
Sparse Gaussian Process Classification With Multiple Classes

Matthias Seeger

Computer Science Division

University of California at Berkeley

Soda Hall, Berkeley, CA

mseeger@cs.berkeley.edu

Michael I. Jordan

Computer Science Division and Department of Statistics

University of California at Berkeley

Soda Hall, Berkeley, CA

jordan@cs.berkeley.edu

April 27, 2004

Technical Report 661
Department of Statistics

University of California, Berkeley

Abstract

Sparse approximations to Bayesian inference for nonparametric Gaussian Process
models scale linearly in the number of training points, allowing for the application of
these powerful kernel-based models to large datasets. We show how to generalize the bi-
nary classification informative vector machine (IVM) [6] to multiple classes. In contrast
to earlier efficient approaches to kernel-based non-binary classification, our method is a
principled approximation to Bayesian inference which yields valid uncertainty estimates
and allows for hyperparameter estimation via marginal likelihood maximization. While
most earlier proposals suggest fitting independent binary discriminants to heuristically
chosen partitions of the data and combining these in a heuristic manner, our method
operates jointly on the data for all classes. Crucially, we still achieve a linear scaling in
both the number of classes and the number of training points.

1 Introduction

The informative vector machine (IVM) [6, 10] is a sparse approximation to Bayesian in-
ference for binary Gaussian process (GP) classification models which combines assumed
density filtering (ADF) (or Bayesian on-line) projection updates with greedy forward se-
lection of an active subset of the training sample using information-theoretic criteria from
active learning. In this paper we show how this framework can be extended to GP models
for C classes.

1

Our approach can be compared to multi-class extensions of the binary support vector ma-
chine (SVM) classifier which is not based on a probabilistic model, but rather employs a
maximum margin discriminant. Most of these extensions attempt a posthoc combination
of a sequence of binary maximum margin discriminants trained on different binary splits of
the training sample consistent with the targets. The advantage of these approaches is that
optimized software for the binary case can be used directly. However, the binary partitions
(“output codings”) and the posthoc combination scheme have to be chosen in a heuris-
tic and rather arbitrary way. Even if a good “code” is given, the separate training of the
discriminants is suboptimal, because pattern provide joint information about all classes,
which couples the discriminants in general. We note that both Lee et.al. [7] and Weston
and Watkins [13] use C independent discriminants jointly like we do here, however gener-
alizing the concept of margin to C classes in different ways. In fact, there is no canonical
(or “optimal”) generalization and different choices can lead to very different behaviour sta-
tistically although this is far from obvious. For example, while the margin generalization
of Weston and Watkins seems more directly related to the binary setup, Lee et.al. show
that it does not in general lead to a universally consistent method because the minimizer
of the true expected loss (no RKHS restriction) does not give the same classification as
the Bayes optimal rule for some data distributions. The generalization of Lee et.al. has this
consistency property, however it is certainly possible to come up with different consistent
generalizations which will all behave quite differently for a finite sample size (and C > 2).
With these SVM extensions, it is even less clear how valid estimates of predictive class
probabilities can be obtained and how free hyperparameters should be chosen.1

Our method addresses all of these problems by operating jointly on the data for all classes
without requiring artificial “codes”. Being a direct approximation to Bayesian inference,
predictive probabilities can be estimated and hyperparameters can be adjusted by empirical
Bayesian techniques. As is often the case with Bayesian methods, the main challenge is
to find an efficient inference methodology. If n is the training set size, C the number of
classes, and d � n the (adjustable) “active set” size, our scheme requires O(n C d) memory
and O(n C d2) time to compute a representation of size O(C d3) from which predictive
probabilities can be computed in O(C d2). This scaling is linear in both training set size
and number of classes, which allows for applications to large real-world problems.2 The case
of C > 2 classes is significantly more difficult to handle than the binary one, and we have
to face a number of new representational and algorithmic challenges.

The structure of the paper is as follows. In Section 2 the GP multi-class model is intro-
duced. Our basic idea is motivated in Section 3. The posterior representation is developed
in Section 4, and we show how to update it after an inclusion in Section 5. The problem
of constrained ADF projection is treated in Section 6. We introduce our criterion for for-
ward selection in Section 7. The simple myopic scheme is not powerful enough, and crucial
extensions are covered in Section 8 where our final algorithm is specified. Results of some

1Traditional methods such as cross-validation are not useful, because different covariance functions (ker-
nels) should be used for every class leading to at least O(C) hyperparameters.

2In the light of a confused anonymous referee, it seems necessary to clarify our scaling statements. Under
the assumption that C < d � n the dominant contribution to the scaling is O(n C d2). As with any other
method in this domain, there are additional O(d3), O(d C3) and other contributions which are subdominant
under these assumptions. Especially, our method cannot be used in a large C domain without further
modifications not discussed here. Unless otherwise said, claims about the scaling behaviour concentrate on
the dominant term (under these assumptions) which is linear in the training set size n.

preliminary experiments are given in Section 10. We conclude in Section 11 with suggestions
for further work.

Note that the scheme to be described here requires a number of novel concepts together with
a very elaborate representation, and many complicated details have to be stated to allow a
full and self-contained understanding. Our approach is to begin each section with a short
high-level description, followed by all the details we feel are necessary for full understanding.

2 Multi-Class Gaussian Process Classification

In this section we briefly introduce GP models for C-class classification. Denote a case by
(x, y), x ∈ X , y ∈ {1, . . . , C}. x is called input point (or pattern), y target (or label),
distributed according to an unknown data distribution P (x, y). Our goal is to predict y
or even P (y|x) at points x of interest, thus inference conditional on typical input points.3

Functions into a finite set are hard to parameterize directly. In the binary case C = 2, a
standard way of constructing a model is to introduce a latent variable u ∈ R to represent
the (unobserved) log odds ratio log(P (y = 1|x)/P (y = 2|x)) − β, thus

P (y = 1|u) = σ(u + β) =
1

1 + e−(u+β)

(β ∈ R is a intercept parameter which can be interpreted as prior for the log ratio). Note
that P (y|u) is a binomial distribution with (unconstrained) natural parameter u. In a GP
model, x 7→ u is given a Gaussian process prior with zero mean and covariance function
K(x, x′). For an introduction to GPs in the context of machine learning applications, see
[12]. In the context of this paper, a (zero-mean) GP is simply a consistent way of assigning
covariance matrices K(X) ∈ R

m,m (or zero-mean Gaussian distributions) to (ordered) point
sets X ∈ Xm by means of the covariance function K: K = (K(x, x′))x,x′∈X . Note that
the covariance function may have free parameters, and one of the appealing aspects of the
Bayesian framework is that such hyperparameters can be adjusted in an automatic fashion
(via marginal likelihood maximization). The generalization to C classes is straightforward:
let

P (y|u) = exp
(

vy − log 1
T exp(v)

)

, v = u + β

be the multinomial distibution with natural parameters v ∈ R
C (here, 1 = (1)c). β =

(βc)c is a vector of intercept parameters. Given C covariance functions K (c), we employ
independent zero-mean GP priors with kernels K (c) on the component functions u(c) : X →
u(c). Note that our parameterization of the multinomial P (y|u) is overcomplete in the sense
that P (y|u) = P (y|u + α1) for all y, α ∈ R which will create some minor complications
downstream. However, the usual procedure of pegging one of the u components to a fixed
value in combination with the independence of the u(c) priors leads to a prior imbalance in
the class probabilities which is (in general) not motivated by the task, while the symmetric
overcomplete parameterization renders uninformative class priors (for β ∝ 1). The mapping
u → (P (y|u))y is called (overcomplete) softmax function. It is important to note that the
negative logarithm of each component function is convex and strictly so on affine spaces
orthogonal to 1.

3We are not interested in modelling P (x), and as a consequence our model cannot be used to infer any
useful properties of this marginal distribution.

Given a training sample D = {(xi, yi) | i = 1, . . . , n} drawn independently and identically
distributed (i.i.d.) from the data distribution, the goal of first level inference is to obtain
approximations to predictive distributions P (y∗|x∗, D) at test points x∗ ∈ X . Conditioned
on hyperparameters, these can be obtained from an (approximate) representation of the

posterior P (u|D) where u = (u
(c)
i)i,c ∈ R

nC i = 1, . . . , n, c = 1, . . . , C with u
(c)
i = u(c)(xi).

Note that the processes u(c) are coupled a posteriori due to the coupling in the likelihood.
A wide range of approximate GP methods represent this posterior by a Gaussian, as we will
do here. Note that the true posterior is log-concave (a consequence of the log-concavity of
the likelihood) with tails dominated by the Gaussian prior, so the Gaussian approximation
can be well-motivated.

