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Abstract

We consider the problem of sequential decentralized detection, a problem that entails several inter-
dependent choices: the choice of a stopping rule (specifying the sample size), a global decision function
(a choice between two competing hypotheses), and a set of quantization rules (the local decisions on
the basis of which the global decision is made). In this paper we resolve an open problem concerning
whether optimal local decision functions for the Bayesian formulation of sequential decentralized detec-
tion can be found within the class of stationary rules. We develop an asymptotic approximation to the
optimal cost of stationary quantization rules and show how this approximation yields a negative answer
to the stationarity question. We also consider the class of blockwise stationary quantizers and show that
asymptotically optimal quantizers are likelihood-based threshold rules.1

Keywords: sequential detection, decentralized detection, quantizer design, decision-making under con-
straints

1 Introduction

In this paper, we consider the problem of sequential decentralized detection (see, e.g., [13, 14, 7]). Detection
is a classical discrimination or hypothesis-testing problem, in which observations {X1, X2, . . .} are assumed
to be drawn i.i.d. from the conditional distribution P( · |H ) and the goal is to infer the value of the random
variable H , which takes values in {0, 1}. Placing this problem in a communication-theoretic context, a

1Part of this work was presented at the International Symposium on Information Theory, July 2006, Seattle, WA.
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decentralized detection problem is a hypothesis-testing problem in which the decision-maker is not given
access to the raw data points Xn, but instead must infer H based only on a set of quantization rules or local
decision functions, {Un = φn(Xn)}. Finally, placing the problem in a real-time context, the sequential
decentralized detection problem involves a data sequence, {X1, X2, . . .}, and a corresponding sequence of
summary statistics, {U1, U2, . . .}, determined by a sequence of local decision rules {φ1, φ2, . . .}. The goal is
to design both the local decision functions and to specify a global decision rule so as to predict H in a manner
that optimally trades off accuracy and delay. In short, the sequential decentralized detection problem is the
communication-constrained extension of classical formulation of sequential centralized decision-making
problems [see, e.g, 10, 6] to the decentralized setting.

In setting up a general framework of sequential decentralized problems, Veeravalli et al. [15] defined
five problems (“Case A” through “Case E”), distinguished from one another by the amount of information
available to the local sensors. In particular, in Case E, the local sensors are provided with memory and
with feedback from the global decision-maker (also known as the fusion center), so that each sensor has
available to it the current data, Xn, as well as all of the summary statistics from all of the other local
sensors. In other words, each local sensor has the same snapshot of past state as the fusion center; this is
an instance of a so-called “quasi-classical information structure” [5] for which dynamic programming (DP)
characterizations of the optimal decision functions are available. Veeravalli et al. [15] exploit this fact to
show that the decentralized case has much in common with the centralized case, in particular that likelihood
ratio tests are optimal local decision functions at the sensors and that a variant of a sequential probability
ratio test is optimal for the decision-maker.

Unfortunately, however, part of the spirit of the decentralized detection is arguably lost in Case E,
which requires full feedback. In particular, in applications such as power-constrained sensor networks, we
generally do not wish to assume that there are high-bandwidth feedback channels from the decision-maker
to the sensors, nor do we wish to assume that the sensors have unbounded memory. Most suited to this
perspective—and the focus of this paper—is Case A, in which the local decisions are of the simplified form
φn(Xn); i.e., neither local memory nor feedback are assumed to be available.

Noting that Case A is not amenable to dynamic programming and is presumably intractable, Veeravalli et
al. [15] suggest restricting the analysis to the class of stationary local decision functions; i.e., local decision
functions φn that are independent of n. They conjecture that stationary decision functions may actually
be optimal in the setting of Case A (given the intuitive symmetry and high degree of independence of the
problem in this case), even though it is not possible to verify this optimality via DP arguments. The truth or
falsity of this conjecture has remained open since it was first posed by Veeravalli et al. [15, 14].2

In this paper, we resolve this question by showing that stationary decision functions are, in fact, not
optimal for decentralized problems of type A. More specifically, we do so by providing a simple lemma
characterizing the asymptotically optimal cost in the Bayesian formulation (i.e., when the cost per sample
goes to 0). This lemma has analogs in the Neyman-Pearson formulation (see, e.g., [11, 6]) and proves to be
very useful in the study of optimal decision functions in the Bayesian formulation. It allows us to construct
counterexamples to the stationarity conjecture, both in an exact and an asymptotic setting. In the asymptotic
setting, we show that in general there are always a range of prior probabilities for which stationary strategies
are suboptimal. We note in passing that an intuition for the source of this suboptimality is easily provided—it
is due to the asymmetry of the Kullback-Leibler (KL) divergence.

2In a related formulation of the problem, i.e., the Neyman-Pearson formulation, Mei [7] surmised that the pair of optimal
quantizers for minimizing the expected stopping times with respect to two hypotheses (which are proven to be stationary) need not
be the same. In some sense, this open question appears to be the equivalent of Veervalli’s conjecture in the Baysian formulation,
which we address in this paper.
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It is well known that optimal quantizers when unrestricted are necessarily likelihood-based threshold
rules [13]. Our counterexamples and analysis imply that the thresholds need not be stationary (i.e., the
threshold may differ from sample to sample). In the remainder of the paper, we addresses a partial converse
to this result: specifically, if we restrict ourselves to stationary (or blockwise stationary) quantizer designs,
then there exists an optimal design that is a threshold rule based on the likelihood ratio. We prove this result
by establishing a quasiconcavity result for the asymptotically optimal cost function.

The remainder of this paper is organized as follows. We begin in Section 2 with background on the
Bayesian formulation of sequential detection problems, and Wald’s approximation. Section 3 provides a
simple asymptotic approximation of the optimal cost that underlies our main analysis in Section 4. In
Section 5, we establish the existence of optimal decision rules which are likelihood-based threshold rules,
when restricted to be blockwise stationary. We conclude in Section 6.

2 Background

This section provides necessary background on the Bayesian formulation of sequential detection problems,
a dynamic programming chacterization and Wald’s approximation of the optimal cost.

2.1 Sequential detection and dynamic programming

Let P0 and P1 represent the class-conditional distributions of X , when conditioned on {H = 0} and {H =
1} respectively. Focusing the Bayesian formulation of the sequential detection problem [10, 14], we let
π1 = P(H = 1) and π0 = P(H = 0) denote the prior probabilities of the two hypotheses. A sequential
decision rule consists of a stopping time N (defined with respect to the sigma field σ(X1, . . . , XN )), and a
decision function γ (measurable with respect to σ(X1, . . . , XN )). The cost function is a weighted sum of
the sample size N and the probability of incorrect decision

R(N, γ) := E
{
cN + I[γ(X1, . . . , XN ) 6= H]

}
, (1)

where c > 0 is the incremental cost of each sample. The overall goal is to choose the pair (N, γ) so as to
minimize the expected loss (1).

Assume that P0 and P1 are absolutely continuous with respect to one another. For convenience, in the
sequel we shall frequently use f 0(x) and f1(x) to denote the respective density functions with respect to
some dominating measure (e.g., Lesbegue for continous variables, or counting measure for discrete-valued
variables).

It is well known that the optimal solution of the sequential decision problem can be characterized re-
cursively using dynamic programming (DP) arguments [1, 17, 10]. Furthermore, as we develop in detail
in Appendix A, the DP characterization holds even when X1, X2, . . . are independent but not identically
distributed conditional on H . Although very useful for classical (centralized) sequential detection, the DP
approach is not always straightforward to apply to decentralized versions of sequential detection. We will
find, however, that the DP approach is useful for evaluating the accuracy of approximations to the optimal
cost.

