
Stat260/CS294: Randomized Algorithms for Matrices and Data

Lecture 4 - 09/16/2013

Lecture 4: Concentration and Matrix Multiplication, Cont.

Lecturer: Michael Mahoney Scribe: Michael Mahoney

Warning: these notes are still very rough. They provide more details on what we discussed in class,
but there may still be some errors, incomplete/imprecise statements, etc. in them.

4 Concentration and Matrix Multiplication, Cont.

Today, we will continue with our discussion of scalar and matrix concentration, with a discussion of
the matrix analogues of Markov’s, Chebychev’s, and Chernoff’s Inequalities. Then, we will return
to bounding the error for our approximating matrix multiplication algorithm. We will start with
using Hoeffding-Azuma bounds from last class to get improved Frobenius norm bounds, and then
(next time) we will describe how to use the matrix concentration results to get spectral norm
bounds for approximate multiplication.

Here is the reading for today.

• Appendix of: Recht, “A Simpler Approach to Matrix Completion”

• Oliveira, “Sums of random Hermitian matrices and an inequality by Rudelson”

• Drineas, Kannan, and Mahoney, “Fast Monte Carlo Algorithms for Matrices I: Approximating
Matrix Multiplication”

4.1 Matrix Concentration

We will now discuss several results having to do with concentration of matrix-valued random
variables. We start with a matrix version of the Markov inequality.

Lemma 1 (Matrix Markov Inequality) Let X be a random PSD matrix, and let A be a fixed
PD matrix. Then, ∀A, Pr [X � A] ≤ Tr

(
E [X]A−1

)
.

Proof: Consider the random variable A−1/2XA−1/2. Observe that, if X � A, then A−1/2XA−1/2 �
I. In this case,

1 <
∥∥∥A−1/2XA−1/2∥∥∥

2
.

Let XX�A be the characteristic/indicator function of the event X � A. Then, the claim is that

XX�A ≤ Tr
(
A−1/2XA−1/2

)
.
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To prove the claim, observe that the RHS ≥ 0. If the LHS = 0, then we are done. Otherwise, if
the LHS = 1, then 1 <

∥∥A−1/2XA−1/2∥∥
2
≤ Tr

(
A−1/2XA−1/2

)
. So,

Pr [X � A] = E
[
XX�A

]
≤ E

[
Tr
(
A−1/2XA−1/2

)]
= E

[
Tr
(
XA−1

)]
= Tr

(
E [X]A−1

)
,

where the second equality follows from the cyclic properties of the trace, and where the last follows
since the trace is linear.

�

Although we will not use the matrix version of the Chebychev inequality in what follows, we include
it for completeness and for comparison with the scalar version.

Lemma 2 (Matrix Chebychev Inequality) Let X be a random PSD matrix, and let A be a
fixed PD matrix. Then, ∀A, Pr [|X −E [X] | � A] ≤ Tr

(
Var [X]A−2

)
. XXX. CLARIFY WHAT

THAT NORM THING IS ON LHS.

Proof: First note that (X − E [X])2 � A2 implies that |X − E [X] | � A. The reason for this is
that

√
· is operator monotone. (I.e., while it is obvious for numbers, it is true but non-obvious for

matrices.) So,

Pr [|X −E [X] | � A] ≤ Pr
[
(X −E [X])2 � A2

]
≤ Tr

(
E
[
(X −E [X])2

]
A−2

)
= Tr

(
Var [X]A−2

)
.

�

Next, what we really want to do is get a matrix analogue of the Chernoff bound. Here is one form
of it; we will give more of a history below.

Theorem 1 (Matrix Chernoff Bound) Let X1, . . . , Xn be independent symmetric random ma-
trices in Rd×d. Then, ∀ invertible d× d matrices T ,

Pr

[
n∑
k=1

Xk � nA

]
≤ d

n∏
k=1

‖E [exp (TXkT
∗ − TAT ∗)]‖2 ,

where T ∗ denotes the transpose of the (real-valued) matrix T .

Proof: First, by the usual properties of the semi-definite ordering, we have that

Pr

[
n∑
k=1

Xk � nA

]
= Pr

[
n∑
k=1

(Xk −A) � 0

]

= Pr

[
n∑
k=1

T (Xk −A)T ∗ � 0

]

= Pr

[
exp

(
n∑
k=1

T (Xk −A)T ∗

)
� Id

]
.
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By combining this with the Matrix Markov Inequality, and since the trace is linear, it follows that

Pr

[
n∑
k=1

Xk � nA

]
≤ Tr

(
E

[
exp

(
n∑
k=1

T (Xk −A)T ∗

)])

≤ E

[
Tr

(
exp

(
n∑
k=1

T (Xk −A)T ∗

))]
.