3 The Basic Idea

A straightforward extension of the binary IVM [6] is possible, but would scale at least as
O(n C2 d2). The problem is that the inverse posterior covariance matrix is the sum of two
matrices (the kernel matrix from the GP prior and a matrix coming from the likelihood
approximation) which are principally block-diagonal, but w.r.t. different groupings of the
latent variables. While both matrices have exploitable structure, the sum does not, which
leads to the unfavourable scaling. We give a principled method for finding an approximation
to the blocks in the likelihood approximation matrix which leads to an efficient representa-
tion by making use of the block-diagonal structure of the kernel matrix.

We make use of a matrix and vector notation which may be unfamiliar to the reader, but
is essential to manage the involved representation developed below. Note that our notation
is fairly standard.4 Vectors and matrices are set in bold face. Subset indexing is defined
as AI,J := (αi,j)i∈I,j∈J , I, J ordered index sets. · denotes the full index, i the singleton
{i}, and AI := AI,I . I denotes the identity matrix, I = (δi,j)i,j , its columns are denoted
as δi = I ·,i. The vector of all ones is 1 = (1)i. Note that AI,J = II,·AI ·,J , we will make
frequent use of II,· as “selection operator” and I ·,I as “distribution operator”.

The subset indexing notation may be familiar from our work on the binary IVM [10, 6],
but in the multi-class context (and more general in C-process models, see [12], Sect. 3.2)
an additional complexity arises: in both vectors and matrices, we need indexing w.r.t. dat-
apoints i ∈ {1, . . . , n} and w.r.t. classes c ∈ {1, . . . , C}. We write u = (ui)i = (u(c))c =

(u
(c)
i)i,c ∈ R

nC , ui ∈ R
C , u(c) ∈ R

n. By “inner grouping” over c (resp. i) we mean that

the index c (resp. i) changes faster. For example, u = (u
(1)
1 , . . . , u

(1)
n , . . . , u

(C)
1 , . . . , u

(C)
n)

uses inner grouping over i and outer grouping over c. Crucially, we will need both group-
ings in this paper.5 Let the permutation matrix P̂ ↔ convert between the groupings, i.e.
P̂ ↔(u(c))c = (ui)i (the r.h.s. vector has inner grouping over c). For conciseness it is es-
sential to “overload” our subscript notation to these groupings. For inner grouping over
c we have II,J := II,J ⊗ I, I, J ⊂ {1, . . . , n}, where the left hand matrix is ∈ R

C|I|,C|J |

and II,J ∈ R
|I|,|J |, I ∈ R

C,C on the right hand side. For outer grouping over c we have

II,J := P̂
T
↔(II,J ⊗ I)P̂ ↔. Here, (αi,j)i,j ⊗ B := (αi,jB)i,j is the Kronecker product.

4See for example [5], Sect. 0.7 where AI,J is denoted as A(I, J).
5It is easiest to view matrices and vectors with inner grouping over c as “blocked objects”, i.e. n-

dimensional matrices and vectors with elements in R
C,C (inner grouping w.r.t. i accordingly).

For vectors x, y, x � y (x � y resp.) means that xi > yi (xi ≥ yi) for all i. For matrices
A, B , A � B (A � B resp.) means that A−B is positive definite (positive semidefinite).
See [1] for a detailed account of such generalized inequalities.

When trying to generalize the IVM to C classes, we run into the following problem. Recall
from [6] that the IVM approximation amounts to replacing the likelihood factors (sites) by
Gaussian site approximations with precision matrix Πi. We use the notation NU (ui|bi,Πi)
for these factors, meaning an unnormalized Gaussian with precision (inverse covariance)
matrix Πi and a mean v satisfying Πiv = bi. bi, Πi are called site parameters, and we
generally assume that Πi � 0 (although it might be singular).6 For a sparse approximation
with current active set I ⊂ {1, . . . , n}, d = |I|, we have Πi = 0 for i 6∈ I. Thus, the
covariance matrix of the Gaussian posterior approximation is

A =
(

K−1 + Π
)−1

, (1)

where K = diag(K(c))c (outer grouping over c) due to the independence of the priors,
and Π = diag(Πi)i (inner grouping over c) due to the (conditional) independence of the
datapoints. But the block-diagonal structure is revealed under different groupings only, and
A does not have a simple structure. Therefore, a straightforward extension of IVM to C
classes scales at least quadratically in d C which is not acceptable.

An idea to make progress would be to constrain all Πi to be diagonal. This is equivalent
to assuming posterior independence of the processes u(c), c = 1, . . . , C. We could then
use a variational mean field approximation to determine coefficients of Π and other site
parameters. While the prior independence of the u(c) seems a sensible assumption (and is
absolutely necessary to obtain a feasible scheme), we think that a posterior independence
assumption is too strong in that there is no direct mechanism for the approximation scheme
to represent the coupling between the u(c) introduced by the likelihood factors. It can
either disregard the couplings or represent them indirectly via a “distorted” choice7 of the
only O(Cn) variational parameters. Interestingly, it is possible to represent the likelihood
couplings exactly up to second order and end up with a scheme which is essentially of the
same complexity as the factorized mean field scheme. Thus, while an approximation based
on a diagonal Π may be simpler to develop or implement, it will not be (significantly) more
efficient than our scheme and is of no further interest to us here.

Our principal idea is to exploit an analogy to a different way of approximating the poste-
rior P (u|D), namely by a Laplace approximation [14]. There, the concave log posterior is
expanded to second order at its mode û, giving rise to a Gaussian distribution with a covari-
ance of the form (1), but with Πi = −∇∇ui log P (yi|ûi). In other words, the non-Gaussian
log likelihood terms are replaced by their second order expansions. Crucially, these “preci-
sion blocks”8 are of a simple form: Πi = diag pi − pip

T
i , pi = (P (y|ûi))y. Note that this

form captures the coupling due to the likelihood factor for the i-th datapoint up to second
order. This constraint on Πi can be exploited to run the Laplace approximation scheme
in time and memory linear in C. However, this scheme is not a sparse approximation and
scales cubically in n, furthermore there is some evidence that GP approximations based on

6In the binary IVM, Πi is a nonnegative scalar.
7In the sense that there are no parameters for a coupling, so the ones of the decoupled representation

have to make up for it somehow. The same problem arises in variational mean field approximations.
8A precision matrix is the inverse of a covariance matrix.

ADF projections (or expectation propagation (EP) projections [8], aka. ADATAP [9]) out-
perform the Laplace approximation. Our scheme tries to combine the best of both worlds:
we propose to use ADF/EP projections onto a family of Gaussian site approximations with
constrained precision blocks Πi which must have the form

Πi = diag πi − α−1
i πiπ

T
i , αi = 1

T πi, πi � 0. (2)

Note that Πi has a single eigenvalue 0 with eigenvector 1 and is positive definite on the
orthogonal complement of 1.

In the remainder of this paper we address the issues of turning this idea into an efficient
algorithm. The main challenges are finding a representation of the posterior which can be
stored and updated in O(C) and solving the constrained ADF projection problem. Further-
more, it turns out that the simple myopic “on-line”approach used for the binary IVM is not
sufficient for the C > 2 case, and we describe extensions involving joint EP iterations over
a subset of the active set.

4 The Representation

In this section, we develop the representation which is used to approximate the posterior
over u ∈ R

nC and allows to compute predictive probabilities for test points. The key is
to exploit the block-diagonal structure of the prior covariance matrix K together with the
restricted form (2) for the precision blocks Πi as motivated in Section 3. The presentation
is technical and offers no useful intuition, it can be skipped by readers not interested in
details.

It turns out to be crucial to exploit the block-diagonal structure of K , thus in the re-
mainder of this section we work with outer grouping over c, the site precision matrix is

Π = P̂
T
↔ diag(Πi)iP̂ ↔. The posterior covariance matrix A from (1) can be written as

A = K − KΦK , Φ = (I + ΠK)−1
Π.

Denote R = 1C ⊗ I ∈ R
Cd,d, i.e. a vertical stack of C I ∈ R

d,d matrices. Note that

RT v =
∑

c

r(c), RT diag(B(c))cR =
∑

c

B(c),

so RT acts as “summation operator”. Also, let D = diag(D(c))c with D(c) = diag π(c) =

diag(pi
(c)
i)i ∈ R

n,n, thus DI = diag(D
(c)
I)c ∈ R

Cd,Cd. Furthermore, Γ = diag(αi)i ∈ R
n,n.9

Note that RT DIR = ΓI .

The intuition behind our representation is that Π is the difference of a diagonal matrix
and a matrix of rank d (this is easy to see in outer grouping over i, thus must hold as
well in outer grouping over c). If Π was just diagonal we could use more or less the same
representation as for the binary IVM (see [10] for details), which motivates the definition of
E below. Dealing with the additional rank d introduces some complications but importantly
does not worsen the scaling behaviour. We have

Π = P̂
T
↔ diag(Πi)iP̂ ↔ = I ·,I

(

DI − DIRΓ
−1
I RT DI

)

II,·

=
(

δc,c′D
(c)
I − D

(c)
I Γ

−1
I D

(c′)
I

)

c,c′
.

9We set αi = 0 for i 6∈ I.

