Lecture 11: Joint Distribution of \((X, Y)\) and Related Quantities

We have seen the prediction of one variable based on the other, using a data set of pairs. If we regard \((X_i, Y_i)\) as i.i.d. samples from a joint distribution \((X, Y)\) there is a corresponding story of predicting one r.v. from another r.v.

e.g.

\[
\begin{array}{c|ccc}
X & \cdots & Y \\
\hline
x_1 & \cdots & y_j \\
\end{array}
\]

The population box determines the distribution of the pair \((X, Y)\) or the joint distribution of \((X, Y)\)

Recall a joint distribution of discrete r.v.’s \(X\) and \(Y\) is described by a joint probability table. For example,

\[
\begin{array}{c|ccc}
Y & \cdots & y_j \\
\hline
x_1 & \cdots & y_j \\
\end{array}
\]

\[p_{ij} = (X = x, Y = y)\]

\[\text{marginal distribution of } X = \text{row sums}\]

\[\text{marginal distribution of } Y = \text{column sums}\]

e.g.

\[
\begin{array}{c|ccc}
1 & 2 & 3 \\
\hline
X & Y \\
\end{array}
\]

without replacement
Properties of Var(·), E(·)

1. \(E(X + Y) = EX + EY \)

2. \(\text{Var}(X + Y) = \text{Var}(X) + 2\text{Cov}(X,Y) + \text{Var}(Y) \)

 where \(\text{Cov}(X,Y) = E[(X - EX)(Y - EY)] \)

 Computation formula: \(\text{Cov}(X,Y) = E[XY] - EXEY \)

3. \(\text{Cov}(\sum a_iX_i, \sum b_jY_j) = \sum_i \sum_j a_i b_j \text{Cov}(X_i, Y_j) \)

 e.g.

 \[
 \begin{align*}
 E(XY) &= \sum x_i \sum y_j p(X = x_i, Y = y_j) \\
 &= [1 \times 2 + 1 \times 3 + 2 \times 1 + 2 \times 3 + 3 \times 1 + 3 \times 2] \times \frac{1}{6} \\
 &= 22 \times \frac{1}{6} = \frac{11}{3}
 \end{align*}
 \]

 \(EX = 2 = EY \implies \text{Cov}(X,Y) = \frac{11}{3} - 4 = -\frac{1}{3} \)

 \(\text{Var}(X) = \frac{1}{3}((-1)^2 + 0^2 + 1^2) = \frac{2}{3} \)

 Recall: \(\text{Cov}(X,Y) = -\frac{1}{N-1}\sigma^2 = -\frac{1}{2} \times \frac{2}{3} = -\frac{1}{3} \)

If \((X, Y)\) are continuous, then the joint distribution is described by a joint density function \(f(x, y) \) and integration replaces summation in the discrete case:

\[
\begin{align*}
\text{marginal } f_X(x) &= \int_{-\infty}^{\infty} f(x, y) \, dy \\
\text{marginal } f_Y(y) &= \int_{-\infty}^{\infty} f(x, y) \, dx
\end{align*}
\]
\[
\text{Cov}(X, Y) = E[XY] - EXEY
\]
\[
= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xyf(x, y)dxdy - \int_{-\infty}^{\infty} xf_X(x)dx \int_{-\infty}^{\infty} yf_Y(y)dy
\]
e.g. Bivariate Normal distribution: standard.
\[
\begin{pmatrix} X \\ Y \end{pmatrix} \sim N \begin{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix} \end{pmatrix} \quad -1 \leq \rho \leq 1
\]
\[
f(x, y) = \frac{1}{2\pi \sqrt{1 - \rho^2}} \exp \left\{ -\frac{1}{2(1 - \rho^2)}(x^2 - 2\rho xy + y^2) \right\}
\]
\[EX = 0, \ EY = 0, \ \text{Var}(X) = 1, \ \text{Var}(Y) = 1, \ \text{Cov}(X, Y) = \rho.\]
Marginal distribution of \(X\) and \(Y\) are \(N(0, 1)\).

General bivariate Normal:
\[
\begin{pmatrix} X \\ Y \end{pmatrix} \sim N \begin{pmatrix} \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \begin{pmatrix} \sigma_1^2 & \rho\sigma_1\sigma_2 \\ \rho\sigma_1\sigma_2 & \sigma_2^2 \end{pmatrix} \end{pmatrix}
\]
\[
\begin{pmatrix} \frac{X-\mu_1}{\sigma_1} \\ \frac{Y-\mu_2}{\sigma_2} \end{pmatrix} \sim N \begin{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix} \end{pmatrix}
\]

Prediction of \(Y\) in terms of mean squared error (MSE)

1. by a constant

Find \(a\) to minimize \(E[Y - a]^2\). Let \(g(a) = E[Y - a]^2 = E(Y^2) - 2aEY + a^2\).

\[
g'(a) = -2EY + 2a = 0 \implies a = EY
\]
i.e. the best constant prediction of \(Y\) is \(EY\). The data-version, \(a = \bar{y}\) minimizes \(g(a) = \frac{1}{n} \sum_{i=1}^{n} (y_i - a)^2\).