2.2 Wald’s approximation

When all X1, X2, . . . are i.i.d. conditioned on H , there is an alternative to the DP approach for approxi-
mating cost of the optimal sequential test, originally due to Wald (cf. [11]), that we describe here. It can be
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shown that the optimal stopping rule for the cost function (1) takes the form

N = inf
{
n ≥ 1

∣∣ Ln(X1, . . . , Xn) :=
n∑

i=1

log
f1(Xi)

f0(Xi)
/∈ (a, b)

}
, (2)

for some real numbers a < b. Given this stopping rule, the optimal decision function has the form

γ(LN ) =

{
1 if LN ≥ b,

0 if LN ≤ a.
(3)

We now develop an alternative expression for the optimal cost of the decision rule (3). Consider the two
types of error:

α = P0(γ(LN ) 6= H) = P0(LN ≥ b)

β = P1(γ(LN ) 6= H) = P1(LN ≤ a).

Now define µ1 = E1[log
f1(X1)
f0(X1)

] = D(f1||f0) and µ0 = −E0[log
f1(X1)
f0(X1)

] = D(f0||f1). With this notation,

the cost J(a, b) of the decision rule based on envelopes a and b can be written as

J(a, b) = E
{
cN + I[γ(X1, . . . , XN ) 6= H]

}

= π1
E1(cN + I[LN ≤ a]) + π0

E0(cN + I[LN ≥ b]) (4)

= cπ1 E1LN

µ1
+ cπ0 E0LN

−µ0
+ π0α + π1β, (5)

where the second line follows from Wald’s equation [16]. With a slight abuse of notation, we shall also use
D(α, β) to denote a function in [0, 1]2 → R such that:

D(α, β) := α log
α

β
+ (1 − α) log

1 − α

1 − β
.

Let us now develop a series of approximations of the cost, following Wald (cf. [11]). To begin, the errors
α and β are related to a and b by the classical inequalties α ≤ (1 − β)/eb and β ≤ ea(1 − α). In general,
these inequalities need not hold with equality because the likelihood ratio LN at the optimal stopping time
N might overshoot either a or b (instead of attaining precisely the value a or b at the stopping time). Wald’s
approximation is based on ignoring this overshoot and replacing the inequalities by equalities to solve for
corresponding values of α and β:

α ≈ 1 − ea

eb − ea
and β ≈ e−b − 1

e−b − e−a
. (6)

We can also express a and b in terms of α and β:

a ≈ a(α, β) := log
β

1 − α
and b ≈ b(α, β) := log

1 − β

α
. (7)

The mapping (6) and (7) between (a, b) and (α, β) yields the following approximation

E0[LN ]

−µ0
≈ (1 − α)a + αb

−µ0
(8a)

E1[LN ]

µ1
≈ (1 − β)b + βa

µ1
(8b)
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Plugging this approximation into (4) and using (7), we obtain Wald’s approximation for the cost of a se-
quential test with error α and β:

G(α, β) := cπ0 D(α, 1 − β)

µ0
+ cπ1 D(1 − β, α)

µ1
+ π0α + π1β, (9)

In the following section we exploit this approximation in our analysis of quantizer design.

3 Characterization of optimal quantizers

Turning now to the decentralized setting, the primary challenge lies in the design of the quantization rules φn.
A quantization rule φn is a function that maps X to the discrete space U = {0, . . . , K − 1} for some natural
number K. Any fixed set of quantization rules φn yields a sequence of compressed data Un = φn(Xn), to
which the classical theory can be applied. We are thus interested in choosing quantization rules φ1, φ2, . . .
so that the error, resulting from applying the optimal sequential test to the sequence of sufficient statistics
U1, U2, . . ., is minimized over some space of quantization rules. In the decentralized setting, we use

f i
φn

(u) := Pi(φn(Xn) = u), for i = 0, 1,

to denote the distributions of the compressed data, conditioned on the hypothesis.
We say that a quantizer design is stationary if the rule φn is independent of n; in this case, we simplify

the notation to f1
φ and f0

φ . In addition, we define the KL divergences µ1
φ := D(f1

φ||f0
φ) and µ0

φ := D(f0
φ||f1

φ).
Moreover, let Gφ denote the analogue of the function G in equation (9), defined using µi

φ, i = 0, 1. In this
section, we describe how—by exploiting Wald’s approximation for sequential problems—it is possible to
provide an asymptotic characterization of the optimal cost of any stationary quantization rule.

3.1 Approximate quantizer design

Given a fixed stationary quantizer φ, Wald’s approximation (9) suggests the following strategy for approx-
imating the cost of sequential detection strategy. For a given set of errors α and β, first assign the values
of thresholds a = a(α, β) and b = b(α, β) using approximation (7). Then use the quantity Gφ(α, β) as an
approximation to the true cost Jφ(a, b). This approximation essentially ignores the overshoot of the likeli-
hood ratio LN . It is possible to analyze this overshoot to obtain a finer approximation (cf. [11, 6, 9]). For
the purpose of quantizer design, however, as we shall see, the approximation error incurred from ignoring
the overshoot is at most O(c), whereas the choice of quantizer φ generally results in a change of the order
Θ(c log c−1).

A key assumption in our analysis is that

sup
φ∈Φ

sup
u∈U

log(f1
φ(u)/f0

φ(u)) ≤ M (10)

for some constant M over a class Φ of quantizer functions φ : X → U . Note that this assumption holds in
many cases of interest. For instance, when Xn takes its values in a finite set of discrete elements X , and both
P1 and P0 place positive probability mass on all values in X , the assumption clearly holds. The assumption
also holds when X is a continuous domain and supx∈X | log(f1(x)/f0(x))| < +∞.

The following proposition guarantees that the approximation Gφ is asymptotically exact up to an additive
error of size O(c), and provides a basis for characterizing the optimal cost:
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Proposition 1. (a) The error in the approximation (9) is bounded as

|Jφ(a, b) − Gφ(α, β)| ≤ c M

(
π0

µ0
φ

+
π1

µ1
φ

)
. (11)

(b) Define the optimal cost J∗
φ = infa,b Jφ(a, b). Then as c → 0, we have

J∗
φ =

(
π0

µ0
φ

+
π1

µ1
φ

)
c log

1

c
+ O(c). (12)

Proof: (a) We begin by bounding the error in the approximation (7). By definition of the stopping time N ,
we have either (i) b ≤ LN ≤ b + M or (ii) a − M ≤ LN ≤ a. Consider all realizations u1, . . . , un for
which condition (i) holds; for any such sequence, we have

ebP0(u1, . . . , un) ≤ P1(u1, . . . , un)

e(b+M)P0(u1, . . . , un) ≥ P1(u1, . . . , un).

Taking a sum over all such realizations, using the definition of α and β, and performing some algebra yields
the inequality ebα ≤ 1−β ≤ eb+Mα, or equivalently b ≤ b(α, β) = log 1−β

α ≤ b+M . Similar reasoning

for case (ii) yields a − M ≤ a(α, β) = log β
1−α ≤ a. Now, note that

E0LN = αE0[LN |LN ≥ b] + (1 − α)E0[LN |LN ≤ a].

Conditioning on the event LN ∈ [b, b + M ], we have |LN − b(α, β)| ≤ M . Similarly, conditioning on the
event LN ∈ [a−M, a], we have |LN −b(α, β)| ≤ M . This yields |E0LN − (−D(α, 1−β))| ≤ M . Similar
reasoning yields |E1LN − D(1 − β, α)| ≤ M .

