Spring 2008-Stat C141/ Bioeng C141 - Statistics for Bioinformatics
Course Website: http://www.stat.berkeley.edu/users/hhuang/141C-2008.html Section Website: http://www.stat.berkeley.edu/users/mgoldman

GSI Contact Info:
Megan Goldman
mgoldman@stat.berkeley.edu
Office Hours: 342 Evans M 10-11, Th 3-4, and by appointment

1 Random Walks

A random walk is a special kind of Markov chain. In a random walk, the states are all integers. Negative numbers are (sometimes) allowed. Say you start in a state a. The onestep transitions are that, with probability p, you move to state $a+1$ and with probability $q=1-p$, you move to state $a-1$. The largest move you can make per transition is one step in either direction, and there is no probability of remaining in the same state.

A couple of interesting facts:
The simple random walk is temporally homogeneous:

$$
\mathbb{P}\left(S_{n}=j \mid S_{0}=a\right)=\mathbb{P}\left(S_{m+n}=\mid S_{m}=a\right)
$$

What this means is that starting in state a and being in state j after n transitions has the same probability as being in state a after the first m transitions, and then being in state j n transitions after that.

The simple random walk has the Markov property:

$$
\mathbb{P}\left(S_{m+n}=j \mid S_{0}, S_{1}, \ldots, S_{m}\right)=\mathbb{P}\left(S_{m+n}=j \mid S_{m}\right)
$$

This means that the probability of getting to state j in n transitions depends only on the state you're currently in. Knowing anything or everything that occurred prior to that state gives no additional information.

2 Absorbing Probabilities

Suppose we have a random walk which is restricted to the range $[a, b]$. In other words, you start at some state in that range, and once your walk reaches either state a or b, the walk ends. Here, a and b are called absorbing states: once the walk reaches either state, it will never leave that state.

In the lecture notes, the professor derives a formula for finding the probability that the walk ends at state b rather than state a, given that you started in state h :

$$
\begin{gathered}
w_{h}=\frac{\left(\frac{q}{p}\right)^{h}-\left(\frac{q}{p}\right)^{a}}{\left(\frac{q}{p}\right)^{b}-\left(\frac{q}{p}\right)^{a}} \text { for } p \neq q \\
w_{h}=\frac{h-a}{b-a} \text { for } p=q
\end{gathered}
$$

There are similar equations given for the probability you end in state a :

$$
\begin{gathered}
u_{h}=\frac{\left(\frac{q}{p}\right)^{b}-\left(\frac{q}{p}\right)^{h}}{\left(\frac{q}{p}\right)^{b}-\left(\frac{q}{p}\right)^{a}} \text { for } p \neq q \\
u_{h}=\frac{b-h}{b-a} \text { for } p=q
\end{gathered}
$$

Here's an exercise dealing with these probabilities:

A gambler, playing roulette, makes a series of $\$ 1$ bets. He wins a dollar with probability $9 / 19$ and loses a dollar with probability $10 / 19$. He starts with 8 dollars, and determines that he'll quit when he's broke, or when he's reached $\$ 10$. What are the absorption probabilities?

We know that $p=9 / 19$ and $q=10 / 19$, so $q / p=10 / 9$. Our lower bound is $a=0$ and the upper is $b=10$. Finally, our starting state is $h=8$. Plugging these figures into the forumlae above:

$$
\begin{aligned}
& w_{h}=\frac{\left(\frac{10}{9}\right)^{8}-\left(\frac{10}{9}\right)^{0}}{\left(\frac{10}{9}\right)^{10}-\left(\frac{10}{9}\right)^{0}}=.7083 \\
& u_{h}=\frac{\left(\frac{10}{9}\right)^{10}-\left(\frac{10}{9}\right)^{8}}{\left(\frac{10}{9}\right)^{10}-\left(\frac{10}{9}\right)^{0}}=.2917
\end{aligned}
$$

Note that these sum to 1 . This isn't surprising! It's provable (and no, I'm not going to prove it...) that a random walk of this set up will eventually reach one of its absorbing states.

3 Mean number of steps taken until walk stops

Formula in the lecture notes:

$$
m_{h}=\frac{w_{h}(b-h)+u_{h}(a-h)}{p-q}
$$

Let's see how long, on average, our gambler will be playing:

$$
m_{90}=\frac{.7083(10-8)+.2917(0-8)}{\frac{9}{19}-\frac{10}{19}} \approx 17.4
$$

4 Maximum height of the walk

This all has been working towards the test statistic used in BLAST. In BLAST, you start at $h=0$, there's an absorbing state at $a=-1$, but there's no upper absorbing state: the number can get as big as you want! However, the instant you get to -1, it's game over. The concern is with $Y_{\max }$, the largest number your walk reaches before it ends. Class notes show that

$$
\mathbb{P}\left(Y_{\max } \geq y\right)=1-\left(1-\left(1-e^{-\lambda}\right) e^{-\lambda y}\right)^{m}
$$

where $\lambda=\log (q / p)$.