Next, observe that we can peel apart the various terms as follows

Pr

[
n∑
k=1

Xk � nA

]
≤ E

[
Tr

(
exp

(
n−1∑
k=1

T (Xk −A)T ∗

)
exp (T (Xn −A)T ∗)

)]

= E

[
Tr

(
exp

(
n−1∑
k=1

T (Xk −A)T ∗

)
E [exp (T (Xn −A)T ∗)]n

)]
1,··· ,n−1

≤ ‖E [exp (T (Xn −A)T ∗)]‖2 E

[
Tr

(
exp

(
n−1∑
k=1

T (Xk −A)T ∗

))]
1,··· ,n−1

,

where the first line follows from the Golden-Thompson inequality; the second line follows from
the independence of the Xk; and the third line follows by strong submultiplicitivity, i.e., since
Tr (AB) ≤ Tr (A) ‖B‖2, if A and B are SPSD. XXX. NEED TO FIX THAT NOTATION WITH
EXPECTATION. By iterating this process it follows that

Pr

[
n∑
k=1

Xk � nA

]
≤

n∏
k=2

‖E [exp (T (Xk −A)T ∗)]‖2 E [Tr (exp (T (X1 −A)T ∗))]

≤ d
n∏
k=1

‖E [exp (T (Xk −A)T ∗)]‖2 ,

where the last line follows since if A is PD, then Tr (A) =
∑d

i=1 λi(A) ≤ dλmax(A), where λi(A) is
the ith eigenvalue of A and where λmax(A) is the largest eigenvalue of A. XXX. CAN I DO THOSE
LAST STEPS IN ONE STEP.

�

We will use this Matrix Chernoff Bound to establish an inequality that we will use. Note that, as
in the scalar case, one can get lots of variations, and we will use Bernstein version due to Recht.

Theorem 2 (Noncommutative Bernstein Inequality) Let X1, . . . , XL be independent zero-
mean random matrices of dimension d1×d2. Suppose that ρk = max{ ‖E [XkX

∗
k ]‖2 , ‖E [X∗kXk]‖2}

and that ‖Xk‖2 ≤M a.s., for all k. Then, ∀τ > 0,

Pr

[∥∥∥∥∥
L∑
k=1

Xk

∥∥∥∥∥
2

> τ

]
≤ (d1 + d2) exp

(
−τ2/2∑L

k=1 ρ
2
k +Mτ/2

)

Before the proof, here are a few notes on this result.

• If d1 = d2 = 1, then this is just the 2-sided version of the standard Bernstein Inequality.
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• If Xi are diagonal, then this is just the standard Bernstein Inequality applied and then do a
union bound on the diagonal of the matrix sum.

• If τ ≤ 1
M

∑L
k=1 ρ

2
k, then RHS ≤ (d1 + d2) exp

(
−3τ2/8∑L

k=1 ρ
2
k

)
.

Proof: Let Yk =

[
0 Xk

X∗k 0

]
. Then, the Yk are symmetric random functions, and ∀k, we have that

∥∥E [Y 2
k

]∥∥
2

=

∥∥∥∥E [[ XkX
∗
k 0

0 X∗kXk

]]∥∥∥∥
2

= max{ ‖E [XkX
∗
k ]‖2 , ‖E [X∗kXk]‖2}

= ρ2k.

In addition, σmax(
∑L

i=1Xk) = λmax(
∑L

k=1 Yk). By the Operator Chernoff Theorem, it follows that

Pr

[∥∥∥∥∥
L∑
k=1

Xk

∥∥∥∥∥
2

> Lt

]
= Pr

[
L∑
k=1

Yk � LtI

]
≤ (d1 + d2) exp (−Ltλ) ΠL

k=1 ‖E [exp (λYk)]‖2 ,

∀λ > 0. Then, ∀k, let Yk = UkΛkU
∗
k be the eigenvalue decomposition. Then, ∀s > 0, we have that

−M sY s
k = −UkM sΛ2

kU
∗
k ≤ UkΛs+2

k U2
k = Y s+2

k ≤ UkM sΛ2
kU
∗
k = M sY 2

k ,

where M is such that ‖X‖2 ≤M , forall k, which implies that∥∥E [Y s+2
k

]∥∥
2
≤M s

∥∥E [Y 2
k

]∥∥
2
. (1)

For a fixed k, we have that∥∥∥E [eλYk]∥∥∥
2
≤ ‖I‖2 +

∞∑
j=2

λj

j!

∥∥∥E [Y j
k

]∥∥∥
2

≤ 1 +
∞∑
j=2

λj

j!