(b) By part (a), it suffices to establish the asymptotic behavior (12) for the quantity J̃φ(a, b) = infα,β Gφ(α, β),
where the infimum is taken among pairs of realizable error probabilities (α, β). Moreover, we only need to
consider the asymptotic regime α+β → 0, since the error probabilities α and β vanish as c → 0. It is simple
to see that D(1 − β, α) = log(1/α) + o(1), and D(1 − α, β) = log(1/β) + o(1). Hence, infα,β Gφ(α, β)
can be expressed as

inf
α,β

{
π0α + π1β + cπ0 log(1/β)

µ0
φ

+ cπ1 log(1/α)

µ1
φ

}
+ o(c). (13)

This infimum, taken over all positive (α, β), is achieved at α∗ = cπ1

µ1
φ
π0 and β∗ = cπ0

µ0
φ
π1 . We now show that

these error probabilities can be approximately realized (for c small) by using a sufficiently large threshold
b > 0 and small threshold a < 0 while incuring an approximation cost of order O(c). Indeed, let us
choose thresholds a′ and b′ such that e−(b′+M)/2 ≤ α∗ ≤ e−b′ , and ea′−M/2 ≤ β∗ ≤ ea′

. Let α′

and β′ be the corresponding errors associated with these two thresholds. As proved above, we also have
α′ ∈ (e−(b′+M)/2, e−b′) and β′ ∈ (ea′−M/2, ea′

). Clearly, |α∗ − α′| ≤ e−b′(1 − e−M ) = O(α∗) = O(c).
Similarly, |β∗ − β′| = O(c). By the mean value theorem,

| log(1/α∗) − log(1/α′)| ≤ |α∗ − α′|eb′+M ≤ eM (1 − e−M ) = O(1).

Similarly, log(1/β∗) − log(1/β′) = O(1). Hence, the approximation of (α∗, β∗) by the realizable (α′, β′)
incurs a cost at most O(c).
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c 0.01 0.009 0.008 0.007 0.006 0.005 0.004 0.003 0.002 0.001

J∗ 0.0320 0.0297 0.0269 0.0241 0.0212 0.0178 0.0145 0.0112 0.0078 0.0042
J̃ 0.0302 0.0277 0.0250 0.0224 0.0196 0.0168 0.0139 0.0108 0.0076 0.0041

J̃/J∗ 0.9447 0.9313 0.9313 0.9288 0.9268 0.9409 0.9550 0.9682 0.9772 0.9737

Table 1. Comparison of the (exact) optimal cost J∗ computed by the dynamic programming method, and an
approximation of the optimal cost denoted by J̃ using Eq. (14a) as c decreases.

Plugging the quantities α∗, β∗ into equation (13) yields

inf
α,β

Gφ(α, β) =

(
π0

µ0
φ

+
π1

µ1
φ

)
c log

1

c
+

(
π0

µ0
φ

+
π1

µ1
φ

+
π0

µ0
φ

log
µ0

φπ1

π0
+

π1

µ1
φ

log
µ1

φπ0

π1

)
c + O(c)(14a)

=

(
π0

µ0
φ

+
π1

µ1
φ

)
c log

1

c
+ O(c) (14b)

as claimed.

3.2 A simple illustration

Consider two simple hypotheses P0 and P1 where X takes its values from the set {1, 2}. In particular,
[P0(1) P0(2)] = [0.8 0.2] and [P1(1) P1(2) = [0.01 0.99]. The priors are π0 = π1 = 0.5. Table 1 shows
that the approximation given by (14a) can provide a reasonable approximation to the cost for the optimal
sequential test when c is sufficiently small.

4 Suboptimality of stationary designs

We now consider the structure of optimal quantizers. It was shown by Tsitsiklis [13] that optimal quantizers
φn take the form of threshold rules based on the likelihood ratio f 1(Xn)/f0(Xn). Veeravalli et al. [15, 14]
asked whether these rules can be taken to be stationary, a problem that has remained open. In this section,
we resolve this question with a negative answer. First, we provide a counterexample in which the optimal
quantizer is not stationary. Next, we show that using a stationary quantizer can be suboptimal even in an
asymptotic sense (i.e., as c → 0).

4.1 Illustrative counterexample

We begin with a simple but concrete demonstration of the suboptimality of stationary designs. Consider a
problem in which X ∈ X = {1, 2, 3} and the conditional distributions take the form

f0(x) =
[

8
10

1999
10000

1
10000

]
and f1(x) =

[
1
3

1
3

1
3

]
.

Suppose that the prior probabilities are π1 = 8
100 and π0 = 92

100 , and that the cost for each sample is c = 1
100 .

If we restrict to binary quantizers (i.e., U = {0, 1}), then there are only three possible quantizers:

1. Design A: φA(Xn) = 0 ⇐⇒ Xn = 1. As a result, the corresponding distribution for Un is specified
by f0

φA
(un) = [45

1
5 ] and f1

φA
(u) = [13

2
3 ].
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Method JA(0.08) JB(0.08) JC(0.08) J∗(0.08)

Cost 0.0567 0.0532 0.0800 0.0528

Table 2. Numerically computed costs for the three stationary designs JA, JB and JC , for the mixed design
J∗.

2. Design B: φB(Xn) = 0 ⇐⇒ Xn ∈ {1, 2}. The corresponding distribution for Un is given by
f0

φB
(u) = [ 9999

10000
1

10000 ] and f1
φB

(u) = [23
1
3 ].

3. Design C: φC(Xn) = 0 ⇐⇒ Xn ∈ {1, 3}. The corresponding distribution for Un is specified by
f0

φC
∼ [ 8001

10000
1999
10000 ] and f1

φC
(u) = [23

1
3 ].

Now consider the three stationary strategies, each of which uses only one fixed design, A, B or C.
For any given stationary quantization rule φ, we have a classical centralized sequential problem, for which
the optimal cost (achieved by a SPRT) can be computed using a dynamic-programming procedure [17, 1].
Accordingly, for each stationary strategy, we compute the optimal cost function J for 106 points on the p-
axis by performing 300 updates of Bellman’s equation (24). In all cases, the difference in cost between the
299th and 300th updates is less than 10−6. Let JA, JB and JC denote the optimal cost function for sequential
tests using all A’s, all B’s, and all C’s, respectively. When evaluated at π1 = 0.08, these computations yield
the numerical values shown in Table 2.

Finally, we consider a non-stationary rule obtained by applying design A for only the first sample, and
applying design B for the remaining samples. Again using Bellman’s equation, we find that the cost for this
design is

J∗ = min{g(0.08), c + JB(P (H = 1|u1 = 0))P (u1 = 0)+

JB(P (H = 1|u1 = 1))P (u1 = 1)} = 0.052767,

which is better than any of the stationary strategies.
Note the slim improvement (0.0004) of J∗ over the best stationary rule JB . This is due in part to the

choice of a small per-sample cost c = 0.01; for larger c we do not obtain a counterexample when using the
distributions given above. More significantly, however, our non-stationary rule differs from design rule B
by only the first sample. This suggests that one can achieve better cost by alternating between using design
A and design B on the odd and even samples, respectively. We prove this formally in the asymptotic setting
in the next section.