2. by a linear function of \(X\).

Find \((a, b)\) that minimizes:
\[
g(a, b) = E[Y - (a + bX)]^2
\]
\[
= E(Y^2) - 2aEY - 2bE(XY) + a^2 + 2abEX + b^2E(X^2)
\]
Differentiate with respect to \(a\) and \(b\)
\[
\frac{\partial g}{\partial a} = -2EY + 2a + 2bEX = 0
\]
\[
\frac{\partial g}{\partial b} = -2E[XY] + 2aEX + 2bE(X^2) = 0
\]
This leads to
\[
EY = a + bEX
\]
\[
E(XY) = aEX + bE(X^2)
\]
Plug (1) into (2): \(a = EY - bEX \)
\[
E[XY] = (EY - bEX)EX + bE[X^2]
\]
\[
\implies b = \frac{E(XY) - EEXY}{E(X^2) - (EX)^2} = \frac{\Cov(X, Y)}{\Var(X)}
\]
\[
= \frac{SD(Y)}{SD(X)} \frac{\Cov(X, Y)}{SD(X)SD(Y)} = \frac{SD(Y)}{SD(X)} \rho_{XY}
\]
\[
\rho_{XY} = \frac{\Cov(X, Y)}{SD(X)SD(Y)} = \text{correlation coefficient of } (X, Y)
\]
We have seen the data version: the minimizer of \(\frac{1}{n} \sum_{i=1}^{n} (y_i - \alpha - \beta x_i)^2 \) is:
\[
\begin{align*}
\alpha &= \bar{y} - \beta \bar{x} \quad \text{and} \quad \beta = \frac{SD(y)}{SD(x)} r_{xy}.
\end{align*}
\]
The regression line \(y = \alpha + \beta x \) can be viewed as an estimate of the population best linear predictor:
\[
\begin{align*}
y &= a + bx \\
a &= EY - bEX \\
b &= \frac{SD(Y)}{SD(X)} \rho_{XY}
\end{align*}
\]

Conditional Distribution & Independence

- For events \(A, B \)
 \[
 P(A \cap B) = P(B)P(A|B) = P(A)P(B|A)
 \]
- For discrete r.v. \((X, Y) \)
 \[
 P(X = x_i, Y = y_j) = P(Y = y_j|X = x_i) = P(X = x_i)P(Y = y_j|X = x_i)
 \]
- Fix \(Y = y \),
 \[
 \begin{align*}
 &P(X = x_i|Y = y_j), i = 1, \ldots, I \text{ gives the conditional distribution of } X \text{ given } Y = y. \\
 &\sum_{i=1}^{I} P(X = x_i|Y = y_j) = 1. P_{X|Y=y} \text{ denotes this distribution.}
 \end{align*}
 \]
• Fix $X = x$,

 — $P(Y = y_j | X = x)$, $j = 1, \ldots, J$ gives the conditional distribution of Y given $X = x$.

 — $P_{Y|X=x}$ denotes this distribution.

• $P(x, y) = P_{Y|X=x}(y)P_X(x) = P_{X|Y=y}P_Y(y)$

• X and Y are independent:

 — iff $P(X = x, Y = y) = P(X = x)P(Y = y)$ for all x, y

 — iff $P_{X|Y=y}(x) = P_X(x)$ for all x, y

 — iff $P_{Y|X=x}(y) = P_Y(y)$ for all x, y

• Facts

 1. If (X, Y) are independent,

 \[E[g(X)h(Y)] = E[g(X)]E[h(Y)] \]

 and in particular,

 \[E(XY) = E(X)E(Y) \implies \text{Cov}(X, Y) = 0 \]

 2. If X, Y are bivariate normal and $\text{Cov}(X, Y) = 0$, then they are independent.

• In the continuous case, the above hold too.

 \[f(x, y) = f_X(x)f_Y(y) \]

 \iff independent

 $\iff f_{Y|X=x}(y) = f_Y(y)$

 $\iff f_{X|Y=y}(x) = f_X(x)$

• If X and Y are independent then $X + Y$ is also called the **convolution** of X and Y and its density is

 \[f(z) = \int f(x)h(z - x)dx \]

 where $f(x)$ is the density of X and $h(y)$ is the density of Y.

Central Limit Theorem (CLT)

If X_1, \ldots, X_n i.i.d with $EX = \mu$, $\text{Var}(X) = \sigma^2$, then for n large,

\[\frac{X_1 + \ldots + X_n - n\mu}{\sqrt{n\sigma}} \sim N(0,1) \]
Equivalently for large n,

$$\sum X_i \sim N(n\mu, n\sigma^2)$$

and $$\bar{X} = \frac{1}{n} \sum X_i \sim N(\mu, \frac{\sigma^2}{n})$$