∥∥E [Y 2
k

]∥∥
2
M j−2

= 1 +
ρ2k
M2

∞∑
j=2

λj

j!
M j

= 1 +
ρ2k
M2

(exp(λM)− 1− λM)

≤ exp

(
ρ2k
M2

(exp(λM)− 1− λM)

)
where the first inequality follows from the triangle inequality and since E [Yk] = 0; the second
inequality follows from Eqn. (1); and the last inequality follows since 1 + x ≤ ex. Thus,

Pr

[∥∥∥∥∥
L∑
k=1

Xk

∥∥∥∥∥
2

> Lt

]
≤ (d1 + d2) exp

(
−λLt+

∑L
k=1 ρ

2
k

M2
(exp(λM)− 1− λM)

)
.

We can minimize this as a function of λ by choosing λ = 1
M log

(
1 + tLM∑L

k=1 ρ
2
k

)
, from which the

result follows by tedious manipulations.
�
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4.2 Back to Frobenius norm matrix multiplication bounds

We will say that the sampling probabilities of the form

pk =

∥∥A(k)
∥∥
2

∥∥B(k)

∥∥
2∑n

k′=1

∥∥A(k′)
∥∥
2

∥∥B(k′)

∥∥
2

are the optimal probabilities since, as we saw before, they minimize E
[
‖AB − CR‖2F

]
, which is

one natural measure of the error caused by the random sampling process. In addition, we will also
say that a set of sampling probabilities {pi}ni=1 are nearly optimal probabilities if

pk ≥
β
∥∥A(k)

∥∥
2

∥∥B(k)

∥∥
2∑n

k′=1

∥∥A(k′)
∥∥
2

∥∥B(k′)

∥∥
2

,

for some positive constant β ≤ 1. Essentially, if we work with nearly optimal probabilities rather
than the optimal probabilities, what this says is that we are working with probabilities that do
not underestimate the optimal probability of choosing any column-row pair too much. The chal-
lenge with random sampling algorithms is ensuring that we find important samples, and so this is
reasonable. In addition, as we will see below, if β 6= 1 then we suffer a small β-dependent loss in
accuracy. That is, we will have to sample a little more, but if we do so then all of our bounds will
work out. All of the results in which we will be interested will be robust if we work with nearly
optimal probabilities, as opposed to exactly optimal probabilities, and we will gain a great deal of
power and flexibility in doing so, so we will formulate the remainder of our results this semester
in terms of nearly optimal probabilities (to such an extent that we will do so even when we don’t
make it explicit).

We now prove, for nearly optimal sampling probabilities, results analogous to those of Lemma ??.
In addition, we also prove that the corresponding results with the expectations removed hold with
high probability. The proof of the latter will depend on the Hoeffding-Azuma inequality.

Theorem 3 Suppose A ∈ Rm×n, B ∈ Rn×p, c ∈ Z+ such that 1 ≤ c ≤ n, and {pi}ni=1 are such
that

∑n
i=1 pi = 1 and such that for some positive constant β ≤ 1

pk ≥
β
∥∥A(k)

∥∥
2

∥∥B(k)

∥∥
2∑n

k′=1

∥∥A(k′)
∥∥
2

∥∥B(k′)

∥∥
2

. (2)

Construct C and R with the BasicMatrixMultiplication algorithm, and let CR be an approx-
imation to AB. Then,

E
[
‖AB − CR‖2F

]
≤ 1

βc
‖A‖2F ‖B‖

2
F . (3)

Furthermore, let δ ∈ (0, 1) and η = 1 +
√

(8/β) log(1/δ). Then, with probability at least 1− δ,

‖AB − CR‖2F ≤
η2

βc
‖A‖2F ‖B‖

2
F . (4)

Proof: Following reasoning similar to that of Lemma ??, and using the nearly-optimal sampling

5



probabilities of Eqn. (2), we see that

E
[
‖AB − CR‖2F

]
≤ 1

c

n∑
k=1

1

pk

∥∥∥A(k)
∥∥∥2
2

∥∥B(k)

∥∥2
2

≤ 1

βc

(
n∑
k=1

∥∥∥A(k)
∥∥∥
2

∥∥B(k)

∥∥
2

)2

≤ 1

βc
‖A‖2F ‖B‖

2
F ,

where the last inequality follows due to the Cauchy-Schwartz inequality. Next, we consider removing
the expectation. To do so, define the event E2 to be

‖AB − CR‖F ≤
η√
βc
‖A‖F ‖B‖F (5)

and note that to prove the remainder of the theorem it suffices to prove that Pr [E2] ≥ 1 − δ. To
that end, note that C and R and thus CR =