4.2 Asymptotic suboptimality of stationary designs

We now prove that there is always a range of prior probabilities for which stationary quantizer designs are
suboptimal. Our result stems from the following observation: the form of the approximation (9) dictates
that in order to achieve a small cost we need to choose a quantizer φ for which the KL divergences µ0

φ :=

D(f0
φ||f1

φ) and µ1
φ := D(f1

φ||f0
φ) are both as large as possible. Due to the asymmetry of the KL divergence,

however, these maxima are not necessarily achieved by a single quantizer φ. This suggests that it should be
possible to construct a non-stationary quantizer with better cost than a stationary design.
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Proposition 2. Let φ1 and φ2 be any two quantizers. If the following inequalities hold

µ0
φ1

< µ0
φ2

and µ1
φ1

> µ1
φ2

(15)

then there exists a non-empty interval (A, B) ⊆ (0, +∞) such that as c → 0,

J∗
φ1

≤ J∗
φ1,φ2

≤ J∗
φ2

if
π0

π1
≤ A

J∗
φ1,φ2

< min{J∗
φ1

, J∗
φ2
} − Θ(c log c−1) if

π0

π1
∈ (A, B)

J∗
φ1

≥ J∗
φ1,φ2

≥ J∗
φ2

if
π0

π1
≥ B,

where J∗
φi

denotes the optimal cost of the stationary design based on the quantizer φi, and J∗
φ1,φ2

denotes
the optimal cost of a sequential test that alternates between using φ1 and φ2 on odd and even samples
respectively.

Proof: According to Proposition 1, we have

J∗
φi

=

(
π0

µ0
φi

+
π1

µ1
φi

)
c log c−1 + O(c), i = 0, 1 (16)

Now consider the sequential test that applies quantizers φ1 and φ2 alternately to odd and even samples.
Furthermore, let this test consider two samples at a time. Let f 0

φ1φ2
and f1

φ1φ2
denote the induced conditional

probability distributions, jointly on the odd-even pairs of quantized variables. From the additivity of the KL
divergence and assumption (15), there holds:

D(f0
φ1φ2

||f1
φ1φ2

) = µ0
φ1

+ µ0
φ2

> 2µ0
φ1

(17a)

D(f1
φ1φ2

||f0
φ1φ2

) = µ1
φ1

+ µ1
φ2

< 2µ1
φ1

. (17b)

Clearly, the cost of the proposed sequential test is an upper bound for J ∗
φ1,φ2

. Furthermore, the gap between
this upper bound and the true optimal cost is no more than O(c). Hence, as in the proof of Proposition 1, as
c → 0, the optimal cost J∗

φ1,φ2
can be written as

(
2π0

µ0
φ1

+ µ0
φ2

+
2π1

µ1
φ1

+ µ1
φ2

)
c log c−1 + O(c). (18)

From equations (16) and (18), simple calculations yield the claim with

A =
µ0

φ1
(µ1

φ1
− µ1

φ2
)(µ0

φ1
+ µ0

φ2
)

µ1
φ1

(µ1
φ1

+ µ1
φ2

)(µ0
φ2

− µ0
φ1

)
< B =

µ0
φ2

(µ1
φ1

− µ1
φ2

)(µ0
φ1

+ µ0
φ2

)

µ1
φ2

(µ1
φ1

+ µ1
φ2

)(µ0
φ2

− µ0
φ1

)
.

Remarks: Let us return to the example provided in the previous subsection. Note that the two quan-
tizers φA and φB satisfy assumption (15), since D(f 0

φB
||f1

φB
) = 0.4045 < D(f0

φA
||f1

φA
) = 0.45 and

D(f1
φB

||f0
φB

) = 2.4337 > D(f1
φA

||f0
φA

) = 0.5108. As a result, there exist priors for which a sequential test
using stationary quantizer design (either φA, φB or φC for all samples) is not optimal.
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5 On asymptotically optimal blockwise stationary designs

Despite the possible loss in optimality, it is useful to consider some form of stationarity in order to re-
duce computational complexity of the optimization and decision process. In this section, we consider
the class of blockwise stationary designs, meaning that there exists some natural number T such that
φT+1 = φ1, φT+2 = φ2, and so on. For each T , let CT denote the class of all blockwise stationary de-
signs with period T . We suppose throughout the analysis that each decision rule φn (n = 1, . . . , T ) satisfies
assumption (10). Thus, as T increases, we have a hierarchy of increasingly rich quantizer classes that will
be seen to yield progressively better approximations to the optimal solution.

For a fixed prior (π0, π1) and T > 0, let (φ1, . . . , φT ) denote a quantizer design in CT . The cost J∗
φ of

asymptotically optimal sequential test using this quantizer design is
(

Tπ0

µ0
φ1

+ . . . + µ0
φT

+
Tπ1

µ1
φ1

+ . . . + µ1
φT

)
c log c−1 + O(c). (19)

This formula reveals an important property of asymptotically optimal quantization—-namely, the asymp-
totically optimal quantizer design is the one that minimizes the multiplicative constant associated with the
c log c−1 term. With a harmless abuse of notation, from now on we shall use J ∗

φ to denote this constant,
which becomes a function of φ. More precisely, J ∗

φ is a function of the following vector of probabilities
induced by the quantizer:

(f0
φ(1), . . . , f0

φ(K − 1), f1
φ(1), . . . , f1

φ(K − 1)).

We are interested in the properties of a quantization rule φ that minimizes J ∗
φ.

We begin with a simple result on the structure of asymptotically optimal quantizer designs:

Proposition 3. For a fixed prior (π0, π1) and T > 0, let (φ∗
1, . . . , φ

∗
T ) be the optimal quantizer design

among those in CT .

(a) For any 1 ≤ i, j ≤ T , there holds (µ0
φ∗

i
− µ0

φ∗

j
)(µ1

φ∗

i
− µ1

φ∗

j
) ≤ 0.

(b) If there is a pair (i, j) such that (µ0
φ∗

i
− µ0

φ∗

j
)(µ1

φ∗

i
− µ1

φ∗

j
) < 0 then there exists a prior π0 so that

(φ∗
1, . . . , φ

∗
T ) is not optimal in CT .

Proof. To establish claim (a), suppose that for some pair (i, j), there holds (µ0
φ∗

i
− µ0

φ∗

j
)(µ1

φ∗

i
− µ1

φ∗

j
) > 0.

Without loss of generality, assume that µ0
φ∗

i
> µ0

φ∗

j
and µ1

φ∗

i
> µ1

φ∗

j
). The asymptotic cost (19) can then be

improved by replacing quantizer design φ∗
j at the periodic index j by the design φ∗

i . The proof of part (b) is
similar to that of Proposition 2.

It is well known [13] that optimal quantizers—when unrestricted—can be expressed as threshold rules
based on the log likelihood ratio (LLR). Our counterexamples in the previous sections imply that the thresh-
olds need not be stationary (i.e., the threshold may differ from sample to sample). In the remainder of
this section, we addresses a partial converse to this issue: specifically, if we restrict ourselves to stationary
(or blockwise stationary) quantizer designs, then there exists an optimal design consisting of LLR-based
threshold rules.

In the analysis to follow, we assume that T = 1 so as to simplify the exposition. Our main result, stated
below as Theorem 8, provides a characterization of the optimal quantizer φ∗

1, denoted more simply by φ∗.
Due to the symmetry in the roles of individual quantizer functions, φn, for n = 1, . . . , T , it is straightforward
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to show that results for T = 1 can be generalized to blockwise stationary quantizers {φn, n = 1, . . . , T}
for the case T > 1.

