(2):e1200.

Wouter F Schmidt, Martin A Kraaijveld, and
Robert PW Duin. 1992. Feedforward neural net-
works with random weights. In Proceedings of the
11th International Conference on Pattern Recogni-
tion, 1992. Vol. II. Conference B: Pattern Recogni-
tion Methodology and Systems, pages 1–4.

Sheng Shen, Alexei Baevski, Ari S Morcos, Kurt
Keutzer, Michael Auli, and Douwe Kiela. 2021.
Reservoir transformers. In ACL.

Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei
Yao, Amir Gholami, Michael W Mahoney, and Kurt
Keutzer. 2020. Q-bert: Hessian based ultra low
precision quantization of bert. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 34, pages 8815–8821.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. 2019. Megatron-LM: Training multi-billion
parameter language models using gpu model paral-
lelism. arXiv preprint arXiv:1909.08053.

Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu,
Yiming Yang, and Denny Zhou. 2020. Mobilebert: a
compact task-agnostic bert for resource-limited de-
vices. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics,
pages 2158–2170.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Elena Voita and Ivan Titov. 2020. Information-
theoretic probing with minimum description length.
arXiv preprint arXiv:2003.12298.

John Wieting and Douwe Kiela. 2019. No training
required: Exploring random encoders for sentence
classification. arXiv preprint arXiv:1901.10444.

https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162


2921

Adina Williams, Nikita Nangia, and Samuel R Bow-
man. 2017. A broad-coverage challenge corpus for
sentence understanding through inference. arXiv
preprint arXiv:1704.05426.

Mitchell Wortsman, Vivek Ramanujan, Rosanne Liu,
Aniruddha Kembhavi, Mohammad Rastegari, Jason
Yosinski, and Ali Farhadi. 2020. Supermasks in su-
perposition for continual learning. Advances in Neu-
ral Information Processing Systems (NeurIPS), 6.

Zhewei Yao, Linjian Ma, Sheng Shen, Kurt Keutzer,
and Michael W Mahoney. 2021. Mlprun-
ing: A multilevel structured pruning framework
for transformer-based models. arXiv preprint
arXiv:2105.14636.

Haonan Yu, Sergey Edunov, Yuandong Tian, and Ari S
Morcos. 2019. Playing the lottery with rewards
and multiple languages: lottery tickets in rl and nlp.
arXiv preprint arXiv:1906.02768.

Hattie Zhou, Janice Lan, Rosanne Liu, and Jason
Yosinski. 2019. Deconstructing lottery tickets: Ze-
ros, signs, and the supermask. In Advances in Neu-
ral Information Processing Systems, pages 3597–
3607.