Define

E = I + D
1/2
I KID

1/2
I = diag(E(c))c,

P = D
1/2
I E−1D

1/2
I = diag(P (c))c,

H = RT P R =
∑

c

P (c).

Note how the block-diagonal O(C) structure of the kernel matrix K is inherited by E , P ,
they can be stored in O(C). We show that

Φ = (I + ΠK)−1
Π = I ·,I

(

P − P RH−1RT P
)

II,·.

Namely,

ΠKI ·,IP = I ·,I

(

I − DIRΓ
−1
I RT

)

DIKID
1/2
I E−1D

1/2
I

= I ·,I(. . .)D
1/2
I (E − I)E−1D

1/2
I = I ·,I(. . .) (DI − P) .

If F = I − RH−1RT P , then

ΠKI ·,IP F II,· = I ·,I

(

I − DIRΓ
−1
I RT

)

(DI − P) F II,· = −I ·,IP F II,· + Π,

where we have used RT DIR = ΓI , RT P R = H . This proves the claim.

We choose the following posterior representation which makes use of the block-diagonal
structure of E , P .

E(c) = L(c)L(c)T , L(c) lower triangular,

P (c) = B(c)T B(c), B(c) = L(c)−1D
(c)1/2
I lower triangular,

H = LLT , L lower triangular.

(3)

For a test point x∗, the predictive covariance for u∗ ∈ R
C is given by

A∗ = K∗ − KT
I,∗ΦIKI,∗

with K∗ = diag(K(c)(x∗, x∗))c ∈ R
C,C and KI,∗ = diag((K(c)(xi, x∗))i∈I)c ∈ R

Cd,C . Let

m
(c)
∗ = B(c)K

(c)
I,∗, q

(c)
∗ = L−1B(c)T m

(c)
∗ . Then,

A∗ = diag
(

K
(c)
∗ − ‖m

(c)
∗ ‖2

)

c
+ QT

∗ Q∗, Q∗ =
(

q
(1)
∗ . . . q

(C)
∗

)

(4)

which is O(C2 d), while m
(c)
∗ , q

(c)
∗ cost O(C d2) given the representation (more detailed

running time and memory requirement details are given below). We define the stub vectors

m
(c)
j = B(c)K

(c)
I,j , q

(c)
j = L−1B(c)T m

(c)
j , j = 1, . . . , n (5)

which are required to compute marginal means and covariances at training points in order to
drive the active set selection. It is tempting to store only one kind of stubs and compute the
other on demand, but the computation on demand costs O(C d2) for each stub which would
drive the overall cost to O(n C d3). One of the most important features of the representation

described here is that the stub vectors for a large number of points j can be updated
efficiently when the active set I is expanded. Apart from that, the particular form of the
representation is motivated by numerical stability issues, for example the matrices E(c) are
positive definite with all eigenvalues ≥ 1, thus are very well-conditioned.

Recall from [6, 10] that the posterior approximation is

Q(u) = N(u|h, A), h = Ab,

where b = (bi)i are site parameters (bi = 0 for i 6∈ I) and the covariance matrix A is
given by (1). The computation of h (and of predictive means in general) is complicated by
the fact that ΠI does not have full rank dC, but rather d(C − 1) due to the overcomplete
parameterization of the multinomial noise model. It is easy to see that

ranΠI =

{

u ∈ R
Cd
∣

∣

∣
RT u =

∑

c

u(c) = 0

}

,

kerΠI =
{

u ∈ R
Cd
∣

∣

∣
u(c) = u(c′) for all c, c′

}

.

If s ∈ ranΠ, then ΠID
−1
I sI = sI because ΠI = (I − DIRΓ

−1
I RT)DI and RT sI = 0.

Thus, if bI = w + (v)c with w = (I − RRT)bI ∈ ranΠI and v = RT bI ∈ R
d (i.e.

(v)c ∈ kerΠI), then bI = ΠID
−1
I w + (v)c. Since

A = K − KΦK = K (I + ΠK)−1 , b = I ·,IbI , Π = I ·,IΠIII,·,

we see that
h = Ab = KΦI ·,ID

−1
I w +

(

K
(c)
·,I v

)

c
− KΦK (I ·,Iv)c .

Define

β(1,c) = L(c)−1D
(c)−1/2
I w(c),

w(c) = b
(c)
I − v, v =

∑

c

b
(c)
I ,

β(2) = L−1
∑

c

B(c)T β(1,c),

β(3,c) = B(c)K
(c)
I v =

d
∑

k=1

vkm
(c)
Ik

,

β(4) = L−1
∑

c

B(c)T β(3,c) =
d
∑

k=1

vk

∑

c

q
(c)
Ik

.

(6)

Then,

h(1) := K ·,I

(

P − P RH−1RT P
)

D−1
I w =

(

m
(c)T
i β(1,c) − q

(c)T
i β(2)

)

i,c
. (7)

Next, recalling (4) for the predictive covariance, we have

h(2) := −KΦK (I ·,Iv)c =
(

−m
(c)T
i β(3,c) + q

(c)T
i β(4)

)

i,c
. (8)

Altogether,

h = h(1) + h(2) +
(

K
(c)
·,I v

)

c
.

Therefore, the predictive mean h∗ ∈ R
C of Q(u∗) at a test point x∗ is computed as

h∗ =
(

m
(c)T
∗

(

β(1,c) − β(3,c)
)

− q
(c)T
∗

(

β(2) − β(4)
)

+ K
(c)
∗,Iv

)

c

where the test stub vectors m∗, q∗ are defined prior to (4). The predictive covariance A∗

of Q(ui) is given by (4). Now, the (approximate) predictive distribution is given by

Q(y∗|x∗, D) = Eu∗∼Q [P (y∗|u∗)] .

Since the likelihood is not Gaussian, we have to fall back to numerical quadrature for this
C-dimensional “almost-Gaussian” integral, we give some comments in Section 6 of how to
proceed.

This completes the description of the belief representation which consists of L(c), B(c), L

defined in (3), the β vectors defined in (6) and K
(c)
·,I v, v =

∑

c b
(c)
I . Furthermore, the

stub vectors (5) are maintained for a large number of patterns j in order to drive forward
selection of I.

5 Update Of The Representation After Inclusion

One of the most important features of the representation described in Section 4 is that we
can update the set of all n stub vectors (5) in O(n C d) for the inclusion of a new point into
the active set I. The stub vectors are required to compute marginal posterior moments for
the training points which will drive the forward selection to find good inclusion candidates.
In this section, we show how the representation and the stub vectors can be updated in an
efficient and numerically stable manner. Again, a reader not interested in details can skip
this section, but may want to note our recommendations for the chollrup primitive.

Suppose that i 6∈ I is to be included into the active set I = {I1, . . . , Id} (thus Id+1 = i)
and that its site parameters bi, πi ∈ R

C have already been determined (we show how this
is done in Section 6). We need a few primitives for updating Cholesky factorizations.10 Let
B = LLT ∈ R

d,d be a Cholesky decomposition and suppose that B is extended by a last
row/column (bT b)T . The new lower triangular Cholesky factor L′ is given by appending
(lT l) as bottom row to L, where

l = L−1b, l =

√

b − lT l.

Denote this procedure by (l, l) := cholext(L, b, b). If L ∈ R
d,d, the complexity is O(d2) for

the backsubstitution11. Note that the procedure breaks down iff the extended matrix B ′ is
not (numerically) positive definite.

10Our representation is based on Cholesky decompositions which are the most numerically stable and
efficient way to deal with symmetric positive definite matrices. The primitives cholext and chollrup can be seen
as numerically sound equivalents of formulas such as Sherman-Morrison-Woodbury and partitioned inverse
which are known to be unstable, and their widespread use in machine learning applications is recommended.
Efficient Matlab code (MEX function) for chollrup can be obtained from us on request.

11In the literature, solving linear systems with a triangular system matrix is called backsubstitution and
forward substitution, depending on whether an upper or lower triangular matrix is used. We do not follow
this rather confusing nomenclature, but denote both procedures as backsubstitution.

Next, let B = LLT be a Cholesky decomposition and suppose that B ′ = B + bbT . Then,
L′ = LL̃ where L̃ can be maintained in O(d) and computed in O(d) given L−1b (which
itself is O(d2)). Backsubstitution with L̃ costs O(d) only. Thus, if X ∈ R

d,m with LX = C ,
we can compute X ′ for which L′X ′ = C in O(d m) (we do not need C for this update). We
say that the columns of X are “dragged along” the update of L. Denote this procedure by
(L′, X ′) := chollrup(L, b, X) and extend it to rank-k updates chollrup(L, b1, . . . , bk, X)
by concatenation. Note that chollrup can also be used for negative updates B − bbT if the
resulting matrix is still positive definite. While positive updates are numerically stable (if
B is well-conditioned), negative updates are more suspectible to breakdown due to roundoff
error.