Definition 4. The quantizer design function φ : X → U is said to be a likelihood ratio threshold rule if there
are thresholds d0 = −∞ < d1 < . . . < dK = +∞, and a permutation (u1, . . . , uK) of (0, 1, . . . , K − 1)
such that for l = 1, . . . , K, with P0-probability 1, we have:

φ(X) = ul if dl−1 ≤ f1(X)/f0(X) ≤ dl,

When f1(X)/f0(X) = dl−1, set φ(X) = ul−1 or φ(X) = ul with P0-probability 1.3

Previous work on the extremal properties of likelihood ratio based quantizers guarantees that the Kullback-
Leibler divergence is maximized by a LLR-based quantizer [12]. In our case, however, recall that the optimal
cost function J∗

φ takes the form

J∗
φ =

π0

µ0
φ

+
π1

µ1
φ

.

In particular, this function depends on the pair of KL divergences, µ0
φ and µ1

φ, which are related to one
another in a nontrivial manner. Hence, establishing asymptotic optimality of LLR-based rules for this cost
function does not follow from existing results, but rather requires further understanding of the interplay
between these two KL divergences.

The following lemma concerns certain “unnormalized” variants of the Kullback-Leibler (KL) diver-
gence. Given vectors a = (a0, a1) and b = (b0, b1), we define functions D̃0 and D̃1 mapping from R

4
+ to

the real line as follows:

D̃0(a, b) := a0 log
a0

a1
+ b0 log

b0

b1
(20a)

D̃1(a, b) := a1 log
a1

a0
+ b1 log

b1

b0
. (20b)

These functions are related to the standard (normalized) KL divergence via the relations D̃0(a, 1 − a) ≡
D(a0, a1), and D̃1(a, 1 − a) ≡ D(a1, a0).

Lemma 5. For any positive scalars a1, b1, c1, a0, b0, c0 such that a1

a0
< b1

b0
< c1

c0
, at least one of the following

two conditions must hold:

D̃0(a, b + c) > D̃0(b, c + a) and D̃1(a, b + c) > D̃0(b, c + a), or (21a)

D̃0(c, a + b) > D̃0(b, c + a) and D̃1(c, a + b) > D̃0(b, c + a). (21b)

The above lemma implies that under certain conditions on the ordering of the probability ratios, one
can increase both KL divergences by re-quantizing. This insight is used in the following lemma to establish
that the optimal quantizer φ behaves almost like a likelihood ratio rule. To state the following result, recall
that the essential supremum is the infimum of the set of all η such that f(x) ≤ η for P0-almost all x in the
domain, for any measurable function f .

3This last requirement of the definition is termed the canonical likelihood ratio quantizer by Tsitsiklis [12]. Although one could
consider performing additional randomization when there are ties, our later results (in particular, Lemma 7) establish that in this
case, randomization will not further decrease the optimal cost J

∗

φ .
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Lemma 6. If φ is an asymptotically optimal quantizer, then for any pairs of (u1, u2) ∈ U , u1 6= u2, there
holds:

f1(u1)

f0(u1)
/∈
(

ess inf
x:φ(x)=u2

f1(x)

f0(x)
, ess sup

x:φ(x)=u2

f1(x)

f0(x)

)
.

Note that a likelihood ratio rule guarantees something stronger: For P0-almost all x such that φ(x) = u1,
f1(x)/f0(x) takes a value either to the left or to the right, but not to both sides, of the interval specified
above.

As we will show, the proof that there exists an optimal LLR-based rule turns out to reduce to the problem
of showing that the optimal cost function J ∗

φ is a quasiconcave function with respect the space of quantizers.
(A function F is quasiconcave if and only if for any η, the level set {F (x) ≥ η} is a convex set). Since
the minima of a quasiconcave function are generally extreme points of the function’s domain [3], and the
extreme points in the quantizer space are LLR-based rules [12], we deduce that there exists an optimal
quantizer that is LLR-based. In Lemma 7, we present a proof of quasiconcavity for the case of binary
quantizers. This result is sufficient to show that a LLR-based optimal quantizer exists.

Let F : [0, 1]2 → R be given by

F (a0, a1) =
c0

D(a0, a1) + d0
+

c1

D(a1, a0) + d1
. (22)

Lemma 7. For any non-negative constants c0, c1, d0 and d1, the function F defined in equation (22) is
quasiconcave.

The following theorem is the main result of this section.

Theorem 8. Restricting to the class of (blockwise) stationary and deterministic decision rules, there exists
an asymptotically optimal quantizer φ that is a likelihood ratio rule.

We present the full proof of this theorem in Appendix E, which follows from Lemma 6 and Lemma 7.
We remark that our theorem is restricted to deterministic quantizer designs. We conjecture that J ∗

φ is qua-
siconcave with respect to space of quantizers in general, which implies that Theorem 8 also holds in the
(larger) space of randomized quantizer rules. As noted above, Lemma 7 establishes quasiconcavity of J ∗

φ

for binary quantizer rules, which implies that our conjecture certainly holds for the case of binary quantizers.

6 Discussion

The problem of decentralized sequential detection encompasses a wide range of problems involving different
assumptions about the amount memory available at the local sensors and the nature of the feedback from
the central decision-maker to the local sensors. A taxonomy has been provided by Veeravalli et al. [15].
Their analysis focused on Case E, the setting of a system with full feedback and memory restricted to past
decisions. In this setting, the local sensors and the central decision-maker possess the same information
state, and the problem can be attacked using dynamic programming and other tools of classical sequential
analysis. This mathematical tractability is obtained, however, at a cost of realism. In many applications of
the decentralized sequential detection it will not be feasible to feed back all of the decisions from all of the
local sensors; indeed, in applications such as sensor networks there may be no feedback at all. Moreover,
the local storage capacity may be very limited. In this paper we have focused on this more impoverished
case, assuming that neither feedback nor local memory are available (Case A in the taxonomy of Veeravalli
et al.).
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We have provided an asymptotic characterization of the cost of the optimal sequential test in the setting
of Case A. This characterization has allowed us to resolve the open question as to whether optimal quantizers
are stationary. In particular, we have provided an explicit counterexample to the stationary conjecture.
Moreover, we have shown that in the asymptotic setting (i.e., when the cost per sample goes to zero) we
are guaranteed a range of prior probabilities for which stationary strategies are suboptimal. We have also
presented a new result concerning the quasiconcavity of the optimal cost function. This result has allowed
us to establish that asymptotically optimal quantizers are likelihood-based threshold rules when restricted to
the class of blockwise stationary quantizers.
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A Dynamic-programming characterization

In this appendix, we describe how the optimal solution of the sequential decision problem can be character-
ized recursively using dynamic programming (DP) arguments [1, 17]. We assume that X1, X2, . . . are inde-
pendent but not identically distributed conditioned on H . We use subscript n in f 0

n(x) and f1
n(x) to denote

the probability mass (or density) function conditioned on H = 0 and H = 1, respectively. It has been shown
that the sufficient statistic for the DP analysis is the posterior probability pn = P (H = 1|X1, . . . , Xn),
which can be updated as by:

p0 = π1; pn+1 =
pnf1

n+1(Xn+1)

pnf1
n+1(Xn+1) + (1 − pn)f0

n+1(Xn+1)
.

Finite horizon: First, let us restrict the stopping time N to a finite interval [0, T ] for some T . At each time
step n, define JT

n (pn) to be the minimum expected cost-to-go. At n = T , it is easily seen that

JT
T (pT ) = g(pT ),

where g(p) := min{p, 1−p}. In addition, the optimal decision function γ at time step T , which is a function
of pT , has the following form: γT (pT ) = 1 if p ≥ 1/2 and 0 otherwise.