∑c
t=1

1
cpit

AitBit are formed by randomly selecting

c elements from {1, . . . , n}, independently and with replacement. Let the sequence of elements
chosen be {it}ct=1. Consider the function

F (i1, . . . , ic) = ‖AB − CR‖F . (6)

We will show that changing one it at a time does not change F too much; this will enable us to
apply a martingale inequality. To this end, consider changing one of the it to i′t while keeping the
other it’s the same. Then, construct the corresponding C ′ and R′. Note that C ′ differs from C in
only a single column and that R′ differs from R in only a single row. Thus,

∥∥CR− C ′R′∥∥
F

=

∥∥∥∥∥A(it)B(it)

cpit
−
A(i′t)B(i′t)

cpi′t

∥∥∥∥∥
F

(7)

≤ 1

cpit

∥∥∥A(it)B(it)

∥∥∥
F

+
1

cpi′t

∥∥∥A(i′t)B(i′t)

∥∥∥
F

(8)

=
1

cpit

∥∥∥A(it)
∥∥∥
2

∥∥B(it)

∥∥
2

+
1

cpi′t

∥∥∥A(i′t)
∥∥∥
2

∥∥∥B(i′t)

∥∥∥
2

(9)

≤ 2

c
max
α

∥∥A(α)
∥∥
2

∥∥B(α)

∥∥
2

pα
. (10)

(7) follows by construction and (9) follows since
∥∥xyT∥∥

F
= ‖x‖2 ‖y‖2 for x ∈ Rn and y ∈ Rn.

Thus, using the probabilities (2) and employing the Cauchy-Schwartz inequality we see that

∥∥CR− C ′R′∥∥
F
≤ 2

βc

n∑
k=1

∥∥∥A(k)
∥∥∥
2

∥∥B(k)

∥∥
2

(11)

≤ 2

βc
‖A‖F ‖B‖F . (12)

Therefore, using the triangle inequality we see that

‖AB − CR‖F ≤
∥∥AB − C ′R′∥∥

F
+
∥∥C ′R′ − CR∥∥

F

≤
∥∥AB − C ′R′∥∥

F
+

2

βc
‖A‖F ‖B‖F . (13)
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By similar reasoning, we can derive∥∥AB − C ′R′∥∥
F
≤ ‖AB − CR‖F +

2

βc
‖A‖F ‖B‖F . (14)

Define ∆ = 2
βc ‖A‖F ‖B‖F ; thus,∣∣F (i1, . . . , ik, . . . , ic)− F

(
i1, . . . , i

′
k, . . . , ic

)∣∣ ≤ ∆. (15)

Let γ =
√

2c log(1/δ)∆ and consider the associated Doob martingale. By the Hoeffding-Azuma
inequality [?],

Pr

[
‖AB − CR‖F ≥

1√
βc
‖A‖F ‖B‖F + γ

]
≤ exp

(
−γ2/2c∆2

)
= δ (16)

and theorem follows.
�

An immediate consequence of Theorem 3 is that by choosing enough column-row pairs, the error in
the approximation of the matrix product can be made arbitrarily small. In particular, if c ≥ 1/βε2

then by using Jensen’s inequality it follows that

E [ ‖AB − CR‖F ] ≤ ε ‖A‖F ‖B‖F (17)

and if, in addition, c ≥ η2/βε2 then with probability at least 1− δ

‖AB − CR‖F ≤ ε ‖A‖F ‖B‖F . (18)

In certain applications, we will be interested in an application of Theorem 3 to the case that
B = AT , i.e., one is interested in approximating

∥∥AAT − CCT∥∥2
F

. In this case, sampling column-
row pairs corresponds to sampling columns of A, and nearly optimal probabilities will be those such

that pk ≥
β‖A(k)‖

2
‖A‖F

for some positive β ≤ 1. By taking B = AT and applying Jensen’s inequality,

we have the following theorem as a corollary of Theorem 3.

Theorem 4 Suppose A ∈ Rm×n, c ∈ Z+, 1 ≤ c ≤ n, and {pi}ni=1 are such that
∑n

i=1 pi = 1

and such that pk ≥
β‖A(k)‖2

2

‖A‖2F
for some positive constant β ≤ 1. Furthermore, let δ ∈ (0, 1) and

η = 1 +
√

(8/β) log(1/δ). Construct C (and R = CT ) with the BasicMatrixMultiplication
algorithm, and let CCT be an approximation to AAT . Then,

E
[ ∥∥AAT − CCT∥∥

F

]
≤ 1√

βc
‖A‖2F (19)

and with probability at least 1− δ,∥∥AAT − CCT∥∥
F
≤ η√

βc
‖A‖2F . (20)
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