Now, Di = diag πi, i.e. d
(c)
i = π

(c)
i . We update L(c) as

(l
(c)
i , l

(c)
i) = cholext

(

L(c), d
(c)1/2
i D

(c)1/2
I K

(c)
I,i , 1 + d

(c)
i K

(c)
i

)

,

then B(c) by adding the row (b
(c)T
i b

(c)
i) with b

(c)
i = −l

(c)−1
i B(c)T l

(c)
i , b

(c)
i = d

(c)1/2
i /l

(c)
i . The

factor L for H is updated in two stages. First, H has to be replaced by H +
∑

c b
(c)
i b

(c)T
i ,

then extended by the row (qT q) with q =
∑

c b
(c)
i b

(c)
i , q =

∑

c b
(c)2
i . During the first stage,

we drag along the columns of XQ (to be specified below). Thus,

(L′
1,...,d, X

′
Q) = chollrup

(

L, b
(1)
i , . . . , b

(C)
i , XQ

)

, (l, l) = cholext
(

L′
1,...,d, q, q

)

.

The stub vector m
(c)
j is updated by appending the component

m
(c)
j = −l

(c)−1
i l

(c)T
i m

(c)
j + b

(c)
i K

(c)
i,j .

If r
(c)
j = B(c)T m

(c)
j , then Lq

(c)
j = r

(c)
j . r

(c)
j is updated by adding m

(c)
j b

(c)
i , then appending

the new component m
(c)
j b

(c)
i . Overwrite q

(c)
j by

a
(c)
j = L−1

(

r
(c)
j + m

(c)
j b

(c)
i

)

= q
(c)
j + m

(c)
j

(

L−1b
(c)
i

)

(note that the O(d2) backsubstitution has to be done only once) and append the a
(c)
j to

XQ to be dragged along when L is updated, then the first d components of q
(c)
j

′ are given

by a
(c)
j

′. The last component is

q
(c)
j = l−1

(

−lT a
(c)
j

′ + m
(c)
j b

(c)
i

)

.

Finally, we need to update the β vectors from (6). β(1,c) receives the new component

l
(c)−1
i

(

d
(c)−1/2
i w

(c)
d+1 − l

(c)T
i β(1,c)

)

.

We append
∑d

k=1 vk(m
(c)
Ik

′)d+1 to β(3,c), then add vd+1m
(c)
i

′. The update of β(2) parallels

the q stubs update, since Lβ(2) = r with r =
∑

c B(c)T β(1,c). First,

a = L−1r′
1...d = β(2) +

∑

c

β
(1,c)
d+1

′
(

L−1b
(c)
i

)

.

Appending a to XQ to be dragged along, we obtain the first d components of β(2)′ as a′,
and

β
(2)
d+1

′ = l−1

(

∑

c

β
(1,c)
d+1

′b
(c)
i − lT a′

)

.

There does not seem to be a simple incremental update rule for β(4) so we recompute

β(4)′ =
d+1
∑

k=1

vk

∑

c

q
(c)
Ik

′.

The update of K
(c)
·,I v is obvious. This completes the description of the update of the rep-

resentation after inclusion of i. The cost is O(C d2) for the core representation. Each stub
update is O(C d). In a simple implementation, we maintain and update stubs for all n pat-

terns and the update is O(n C d). The update of K
(c)
·,I v is O(n C) in this case, but in general

we need only those components j for which we maintain stub vectors. It is important to
note that the stub vectors can be computed incrementally in a delayed fashion, so a more
sophisticated implementation would maintain a cache of partially complete stubs for a sub-
set of all patterns and update stubs on demand, as a multi-class variant of what is called
randomized greedy selection in [6, 10]. Such an implementation is subject to future work.

6 ADF Projection Onto Restricted Gaussian Family

Recall from Section 3 that the key idea for achieving a complexity linear in C is to restrict
the form of the precision matrices Πi in the site approximations NU (ui|bi,Πi) which replace
the true likelihood terms P (yi|ui) in the IVM approximation. Their structure has to comply
with (2). In this section we show how ADF projections12 can be done onto this restricted
family of site approximations. Note that these projections are required not only prior to
inclusion of a new pattern i into the active set I, but also in order to be able to score a
pattern j as candidate for inclusion, using one of the information-theoretic criteria described
in Section 7. It is therefore important that the projections can be computed very efficiently.
It turns out that the projections require the solution of a non-convex optimization problem
in R

C which can be addressed using a double-loop scheme with convex optimization in the
inner loop. A reader not interested in details may skip this section.

Let j 6∈ I and Q(uj) = N(uj |hj , Aj) be the marginal of the current posterior approxima-
tion. As shown in Section 4, the marginal moments can be computed from the stub vectors
as follows:

Aj = diag
(

K
(c)
j − ‖m

(c)
j ‖2

)

c
+ QT

j Qj , Qj =
(

q
(1)
j . . . q

(C)
j

)

,

hj = h
(1)
j + h

(2)
j +

(

K
(c)
j,Iv

)

c
,

where h(1), h(2) are given by (7) and (8). The cost is O(C2 d) for each marginal. Note that
in order to guarantee an overall complexity of O(C d2 n), we can afford to compute O(n/C)

12An ADF projection (or Bayesian on-line update) is required if an unseen pattern is to be included into
the belief representation. We do not treat EP projections here which are used to iterate ADF projections
for previously included patterns to refine the belief representation. Needless to say, our framework applies
to this more general case just as well.

marginals prior to each inclusion into I, thus to score about n/C inclusion candidates. This
is in contrast to the binary case where we can afford to score all remaining points, the reason
being that in the binary case the marginal moments itself can be updated incrementally,
while in the general case they have to be computed from the stub vectors on demand.

For the ADF projection, we form the “tilted” distribution

P̂ (uj) ∝ P (yj |uj)Q(uj)

and project it onto the family induced by the site approximations using moment matching:

(bj ,Πj) = argmin
b,Π

D
[

P̂ (uj)
∥

∥

∥
∝ NU (uj |b,Π)Q(uj)

]

where Π = diag π − α−1ππT , α = 1
T π, π � 0. The relative entropy satisfies a

Pythagorean-like equation, which means that P̂ can be replaced by a Gaussian with the
same mean and covariance matrix. To be concrete, let Q̃ denote this Gaussian and Qnew

the new marginal to be determined, then

D
[

P̂
∥

∥

∥
Qnew

]

= D
[

P̂
∥

∥

∥
Q̃
]

+ EP̂

[

log Q̃ − log Qnew
]

.

The integrand of the right hand side term is a quadratic in uj , so the expectation can as
well be done w.r.t. Q̃ (which has the same moments as P̂ up to second order). Since P̂ is not
Gaussian, we have to resort to numerical quadrature to compute its mean and covariance
matrix. We use the method of exact monomials [3] which is suitable if log P (yj |uj) is smooth

and C is not too large.13 Denote the moments by ĥj , Âj . We can match the mean exactly
by setting

bj = A−1
j

(

ĥj − hj

)

+ Πjĥj ,

leaving the computation of π = πj . The remaining relative entropy is up to constants

− log
∣

∣

∣
MÂj

∣

∣

∣
+ tr MÂj , M = A−1

j + Π.

Thus, the problem is to minimize

f = − log
∣

∣

∣
A−1

j + Π

∣

∣

∣
+ tr ÂjΠ, Π = diag π − α−1ππT , α = 1

T π,

subject to π � 0. Here, Aj � 0 and Âj � 0. There is no analytic solution, but we can use
ideas from convex optimization [1] to solve this problem efficiently. First,

f = − log
∣

∣

∣
A−1

j + Π

∣

∣

∣
+
(

diag Âj

)T
π − α−1πT Âjπ.

We show that − log
∣

∣

∣
A−1

j + Π

∣

∣

∣
is convex in π. First, Π 7→ − log

∣

∣

∣
A−1

j + Π

∣

∣

∣
is convex and

non-increasing w.r.t. the partial ordering � over symmetric matrices given by the positive

13Exact monomials are a generalization of Gaussian quadrature to multiple dimensions. For small to
moderate dimensions C, quadrature rules are much more accurate than Monte Carlo approximations which
would sample from Q(uj) and evaluate the likelihood factor over the sample (in fact, we have seen rather
disastrous errors in the covariance matrix with C = 10 even for as many as a few thousand Gaussian
samples).

semidefinite cone. Next, we show that π 7→ Π is matrix-concave for π � 0, and the
composition rules in [1], Sect. 3.6.2 imply the convexity of the composition w.r.t. π � 0.
We have to show that yT

Πy is concave in π � 0 for every y ∈ R
d. Now,

yT
Πy = −

(

(1T π)−1(yT π)2 − πT (diag yyT)
)

.

The expression within the parantheses is the sum of a quadratic-over-linear function (see
[1], Sect. 3.1.5) and a linear one, thus convex in π if 1

T π > 0.