For 0 ≤ n ≤ T − 1, a standard DP argument gives the following backward recursion:

JT
n (pn) = min{g(pn), c + AT

n (pn)},

where

AT
n (pn) = E{JT

n+1(pn+1)|X1, . . . , Xn} =
∑

xn+1

JT
n+1(pn+1)(pnf1

n+1(xn+1) + (1 − pn)f0
n+1(xn+1)).

The decision whether to stop depends on pn: If g(pn) ≤ c+AT
n (pn), there is no additional benefit of making

one more observation, thus we stop. The final decision γ(pn) takes value 1 if pn ≥ 1/2 and 0 otherwise.
The overall optimal cost function for the sequential test just described is JT

0 .
It is known that the functions JT

n and AT
n are concave and continuous in p that take value 0 when p = 0

and p = 1 [1]. Furthermore, the optimal region for which we decide Ĥ = 1 is a convex set that contains
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pn = 1, and the optimal region for which we decide Ĥ = 0 is a convex set that contains pn = 0. Hence, we
stop as soon as either pn ≤ p+

n or pn ≥ p−n for some 0 < p+
n < p−n . This corresponds to a likelihood ratio

test: For some threshold an < 0 < bn, let:

N = inf{n ≥ 1 |Ln :=
n∑

i=1

log
f1

i (Xi)

f0
i (Xi)

≤ an or Ln ≥ bn}. (23)

Set γ(LN ) = 1 if Ln ≥ bn and 0 otherwise.

Infinite horizon: The original problem is solved by relaxing the restriction that the stopping time is bounded
by a constant T . Letting T → ∞, for each n, the optimal expected cost-to-go J T

n (pn) decreases and tends
to a limit denoted by J(pn) := limT→∞ Jn(pn).

Note that since X1, X2, . . . are i.i.d. conditionally on a hypothesis H , the two functions JT
n (p) and

JT+1
n+1 (p) are equivalent. As a result, by lettting T → ∞, Jn(p) independent of n and can be denoted as

J(p). A similar time-shift argument also yields that the cost function limT→∞ AT
n (p) is independent of n.

We denote this limit by A(p). It is then easily seen that the optimal stopping time N is a likelihood ratio test
where the thresholds an and bn are independent of n. We use a to denote the former and b the latter. The
functions J(p) and A(p) are related by the following Bellman equation [2]:

J(p) = min{g(p), c + A(p)} for all p ∈ [0, 1]. (24)

The cost of the optimal sequential test of the problem is J(π1).

B Proof of Lemma 5

By renormalizing, we can assume w.l.o.g. that a1 + b1 + c1 = a0 + b0 + c0 = 1. Also w.l.o.g, assume that
b1 ≥ b0. Thus, c1 > c0 and a1 < a0. Replacing c1 = 1 − a1 − b1 and c0 = 1 − a0 − b0, the inequality
c1/c0 > b1/b0 is equivalent to a1 < a0b1/b0 − (b1 − b0)/b0.

We fix values of b, and consider varying a ∈ A, where A denotes the domain for (a0, a1) governed by
the following equality and inequality constraints:

0 < a1 < 1 − b1 (25a)

0 < a0 < 1 − b0 (25b)

a1 < a0 (25c)

a1 < a0b1/b0 − (b1 − b0)/b0. (25d)

Note that the third constraint is redundant due to the other three constraints. In particular, constraint (25d)
corresponds to a line passing through ((b1 − b0)/b1, 0) and (1 − b0, 1 − b1) in the (a0, a1) coordinates.
As a result, A is the interior of the triangle defined by this line and two other lines given by a1 = 0 and
a0 = 1 − b0 (see Figure B).

It is straightforward to check that both D̃0(a, 1−a) and D̃1(a, 1−a) are convex functions with respect to
(a0, a1). In addition, the derivatives with respect to a1 are a1−a0

a1(1−a1) < 0 and log a1(1−a0)
a0(1−a1) < 0, respectively.

Hence, both functions can be (strictly) bounded from below by increasing a1 while keeping a0 unchanged,
i.e., by replacing a1 by a′1 so that (a0, a

′
1) lies on the line given by (25d), which is equivalent to the constraint

c1/c0 = b1/b0. Let c′1 = 1 − b1 − a′1, then c′1/c0 = b1/b0.
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a0

a1

1 − b0

1 − b1

(b1 − b0)/b1

A

Figure 1: Illustration of the domain A.

We have

D̃0(a, b + c)
(a)
> a′1 log

a′1
a0

+ (b1 + c′1) log
b1 + c′1
b0 + c0

(26a)

(b)
= a′1 log

a′1
a0

+ c′1 log
c′1
c0

+ b1 log
b1

b0
(26b)

(c)

≥ (a′1 + c′1) log
a′1 + c′1
a0 + c0

+ b1 log
b1

b0
(26c)

= D̃0(a + c, b), (26d)

where inequality (c) follows from an application of the log-sum inequality [4]. A similar conclusion holds
for D̃1(a, b + c) as well.

C Proof of Lemma 6

Suppose the opposite is true, that there exist two sets S1, S2 with positive P0-measure such that φ(X) = u2

for any X ∈ S1 ∪ S2, and
f1(S1)

f0(S1)
<

f1(u1)

f0(u1)
<

f1(S2)

f0(S2)
. (27)

By reassigning S1 or S2 to the quantile u1, we are guaranteed to have a new quantizer φ′ such that µ0
φ′ > µ0

φ∗

and µ1
φ′ > µ1

φ∗ , thanks to Lemma 5. As a result, φ′ has a smaller sequential cost J∗
φ′ , which is a contradiction.

D Proof of Lemma 7

The proof of this lemma is conceptually straightforward, but the algebra is involved. To simplify the nota-
tion, we replace a0 by x, a1 by y, the function D(a0, a1) by f(x, y), and the function D(a1, a0) by g(x, y).
Finally, we assume that d0 = d1 = 0; the proof will reveal that this case is sufficient to establish the more
general result with arbitrary non-negative scalars d0 and d1.

We have f(x, y) = x log(x/y) + (1− x) log(1− x/1− y) and g(x, y) = y log(y/x) + (1− y) log(1−
y/1− x). Note that both f and g are convex functions and are non-negative in their domains, and moreover
that we have F (x, y) = c0/f(x, y) + c1/g(x, y). In order to establish the quasiconcavity of F , it suffices to
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show that for any (x, y) in the domain of F , whenever vector h = [h0 h1] ∈ R
2 such that hT∇F (x, y) = 0,

there holds
hT∇2F (x, y) h ≤ 0. (28)

Here we adopt the standard notation of ∇F for the gradient vector of F , and ∇2F for its Hessian matrix.
We also use Fx to denote the partial derivative with respect to variable x, Fxy to denote the partial derivative
with respect to x and y, and so on.

We have ∇F = − c0∇f
f2 − c1∇g

g2 . Thus, it suffices to prove relation (28) for vectors of the form

h =
[(

− c0fy

f2 − c1gy

g2

) (
c0fx

f2 + c1gx

g2

)]T
.

It is convenient to write h = c0v0 + c1v1, where v0 = [−fy/f
2 fx/f2]T and v1 = [−gy/g

2 gx/g2]T .
The Hessian matrix ∇2F can be written as ∇2F = c0H0 + c0H1, where

H0 = − 1

f3

[
fxxf − 2f2

x fxyf − 2fxfy

fxyf − 2fxfy fyyf − 2f2
y

]
,

and

H1 = − 1

g3

[
gxxg − 2g2

x gxyg − 2gxgy

gxyg − 2gxgy gyyg − 2g2
y

]
.

Now observe that

hT∇2Fh = (c0v0 + c1v1)
T (c0H0 + c1H1)(c0v0 + c1v1),

which can be simplified to

hT∇2Fh = c3
0v

T
0 H0v0 + c3

1v
T
1 H1v1 + c2

0c1(2v
T
0 H0v1 + vT

0 H1v0) + c0c
2
1(2v

T
0 H1v1 + vT

1 H0v1).

This function is a polynomial in c0 and c1, which are restricted to be non-negative scalars. Therefore, it
suffices to prove that all the coefficients of this polynomial (with respect to c0 and c1) are non-positive. In
particular, we shall show that

(i) vT
0 H0v0 ≤ 0, and

(ii) 2vT
0 H0v1 + vT

0 H1v0 ≤ 0.

The non-positivity of the other two coefficients follows from entirely analogous arguments.
First, some straightforward algebra shows that inequality (i) is equivalent to the relation

fxxf2
y + fyyf

2
x ≥ 2fxfyfxy.

But note that f is a convex function, so fxxfyy ≥ f2
xy. Hence, we have

fxxf2
y + fyyf

2
x

(a)

≥ 2
√

fxxfyyfxfy

(b)

≥ 2fxfyfxy,

thereby proving (i). (In this argument, inequality (a) follows from the fact that a2 + b2 ≥ 2ab, whereas
inequality (b) follows from the convexity of f .)
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Regarding (ii), some further algebra reduces it to the inequality

G1 + G2 − G3 ≥ 0, (29)

where

G1 = 2(fygyfxx + fxgxfyy − (fygx + fxgy)fxy),

G2 = f2
y gxx + f2

xgyy − 2fxfygxy,

G3 =
2

g
(fygx − fxgy)

2.

At this point in the proof, we need to exploit specific information about the functions f and g, which
are defined in terms of KL divergences. To simplify notation, we let u = x/y and v = (1 − x)/(1 − y).
Computing derivatives, we have

fx(x, y) = log(x/y) − log((1 − x)/(1 − y)) = log(u/v),

fy(x, y) = (1 − x)/(1 − y) − x/y = v − u,

gx(x, y) = (1 − y)/(1 − x) − y/x = 1/v − 1/u,

gy(x, y) = log(y/x) − log((1 − y)/(1 − x)) = log(v/u),

∇2f(x, y) =

[ 1
x(1−x) − 1

y(1−y)

− 1
x(1−x)

1−x
(1−y)2

+ x
y2

]
, and ∇2g(x, y) =

[ 1−y
(1−x)2

+ y
x2 − 1

x(1−x)

− 1
x(1−x)

1
y(1−y)

]
.

Noting that fx = −gy; gxy = −fxx; fxy = −gyy, we see that equation (29) is equivalent to

2(fxgxfyy + fygxgyy) − f2
xgyy + f2

y gxx ≥ 2

g
(fygx − fxgy)

2. (30)

To simplify the algebra further, we shall make use of the inequality (log t2)2 ≤ (t − 1/t)2, which is valid
for any t. This implies that

fygx = (v − u)(1/v − 1/u) ≤ fxgy = −(log(u/v))2 = −f2
x = −g2

y ≤ 0.

Thus, −f2
xgyy ≥ fygxgyy, and 2

g (fygx − fxgy)
2 ≤ 2

gfygx(fygx − fxgy). As a result, (30) would follow if
we can show that

2(fxgxfyy + fygxgyy) + fygxgyy + f2
y gxx ≥ 2

g
fygx(fygx − fxgy).

For all x 6= y, we may divide both sides by −fy(x, y)gx(x, y) > 0. Consequently, it suffices to show that:

−2fxfyy/fy − fygxx/gx − 3gyy ≥ 2

g
(fxgy − gxfy),

or, equivalently,

2 log(u/v)

(
v

u − 1
+

u

1 − v

)
+

(
u

1 − x
+

v

x

)
− 3

y(1 − y)
≥ 2

g

(
(u − v)2

uv
− (log

u

v
)2

)
,
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or, equivalently,

2 log(u/v)
(u − v)(u + v − 1)

(u − 1)(1 − v)
+

(u − v)2(u + v − 4uv)

uv(u − 1)(1 − v)
≥ 2

g

(
(u − v)2

uv
− (log

u

v
)2

)
. (31)

Due to the symmetry, it suffices to prove (31) for x < y. In particular, we shall use the following inequality
for logarithm mean [8], which holds for u 6= v:

3

2
√

uv + (u + v)/2
<

log u − log v

u − v
<

1

(uv(u + v)/2)1/3
.

We shall replace log(u/v)
u−v in (31) by appropriate upper and lower bounds. In addition, we shall also bound

g(x, y) from below, using the following argument. When x < y, we have u < 1 < v, and

g(x, y) = y log
y

x
+ (1 − y) log

1 − y

1 − x
>

3y(y − x)

2
√

xy + (x + y)/2
+

(1 − y)(x − y)

[(1 − x)(1 − y)(1 − (x + y)/2)]1/3

=
3(1 − v)(1 − u)

(u − v)(2
√

u + u+1
2 )

+
(u − 1)(1 − v)

(u − v)(v(v + 1)/2)1/3
> 0.

Let us denote this lower bound by q(u, v).
Having got rid of the logarithm terms, (31) will hold if we can prove the following:

6(u − v)2(u + v − 1)

(2
√

uv + (u + v)/2)(u − 1)(1 − v)
+

(u − v)2(u + v − 4uv)

uv(u − 1)(1 − v)
≥ 2

q(u, v)

(
(u − v)2

uv
− 9(u − v)2

(2
√

uv + (u + v)/2)2

)
,

or equivalently,

(
6(u + v − 1)

(2
√

uv + (u + v)/2)
+

(u + v − 4uv)

uv

)(
3

(v − u)(2
√

u + u+1
2 )

− 1

(v − u)(v(v + 1)/2)1/3

)

≥ 2

(
1

uv
− 9

(2
√

uv + (u + v)/2)2

)
, (32)

which is equivalent to

(u + v − 2
√

uv)((u + v)/2 + 3
√

uv + 4uv)

(2
√

uv + (u + v)/2)uv

3(v(v + 1)/2)1/3 − (2
√

u + (u + 1)/2)

(v − u)(2
√

u + (u + 1)/2)(v(v + 1)/2)1/3

≥ (u + v − 2
√

uv)((u + v)/2 + 5
√

uv)

uv(2
√

uv + (u + v)/2)2
(33)

and also equivalent to

((u + v)/2 + 2
√

uv)((u + v)/2 + 3
√

uv + 4uv)[3(v(v + 1)/2)1/3 − (2
√

u + (u + 1)/2)]

≥ (2
√

u + (u + 1)/2)(v(v + 1)/2)1/3((u + v)/2 + 5
√

uv)(v − u) (34)

It can be checked by tedious but straightforward calculus that inequality (34) holds for any u ≤ 1 ≤ v,
and equality holds when u = 1 = v, i.e., x = y.
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E Proof of Theorem 8

Suppose that φ is not a likelihood ratio rule. Then there exist positive P0-probability disjoint sets S1, S2, S3

such that for any X1 ∈ S1, X2 ∈ S2, X3 ∈ S3,

φ(X1) = φ(X3) = u1 (35a)

φ(X2) = u2 6= u1 (35b)

f1(X1)

f0(X1)
<

f1(X2)

f0(X2)
<

f1(X3)

f0(X3)
. (35c)

Define the probability of the quantiles as:

f0(u1) := P0(φ(X) = u1), and f0(u2) := P0(φ(X) = u2),

f1(u1) := P1(φ(X) = u1), and f1(u2) := P1(φ(X) = u2).