However, since Âj � 0, πT Âjπ is convex, so that f is the difference of convex functions
and in general not convex. Still, f has a very simple structure, the concave part is purely
quadratic. We use a standard double-loop scheme to minimize f . The idea is to upper
bound the negative quadratic by a hyperplane (i.e. making use of its Legendre-Fenchel
transform), in the inner loop to minimize this convex upper bound subject to the convex
constraint π � 0, in the outer loop to reset the hyperplane upper bound to make contact
at the new π. The very same idea is used all over in machine learning and statistics,
for example in the expectation maximization (EM) algorithm, the variational mean-field
Bayesian approximation, convergent double loop variants of loopy belief propagation, etc.
If π = αx, α = 1

T π, the Fenchel inequality states that

−xT Âjx ≤ −2qT x + qT Â
−1
j q for all q ∈ R

d.

Thus,

f ≤ fq := − log
∣

∣

∣
A−1

j + Π

∣

∣

∣
+ bT π, b = diag Âj − 2q +

(

qT Â
−1
j q

)

1,

where we use that α = 1
T π. For fixed x, the Fenchel inequality is an equality for q = Âjx =

Âjπ/α which shows that the outer loop update is analytic. Note also that qT Â
−1
j q = qT x

at that point, so Â
−1
j never has to be computed. In the inner loop, we minimize fq (for

fixed q) w.r.t. π � 0. As a convex problem, it has a global minimum14 which can be found
very efficiently by a number of gradient-based optimizers. We parameterize the feasible set
directly using π = exp(t) and use a Quasi-Newton optimizer15 to find a minimum point t∗.
The gradient is given by

dfq =
(

−
(

diag M−1
)

◦ π − α2(πT v)π + 2α−1π ◦ v + b ◦ π
)T

dt,

where M = A−1
j + Π, v = M−1π and (αi)i ◦ (βi)i := (αiβi)i denotes the Hadamard (or

Schur) product. In addition, our implementation allows to run the inner loop optimization in
either a “sloppy” or an “accurate” mode: the former is used initially, requiring convergence
to low accuracy only, until the changes in q in the outer loop become small, after which the
accurate mode is used to obtain convergence to high accuracy.

In our practical experience so far, the double-loop optimization converges very quickly to
a local minimum of the criterion f . Since f is not convex, this might not be the global

14The minimum might be attained at a boundary point of the open feasible set only, in which case we opt
for an ε-optimal feasible point for some small ε > 0.

15Evaluating the Hessian proves very messy, and in our practical experience the purely gradient-based
inner loop optimization converges extremely quickly.

minimum.16 It turns out that a good initialization of πj is important. Again, we use the
analogy to the Laplace approximation (see Section 3) where πj would be the likelihood
evaluated at the posterior mode ûj . If the final classifier performs well, this is close to the
delta distribution δyj = I ·,yj for most points. In our scheme, we initialize πj to a convex
combination of δyj and the current predictive distribution Q(yj |xj , D) obtained from Q(uj)
using quadrature.

7 Scoring Criteria For Active Set Selection

In the context of classification, individual patterns can carry a very different amount of
“information” about the shape of the final predictor, however “information” is defined in
this context. For example, we can ask by how much the decision boundary of the final
predictor changes if we remove individual patterns, or by how much our uncertainty in the
boundary position decreases if we add in a pattern. In this picture, patterns close to the
decision boundary or even more so misclassified patterns carry most information. Since our
goal is to extract a very small active set I from among the training sample D (i.e. d � n),
it is essential that we manage to identify highly informative patterns in D. Of course, we
cannot hope for an optimal selection of I due to our tight constraints of O(C d2 n) run-
ning time, O(C d n) memory, but experiments with the binary IVM show that good active
sets can be found in practice using simple greedy forward selection driven by information-
theoretic scoring criteria originating in active learning (sequential design). In this section
we show how to generalize these criteria to the multi-class case. Note that they are espe-
cially attractive in the case of GP models because they can be computed exactly given the
Gaussian approximations, in marked contrast to complex parametric architectures such as
multi-layer perceptrons where Gaussian approximations can be very poor and information
criteria based on these can give misleading results.

Here, we focus on the (instantaneous) information gain score (see [10] for other scores which
can be generalized to the multi-class case in the same way). In order to score j 6∈ I, let
Q(uj) = N(uj |hj , Aj) be the marginal before inclusion of j, Qnew(uj) = N(uj |ĥj , (A

−1
j +

Πj)
−1) the marginal after inclusion of j (see Section 6). The score is defined as

∆info
j := −D [Qnew(uj) ‖Q(uj)] .

Using the well-known formula for the relative entropy between Gaussians we have

∆info
j = −

1

2

(

log |M | + tr
(

M−1 − I
)

+ (ĥj − hj)
T A−1

j (ĥj − hj)
)

, M = I + ΠjAj .

(9)
In order to score inclusion candidate j, we have to compute its marginal moments hj , Aj

in O(d C2), determine ĥj , Πj by ADF projection (each gradient costs O(C3)) and compute

∆info
j which can be done in O(C3) using the LU decomposition of M . In order to keep

within the overall O(n C d2) limits, we can afford to score about n/C candidates prior to
each inclusion. These figures assume that C is small to moderate, especially C < d. For

16f attains its global minimum over the closure of the feasible set because it is continuous on the compact
intersection of this closure with a sufficiently large compact ball, and is unbounded above for any sequence
‖πn‖ → ∞ (the term tr ÂjΠ = α tr Âj(diag x−xxT), x = α−1π dominates for large α and tr Âj(diag x−
xxT) ≥ 0 because diag x − xxT � 0).

large C, additional techniques would have to be used to remove the cubic scaling in C, but
in this case our use of numerical quadrature rules would also be questionnable. An extension
to a large number of classes is subject to future work.

A slightly cheaper variant avoids the ADF projection by using the true covariance matrix
Âj of the tilted distribution P̂ for Qnew. The score has the same form as (9), but with

M−1 = A−1
j Âj (the Cholesky factor of A is available from the computation of the tilted

moments). In the experiments reported here, we make use of this simpler variant, but an
experimental comparison between the two variants will be done in future work.

8 Extensions of the Myopic Scheme

We are now in a position to propose a generalization of the binary IVM to C classes which
scales as O(n C d2), simply by combining the myopic forward selection scheme used in [6]
with the additional ideas developed here. However, initial experiments with this scheme
showed unsatisfactory performance. In this section we analyze this problem and propose
two significant modifications to the simple myopic scheme. At this point we have not yet
tested the significance of each of these modifications in isolation on larger experiments, but
will do this in future work. While the modified scheme is harder to describe and implement,
it is not significantly more costly than the simple myopic one (we remind the reader of out
working assumption: n � d > C).

Observations of the simple myopic scheme on toy experiments show the following problem.
For kernels with rather small variance and large length scales, the inclusion of patterns
hardly decreases the prior uncertainty in any predictions, including the prediction at points
in the active set. For a prior favouring paths of higher variance and more rapid changes,
the first pattern included determines all subsequent predictions completely (all patterns are
assigned to the same class with high probability). The problem may be that predictions
use the training set information only through the “bottleneck” of the active set, thus if
any of the patterns included early determine the belief very strongly, this can result in the
information in subsequent patterns being ignored completely. In short, while the simplest
possible “myopic” forward selection approach worked satisfyingly in the binary case, a more
elaborate scheme may be required for C > 2 classes.

The first modification is the introduction of likelihood reweighting factors. Eventually we
would like each pattern in the active set to determine the belief significantly, but we might
have to downweight this influence initially when the active set I is still small. To this end,
we introduce reweighting factors γi ∈ (0, 1] into the likelihood terms:

P (yi|ui) ∝ exp
(

γiu
(yi)
i + βyi

)

.

The γi should be regarded as parameters of the approximation or the algorithm (akin to a
temperature parameter in annealing schemes), not as parameters of the model. In fact, we
will have γi = 1 for all i in the end. Any schedule of updating the γi is a heuristic: a simple
one is suggested in Section 8.5. Suffice to say that γi = 1 for all patterns i which have been
in I more than a fixed number of inclusions. This is important to ensure the feasibility of
the whole scheme.

Second, a joint optimization of the site parameters for at least a subset of the active pat-
terns (in I) is required. A possible explanation for the simple approach to fail is that site
parameters are determined once and never changed later on. The myopic scheme restricts
itself to the behaviour of an on-line algorithm, while this is not required by the problem
setting (the training data can be accessed in arbitrary batches). The parameters are never
modified jointly (and iteratively) with others. It can happen that patterns which are in-
cluded early obtain unreasonable site parameter values, simply because their computation is
based on the current belief only. If these values remain fixed, the errors cannot be corrected
later on,17 in fact may lead to unreasonable subsequent decisions. The opportunity of joint
optimization is especially attractive in combination with the reweighting of the likelihood
factors. For example, factors of points included into I early can be raised gradually, their
site parameters modified in conjunction with later patterns.