Similarly, for the sets S1, S2 and S3, we define

a0 = f0(S1), b0 = f0(S2) and c0 = f0(S3),

a1 = f1(S1), b1 = f1(S2), and c1 = f1(S3).

Finally, let p0, p1, q0 and q1 denote the probability measures of the “residuals”:

p0 = f0(u2) − b0, p1 = f1(u2) − b1,

q0 = f0(u1) − a0 − c0, q1 = f1(u1) − a1 − c1.

Note that we have a1

a0
< b1

b0
< c1

c0
. In addition, the sets S1 and S3 were chosen so that a1

a0
≤ q1

q0
≤ c1

c0
.

From Lemma 6, there holds p1+b1
p0+b0

= f1(u2)
f0(u2)

/∈
(

a1

a0
, c1

c0

)
. We may assume without loss of generality that

p1+b1
p0+b0

≤ a1

a0
. Then, p1+b1

p0+b0
< b1

b0
, so p1

p0
< p1+b1

p0+b0
. Overall, we are guaranteed to have the ordering

p1

p0
<

p1 + b1

p0 + b0
≤ a1

a0
<

b1

b0
<

c1

c0
. (36)

Our strategy will be to modify the quantizer φ only for those X for which φ(X) takes the values u1 or
u2, such that the resulting quantizer is defined by a LLR-based threshold, and has a smaller (or equal) value
of the corresponding cost J∗

φ. For simplicity in notation, we use A to denote the set with measures under
P0 and P1 equal to a0 and a1; the sets B, C, P and Q are defined in an analogous manner. We begin by
observing that we have either a1

a0
≤ q1+a1

q0+a0
< b1

b0
or b1

b0
< q1+c1

q0+c0
≤ c1

c0
. Thus, in our subsequent manipulation

of sets, we always bundle Q with either A or C accordingly without changing the ordering of the probability
ratios. Without loss of generality, then, we may disregard the corresponding residual set corresponding to
Q in the analysis to follow.

In the remainder of the proof, we shall show that either one of the following two modifications of the
quantizer φ will improve (decrease) the sequential cost J ∗

φ:

(i) Assign A,B and C to the same quantization level u1, and leave P to the level u2, or

(ii) Assign P , A and B to the same level u2, and leave c to the level u1.
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It is clear that this modified quantizer design respects the likelihood ratio rule for the quantization indices
xu1 and u2. By repeated application of this modification for every such pair, we are guaranteed to arrive at
a likelihood ratio quantizer that is optimal, thereby completing the proof.

Let a′0, b
′
0, c

′
0, p

′
0 be normalized versions of a0, b0, c0, p0, respectively (i.e., a′

0 = a0/(p0 +a0 + b0 + c0),
and so on). Similarly, let a′

1, b
′
1, c

′
1, p

′
1 be normalized versions of a1, b1, c1, p1, respectively. With this

notation, we have the relations

µ0
φ =

∑

u6=u1,u2

f0(u) log
f0(u)

f1(u)
+ (p0 + b0) log

p0 + b0

p1 + b1
+ (a0 + c0) log

a0 + c0

a1 + c1

= A0 + (f0(u1) + f0(u2))

(
(p′0 + b′0) log

p′0 + b′0
p′1 + b′1

+ (a′0 + c′0) log
a′0 + c′0
a′1 + c′1

)

= A0 + (f0(u1) + f0(u2))D̃
0(p′ + b′, a′ + c′),

µ1
φ =

∑

u6=u1,u2

f1(u) log
f1(u)

f0(u)
+ (p1 + b1) log

p1 + b1

p0 + b0
+ (a1 + c1) log

a1 + c1

a0 + c0

= A1 + (f1(u1) + f1(u2))D̃
1(p′ + b′, a′ + c′),

where we define

A0 :=
∑

u6=u1,u2

f0(u) log
f0(u)

f1(u)
+ (f0(u1) + f0(u2)) log

f0(u1) + f0(u2)

f1(u1) + f1(u2)
≥ 0,

A1 :=
∑

u6=u1,u2

f1(u) log
f1(u)

f0(u)
+ (f1(u1) + f1(u2)) log

f1(u1) + f1(u2)

f0(u1) + f0(u2)
≥ 0

due to the non-negativity of the KL divergences.
Note that from (36) we have

p′1
p′0

<
p′1 + b′1
p′0 + b′0

≤ a′1
a′0

<
b′1
b′0

<
c′1
c′0

,

in addition to the normalization constraints that p′0 + a′0 + b′0 + c′0 = p′1 + a′1 + b′1 + c′1 = 1. It follows that
p′
1
+b′

1

p′
0
+b′

0

<
p′
1
+a′

1
+b′

1
+c′

1

p′
0
+a′

0
+b′

0
+c′

0

= 1.

Let us consider varying the values of a′
1, b

′
1, while fixing all other variables and ensuring that all the

above constraints hold. Then, a′
1 + b′1 is constant, and both D̃0(p′ + b′, a′ + c′) and D̃1(p′ + b′, a′ + c′)

increase as b1 decreases and a1 increases. In other words, if we define a′′
0 = a′0, b′′0 = b′0 and a′′1 and b′′1 such

that
a′′1
a′0

=
b′′1
b′0

=
1 − p′1 − c′1
1 − p′0 − c′0

,

then we have

D̃0(p′ + b′, a′ + c′) ≤ D̃0(p′ + b′′, a′′ + c′) and D̃1(p′ + b′, a′ + c′) ≤ D̃1(p′ + b′′, p′′ + c′). (37)

Now note that vector (b′′0, b
′′
1) in R

2 is a convex combination of (0, 0) and (a′′
0 + b′′0, a

′′
1 + b′′1). It follows

that (p′0 + b′′0, p
′
1 + b′′1) is a convex combination of (p′0, p

′
1) and (p′0 + a′′0 + b′′0, p

′
1 + a′′1 + b′′1) = (p′0 + a′0 +

b′0, p
′
1 + a′1 + b′1).
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By (37) and the quasiconcavity result in Lemma 7, we have:

J∗
φ =

π0

µ0
φ

+
π1

µ1
φ

=
π0

A0 + (f0(u1) + f0(u2))D̃0(p′ + b′, a′ + c′)
+

π1

A1 + (f1(u1) + f1(u2))D̃1(p′ + b′, a′ + c′)

≥ π0

A0 + (f0(u1) + f0(u2))D̃0(p′ + b′′, a′′ + c′)
+

π1

A1 + (f1(u1) + f1(u2))D̃1(p′ + b′′, a′′ + c′)

=
π0

A0 + (f0(u1) + f0(u2))D(p′0 + b′′0, p
′
1 + b′′1)

+
π1

A1 + (f1(u1) + f1(u2))D(p′1 + b′′1, p
′
0 + b′′0)

≥ min

{
π0

A0 + (f0(u1) + f0(u2))D(p′0, p
′
1)

+
π1

A1 + (f1(u1) + f1(u2))D(p′1, p
′
0)

,

π0

A0 + (f0(u1) + f0(u2))D(p′0 + a′0 + b′0, p
′
1 + a′1 + b′1)

+

π1

A1 + (f1(u1) + f1(u2))D(p′1 + a′1 + b′1, p
′
0 + a′0 + b′0)

}
.

But the two arguments of the minimum in the final equation are the costs of the two possible modifications
of φ. Hence, the proof is complete.
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