However, to remain feasible as a sparse method which makes use of the block-diagonal
structure of K (in the sense of Section 4) it is necessary to freeze the site parameters of
points in I eventually (and to set their γi = 1). This is because we still need to be able
to score a large number of candidates for every inclusion, which requires some form of
stub vectors. Since these depend in a complicated way on all site parameters, we can only
maintain and update them for patterns whose parameters do not change in the future. In the
sequel, we describe a scheme which includes all these modifications. It features expectation
propagation (EP) iterations on a “liquid” subset of I. Patterns are removed gradually from
this subset and their site parameters are frozen. The representation described above is
maintained w.r.t. the “solid” (or “frozen”) subset of I only.

8.1 General Description

At any time, the active set I = {I1, . . . , Id} is partitioned into the solid (or frozen) subset
If = {I1, . . . , Id−L} and the liquid subset I l = {Id−L+1, . . . , Id} of size no larger than L.
Note that If contains the patterns included earlier. Both sets can be empty, but if If 6= ∅,
then |I l| = L. Site parameters of patterns in the solid subset are fixed (“frozen”) while
parameters of patterns in I l can be changed arbitrarily. We allow for likelihood reweighting
factors γi ∈ (0, 1] for all i ∈ I l, while γi = 1 for all other patterns. These factors may change
(for i ∈ I l) in an arbitrary way between inclusions.

The representation described in Section 4 is used here as well, but it is based on the solid
active set only (as are the stub buffers). In the descriptions above, replace I by If , d by
d−L. We will call it solid representation in order to distinguish it from the EP representation
to be introduced shortly. The algorithm cycles through different phases for each inclusion.
For the moment, we ignore “edge effects” (empty I, empty If , etc.) which occur at the
beginning and the end. In the selection phase, a large number of candidate patterns outside
of I are scored to determine which to include next. This phase is described in Section 8.2.
In the inclusion phase, the new pattern is included into I, the first pattern in I l is frozen
(moved into If) and the representation is updated. Also, the γi factors are modified. This
phase is described in Section 8.3. Finally, in the EP phase, the site parameters for liquid
patterns are updated jointly using EP iterations. This requires a different representation
which cannot exploit block-diagonal matrix structure and scales cubically in L C. The EP

17“Deletion” and “exchange” moves are possible in the binary IVM, but typically lead to numerical
instabilities in the updates of the representation.

phase is described in Section 8.4. In Section 8.5, we discuss further details such as what
happens at the beginning and the end, and how the γi likelihood reweighting factors can
be chosen.

8.2 The Selection Phase

In the selection phase, a large number of candidates from {1, . . . , n} \ I are scored to
selection a suitable pattern for the next inclusion. As precondition, the (solid) representation
described in Section 4 (replace I by If , d by d − L) is given for the solid active set If . We
are given a selection index J disjoint from I whose patterns are to be scored (the size of J
can be roughly O(n), more below). In order to compute the score described in Section 7 we
need the marginal moments, thus the stub vectors (5) for j ∈ J w.r.t. the full active set I.
Recall that we have stubs available (for all j) for the solid representation.

In the selection phase, we build an extended representation and extended stub buffers start-
ing from the solid representation. Extended stubs are required for all j ∈ I ∪ J . We do this
by “including” the patterns I l = {Id−L+1, . . . , Id} as described in Section 5. Note that the
solid representation is not overwritten, in particular the extended q stubs must not over-
write the normal ones. It is most efficient to allocate separate buffers for the extended stubs,
although this is redundant in case of the m stubs. Once the extended stubs are completed,
the marginal moments for all j ∈ J can be computed, the patterns can be scored and the
winner selected as before.

Note that our description of the selection phase may require redundant evaluations of rows
of the covariance matrices K(c) (the same pattern i will be in I l for up to L inclusions) if L
subsequent selection indexes J do overlap. If additional memory is available, a n-by-L-by-C

buffer should be maintained storing18 K
(c)

·,Il , c = 1, . . . , C (since L � d, this is typically not

a dominating buffer).

Since each stub update is O(C d), we need O((|J |+d) C d L) to extend all stubs j ∈ J∪I. To
stay within our resource limitations of O(n C d2), we require |J | ≤ min{n/L, n/C}. Recall
that C is moderate and L can be chosen fairly small.19

8.3 The Inclusion Phase

In this phase, pattern i 6∈ I is to be included into I. Typically, i is the winner from the
selection phase. As precondition, we require the marginal moments hi, Ai for i, which we
can compute from the EP phase representation. If |I l| = L, the first pattern Id−L+1 in I l

is moved to If , i.e. its site parameters are frozen. Note that it is sensible to require that
γId−L+1

= 1, otherwise these parameters are computed based on a wrong likelihood factor).
Freezing means that the solid representation and the stubs are updated as described in
Section 5. Finally, we require initial site parameters for i which are determined as described
in Section 6. Furthermore the reweighting factors γj are updated following a schedule to
be described below. We require that γId−L+1

= 1 and will typically have γi < 1. It is not

18One of the advantages of the IVM is that redundant covariance function evaluations are typically not
required, which is especially important if the kernel evaluations are expensive.

19The simple myopic scheme has L = 1, and already a small L > 1 can make a significant improvement.

necessary to update the representation used in the EP phase, since it has to be recomputed
at the beginning of this phase anyway. The inclusion phase ends by including i into I.

As shown in Section 5, the cost for including a new point into If is O(n d C) (for updating
all stub vectors).

8.4 The EP Phase

In the EP phase, the site parameters for all liquid active patterns in I l are jointly optimized
using EP updates. As precondition, we require the solid representation to be given for I f

(which may be empty), furthermore all patterns in I l must have initial site parameter values.
The EP phase can only be run if |I l| ≥ 2 (see Section 8.5).

Before we describe the phase, let us remark that we actually have two different options
for designing an EP phase. Option I (which we do not choose here) is to iterate using the
full representation w.r.t. I, but to only ever choose i ∈ I l for site updates. It is not hard
to see that each EP step would require O(C d2), i.e. an EP iteration over all i ∈ I l would
be O(L C d2). Option II chosen here is to iterate EP only on the marginal distribution
Q(uIl). As we see shortly, this means that we cannot exploit the block-diagonal structure
of the prior covariance matrix anymore, thus have to deal with unstructured (CL)-by-(CL)
matrices. We will see that each EP step takes O(C3 L2), thus an EP iteration is O((C L)3).
This is roughly no slower than option I if d ≥ C L (which will typically be the case). The
drawback of option II is that a separate representation has to be used which complicates
the implementation. Also, a O(d C2 L2) computation is required initially (which is again
cheaper than option I if d ≥ C L).

In order to make progress, the following argument is required. We would like to run EP
iterations on the approximating distribution

Q(uI) ∝ P (uI)N
U (uIf |bIf ,ΠIf)NU (uIl |bIl ,ΠIl),

but will only ever change site parameters for i ∈ I l. If we define

Qf (uI) ∝ P (uI)N
U (uIf |bIf ,ΠIf),

we have
Q(uI) ∝ Qf (uI)N

U (uIl |bIl ,ΠIl).

But this is just about the same situation as the original setup if uI replaces u, uIl replaces
uI , and the prior P (u) is replaced by the “prior” Qf (uI). If we do these replacements, I
will be the set of “all” points, I l will be the “active set”. The only difference to the original
setup is that the marginal “prior” Qf (uIl) is not zero-mean anymore, and that its covariance
matrix does not have a block-diagonal structure. We cannot use the same representation as
above, but have to work with unstructured (CL)-by-(CL) matrices.

We will denote the moments of Qf using the superscript f , these are the moments we obtain
from the solid representation (with If as active set). As for Qf (uIl) = N(hf , G) we have

G = A
f
Il = KIl − KIl,If ΦIf KIf ,Il = diag

(

K
(c)

Il − M
(c)T

Il M
(c)

Il

)

c
+ QT

IlQIl (10)

with
M

(c)

Il =
(

m
(c)
j

)

j∈Il
, Q

(c)
Il

=
(

q
(c)
j

)

j∈Il
, QIl

=
(

Q
(c)
Il

)

c
∈ R

d−L,CL,

the computation is O(d C2 L2) given the stubs. The computation of hf is described in
Section 4.

The following description is very technical. Readers not interested in the details may skip
the remainder of the section in which we show how a suitable representation of size O(C2 L2)
can be maintained which allows EP updates of the site parameters in O(C3 L2), so that a
complete iteration over all sites is O(C3 L3). While our main concern here is numerical sta-
bility, the deletion/inclusion nature of EP combined with frequent use of rank-one updates
may cause problems. We give some comments how to deal with these.

We work with inner grouping w.r.t. c in the rest of this section. Recall our notation from

Section 3. We convert G from (10) to P̂ ↔GP̂
T
↔, hf to P̂ ↔hf , etc. This grouping is more

natural in the context here, because there is no block structure for the inner grouping w.r.t.
datapoints anymore (as opposed to K , the covariance matrix G has no block structure
if If 6= ∅), while we still have ΠIl = diag(Πi)i (inner grouping w.r.t. c). In the sequel,
we drop the subscript I l and use an absolute indexing of this subset, i.e. assume20 that
I l = {1, . . . , L}. Matrices will be (CL)-by-(CL) and follow the inner grouping w.r.t. c
unless said otherwise. We also have to use namings which may conflict with other sections,
so definitions made here are meant to be local and override definitions elsewhere.

Let Π = V V T . We can choose V = diag(V i)i with Πi = V iV
T
i .21 The posterior covariance

matrix is

A =
(

G−1 + Π
)−1

= G − MT M , M = L−1V T G, B = I + V T GV = LLT . (11)

Note that B is positive definite with all eigenvalues ≥ 1, thus very well-conditioned. The
posterior mean is

h = b̃ − MT β, b̃ = Gb + hf , β = L−1V T b̃. (12)

The EP representation consists of L, M , β. We also require L−1 explicitly, maintaining
P (i) = (L−1)·,i.

In order to do an EP step, we require the marginal Q(ui) = N(hi, Ai), where hi, Ai

are computed via (11) and (12). Before dealing with the EP projection, we describe how
the representation is updated afterwards. Suppose the parameters of pattern i are to be
updated. Let ∆V i = V ′

i−V i. We reject i for update if Π
′
i−Πi is too small in some matrix

norm. Let Gi = QiQ
T
i (the factors should be precomputed). Since V ′ = V + I ·,i∆V iIi,·,

we have

B′ = B +
(

I ·,i∆V T
i Qi + Ṽ

)(

I ·,i∆V T
i Qi + Ṽ

)T
− Ṽ Ṽ

T
, Ṽ = V T G·,iQ

−T
i .

Therefore, we can update L using L positive followed by L negative applications of chollrup
described in Section 5. We drag along the columns of M and all P (j) which are required
to update these variables, but can also conveniently be used as follows. chollrup requires
subsequent columns of L−1Ṽ and L−1I ·,i∆V T

i Qi with L being up-to-date. Note that
L−1Ṽ = M ·,iQ

−T
i and L−1I ·,i∆V T

i Qi = P (i)(∆V T
i Qi). Since we drag along the columns

of M and all P (j), columns of the latter expressions are available based on the correct L

just when they are required. Our implementation precomputes and stores Qi and Q−T
i .

Recall that chollrup results in L′ = LL̃ with L̃ having an O(C L2) representation.22 The
20Il may be smaller than L in the beginning, the modifications to the description are obvious though.
21Use the spectral decomposition Πi = U DUT , then V i = U D1/2.
22L̃ is the product of L factors with O(C L) representation.

P (j) are updated simply by dragging along their columns. The update of M is

M ′ = L̃
−1

M + P (i)′∆V T
i Gi,·.

Next, b̃
′
= b̃ + G·,i∆bi (where ∆bi = b′i − bi). Finally,

β′ = L̃
−1

β + M ′
·,i∆bi + P (i)′∆V T

i b̃i,

so β has to be dragged along as well. The complete update is O(C3 L2) (the “dragging
along” dominates the cost). Numerical stability should be ensured by the fact that B is
always well-conditioned. Still, our implementation allows a roll-back together with rejecting
i for update should any of the negative chollrup break down.

It remains to describe the EP update itself. Let Q(ui) = N(hi, Ai) be the marginal. As
opposed to the ADF update described in Section 6 we cannot assume that Πi = 0, thus
have to remove the site approximation i from Q. Let

Q\i(ui) = N
(

h
\i
i ,Λ

)

, Λ = (I − AiΠi)
−1

Ai, h
\i
i = (I − AiΠi)

−1 (hi + Aibi)

the “cavity” distribution. Note that Q\i = Q if Πi = 0, bi = 0 which is the ADF case.
An EP update is done in the same way as an ADF update (see Section 6) with the only
difference that the marginal Q(ui) is replaced by the cavity marginal Q\i(ui).

23 We cycle
over i ∈ I l in some random ordering. Candidates i are rejected if the change ∆Πi is too
small, or in the unlikely case that an L update breaks down.24 The repeated use of rank-
one updates may introduce numerical errors, so the representation should be refreshed (i.e.
recomputed from scratch) after O(L) updates (which costs O(C3 L3)). Note that we do not
have to run EP updates until convergence25, but can stop after a fixed number of them.

This completes the description of the EP phase. The representation used here should be
retained until the next EP phase, it is required in inclusion phase to compute the marginal
moments for the new pattern. The latter works as follows. Let i 6∈ I be the new pattern.
We simply have to apply the initial computation of the EP representation above to the case
where I l is replaced by Ĩ = I l ∪ {i}. Denote J = {1, . . . , L} for conciseness. If G̃ = A

f

Ĩ
∈

R
C(L+1),C(L+1), then G̃J = G, so only G̃·,L+1 ∈ R

C(L+1),C has to be computed from the
stubs. After the computation, we permute the components such that the inner grouping is
w.r.t. c. Then,

Ai = G̃L+1 − M̃
T
M̃ , M̃ = L−1V T G̃J,L+1.

and
hi = h

f
i + G̃L+1,Jb − M̃

T
β.

Note that the computation is O(C3 L2): it would not be feasible to compute a large number
of marginals that way, the “detour” via the extended representation in the selection phase
is necessary.

An iteration over all liquid patterns in the EP phase costs O((L C)3) which is subdominant
to other costs if d ≥ L C which we assume to be true. As mentioned above, our scheme in

23For increased stability one can consider “damped” EP updates, but we have not found this necessary in
our case.

24This did not happen in our experiments so far.
25At any rate, convergence is not guaranteed in EP, since it does not descent on a criterion.

the present form is not suitable for the case of large C. Note that the overall contribution
of all EP phases is O(d (L C)3) which is subdominant if d ≥ L C and n ≥ C L2 (the latter
is given because n � d and L can be chosen small).

8.5 Further Details

What happens in the beginning? First, it does not make sense to run the selection phase if
the active set is still very small. As in the binary IVM scheme, we pick the first two or three
patterns for I at random.26 We note that the selection phase can be run with an empty solid
set, simply by extending an empty representation, but it requires at least one liquid active
pattern. The inclusion phase can be run even if I is empty, as long as marginal moments
for the new pattern are supplied. For the very first pattern, we use the prior moments
hi = 0, Ai = Ki, for later patterns we use the EP representation (see details at the end of
Section 8.4).

Finally, once the active set I has the desired final size, we run a final EP phase on the liquid
set, then use the first part of the selection phase in order to complete the representation
(freeze all liquid patterns). The stubs are not required anymore at this point and do not
have to be updated.

We propose the following simple update schedule for the likelihood reweighting factors
γi, i ∈ I l. Suppose I l = {i1, . . . , ik}, k ≤ L. If k = L, we require that γi1 = 1. γij should be

nonincreasing in j, and the factors should scale with d = |I|. Pick L0 < L, γ(0) ∈ (0, 1), α0 ∈
(0, 1) , then

γik = 1 −
(

1 − γ(0)
)

exp (−α0(d − 1)) ,

γij = min {1, γik + (k − j)∆} , ∆ = (1 − γik)/L0.

This means that γi1 = γ(0) if d = 1, then γik is increasing towards 1 with d. For fixed d, the
γij decrease linearly towards γik with at most L0 of them being different from 1.

9 Model Selection

The scheme described so far shows how to approximate Bayesian inference for the latent u

conditioned on fixed hyperparameters, such as the parameters of the covariance functions
K(c) for each u(c) and the intercept parameters β ∈ R

C . Recall that the dominating cost
for an inference step is O(n C d2). One of the major advantages of adopting a full Bayesian
strategy in practice is that normally model selection, i.e. the task of assigning appropriate
hyperparameter values given the data, is easy to do given a valid inference approximation.
Our development here is a direct generalization of the model selection strategy in the binary
case, as detailed in [11], Sect. 4.5.2.

It is well known that the correct way of dealing with hyperparameters in Bayesian analysis
is to place hyperpriors on them and integrate them out. A model consisting of hyperpa-
rameters and “primary parameters” (the latent processes u(c) in our case) is referred to

26Depending on the task, a more informed “cheap and cheerful” heuristic may be available. We should
certainly ensure that the initial patterns come from different classes.

as hierarchical model, the hyperparameters are higher up the hierarchy (“away from the
observed data”) than the primary ones. Strictly speaking there is no reason to treat hyper-
parameters differently from primary ones, but in practice integrating out the former (even
approximately) is often much harder, and a crude but often very effective approximation is
to replace the marginalization by a maximization. This is justified by the fact that if the
hyperparameters are chosen properly, the hyperposterior tend to approach a sharp peak
and can eventually be replaced by a Delta distribution at a mode without losing too much
in terms of prediction accuracy.

Let θ collect all hyperparameters in our model. The empirical Bayesian technique of
marginal likelihood maximization advocates choosing hyperparameter values by maximizing
the marginal likelihood

P (y |θ) =

∫

P (y|u, θ)P (u|θ) du

of the observed data. Importantly, this criterion does not depend on primary parameters
which are integrated out. Intractability of inference, i.e. computing P (u|y, θ) typically
translates into intractability of computing this score, but interestingly there is a generic
way of obtaining a lower bound using any approximate inference scheme. If Q(u) is some
approximation to P (u|y, θ), then a simple application of Legendre-Fenchel duality gives

log P (y |θ) ≥ EQ [log P (y, u|θ)] + H[Q(u)] = EQ [log P (y |u, θ)] − D[Q(u) ‖P (u|θ)].

The slack in this inequality is D[Q(u) ‖P (u|y, θ)] which measures closeness of Q to the
posterior.

In our case, Q(u) is given by the representation learned as described above. The marginal
likelihood as well as lower bound approximations are typically not convex, so non-convex
gradient-based optimization has to be employed. Our optimization strategy is similar to
the one detailed in [11]. For fixed active set I and site parameters b, π the criterion and
its gradient w.r.t. θ can be computed from the representation and the stub vectors as
shown below. Since a good choice of I depends on the hyperparameters in a way which is
hard to specify, the overall criterion may even be nondifferentiable which precludes simply
sticking it into a standard optimizer. We use a Quasi Newton optimizer which is modified
as follows. The criterion and gradient computation to drive the computation of search
directions is done in “major mode” which means that active set I and site parameters b, π

are determined from scratch as detailed above. On the other hand, during line searches along
directions we run conditional inference in “minor mode”, keeping I, b, π fixed. Since the
dependence of the latter on θ is ignored when computing gradients, this seems necessary to
achieve a consistent line search. Note that while “minor mode” and “major mode” inference
have the same dominating complexity, the former runs much faster because the dominating
operations can be done in large blocks.

There are variations of the theme which save running time. For example, I could be fixed
over longer periods avoiding the need of the complicated re-selection. It is tempting to fix I
very early during optimization and stick with it, but given the assumption that the choice
of I is significant for prediction accuracy it does not seem sensible to do so. Note that the
algorithm is not strictly a descent method,27 because the criterion can increase when I, b, π

are recomputed for a new search direction. Especially, due to the discrete nature of I and

27As shown below, we will minimize the negative log marginal likelihood.

its forward selection, we cannot except to observe convergence to high accuracy, rather the
terminal behaviour of the method will be to oscillate around a local minimum point.

It is important to note that we deviate from the conventional method of doing variational
Bayesian model selection in several ways. First, we do not choose our inference approxi-
mation Q in order to minimize the slack in the bound, as variational Bayesian inference
approximation would require. The drawback is that we do not always descend on the crite-
rion and have to employ non-standard optimization code. On the other hand, our posterior
approximations may well be much better than any tractable variational Bayesian choice.
In fact, the insistence on bounds seems often more of a hindrance and is weakened by the
fact that one cannot judge the tightness of the bounds.28 Second, we do not fix the entire
posterior approximation Q(u) during gradient computation and line search, but only the
parameters whose analytical dependence on θ would be unreasonably hard to specify. In our
opinion, this is of central importance in Gaussian process models where the dependence of
Q(u) on the prior is very strong. Recall that the covariance matrix of Q (which is Gaussian)
has the form A = (K−1 + Π)−1. Only Π depends on I and the site parameters and can
be written in terms of O(Cd) parameters. Arguably the strongest dependence on θ is direct
through the kernel matrices K(c). We argue that freezing A during line searches can hinder
performance significantly.

Finally, the reader may wonder why we do not choose a model selection criterion more
“compatible” with the fact that site parameters are chosen using EP (or ADF) projections.
In fact, the ADATAP variational free energy would probably fit in better and has been used
for model selection in single process models in [2]. The problem is that even in the binary
case, the ADATAP criterion is much more complicated to derive than the simple variational
bound we use here. Furthermore, its gradient w.r.t. θ is the same as ours if we fix I, b Π.

9.1 The Criterion and the Gradient

We minimize an upper bound to the negative log marginal likelihood given by

G = EQ [− log P (y |u, θ)] + D [Q(uI) ‖P (uI |θ)] .

Here, the hyperparameter vector θ decomposes into vectors θ(c) for each covariance function
K(c) and the intercept vector β ∈ R

C .

It is possible to compute G and its gradient w.r.t. θ using a procedure which requires
O(n C d2) for precomputation (in addition to the conditional inference step), then O(n d |θ|)
for the gradient. The procedure does not need additional memory, but will overwrite the

buffer for the m
(c)
j stubs.

Experiments with this model selection criterion are work in progress. The dominant compu-
tation for a criterion and gradient in “major mode” is the conditional inference step which
runs much faster in “minor mode”. Note that even though line searches tend to convergence
quickly on average, most of the gradient computations are done using “minor mode”. There
are obvious ideas how to speed up the optimization, such as relying on the fact that the
active set should not change very much over time. One could make local changes rather

28Slacks between corresponding upper and lower bounds are typically huge in high dimensions. Intuitively
it seems clear that approximating a complicated function in high dimensions is much easier than bounding
it.

than a complete re-selection in most “major mode” iterations. For example, the technique
of exchange moves (see [10]) could be useful for this purpose. Exploring such possibilities is
subject to future work.

10 Experiments

We present preliminary experiments on a dataset of C = 5 classes and n = 800 patterns.
We extracted 200 patterns at random for each even-digit class from the training set of the
MNIST handwritten digits database29. From these, we pick 200 at random as test set. All
experiments below use the same training/test set split.

In these preliminary experiments, we did not address the model selection problem of ad-
justing the covariance function parameters or the intercept parameters β. The latter were
fixed to 0 since our dataset is fairly balanced. While we should (and will) use independent
kernels K(c) for the different processes u(c), in these first runs we used a shared Radial Basis
Functions (RBF) covariance function

K(c)(x, x′) = v exp

(

−
w

2p
‖x − x′‖2

)

, x, x′ ∈ R
p.

We then ran our algorithm for a range of (w, v) parameters, fixing dfinal = 150 (active set
size) and L = 25 (liquid set size). In each EP phase, we cycle 2–3 times over the liquid
patterns. We reserve the issue of automatic model selection by empirical Bayesian methods
for future work, which could certainly handle the case of independently parameterized K (c)

covariance functions.

Table 1 gives test set results for the final predictor (|I| = dfinal). The figures are the test set
error err and the predictive probability of the true label lh, we also provide the maximum
and minimum entropy of the predictive distributions over the test set. While err is often of
principal interest, lh shows the uncertainty for the true class. maxent and minent are less
important, but give an idea about the range of uncertainties in the predictive distributions.
The performance is satisfying and quite stable over a range of different (w, v) (worse results
of err around 0.10 were obtained for much smaller w values).

Figures 1 and 2 show learning curves (growing active set size) for test set error and average
test set likelihood for v = 5, w = 50 vs. v = 5, w = 25, Figures 3 and 4 show the same for
v = 1, w = 40 vs. v = 5, w = 20. We observe that larger likelihoods are obtained for smaller
values of w (which translates to larger length scales, i.e. processes whose paths are varying
less rapidly). More interestingly, the likelihood is much more variable between different
configurations than the test error which further motivates developing marginal likelihood
maximization techniques for model selection.

It is also interesting to observe that while test error decays rapidly with growing active set
size d, the growth of the test set likelihood is almost linear in d, giving empirical evidence
what recent theoretical analyses suggest: the value of including more training points is not
so much in decreasing test error ever further (if the selection of I is done appropriately),
but in reducing the uncertainty in the predictions. However, more extensive experiments
are required to support any such claims.

29Available online at http://www.research.att.com/ ∼yann/exdb/mnist/index.html.

v w err lh minent maxent

0.5 40 0.03 0.250980 1.577508 1.608262
2 40 0.03 0.329869 1.465741 1.603344
3 50 0.03 0.318090 1.475719 1.605220
5 40 0.03 0.378992 1.362901 1.598936
5 50 0.03 0.334296 1.439076 1.603916

0.5 50 0.035 0.234370 1.596795 1.608964
0.5 75 0.035 0.214800 1.604509 1.609399
1 50 0.035 0.259384 1.572066 1.608069
1 75 0.035 0.225446 1.594087 1.609345
2 30 0.035 0.366623 1.403297 1.597981
2 50 0.035 0.297387 1.493768 1.606813
3 30 0.035 0.402858 1.227390 1.595801
3 75 0.035 0.248621 1.573701 1.609153
5 25 0.035 0.458838 1.013761 1.586853
5 30 0.035 0.434059 1.194334 1.591372
5 75 0.035 0.254237 1.555642 1.608953
1 30 0.04 0.312231 1.497278 1.603975
1 40 0.04 0.284071 1.541226 1.607647
2 75 0.04 0.237900 1.574186 1.609215
3 25 0.04 0.427809 1.252592 1.589746
5 20 0.04 0.477860 1.069909 1.591897

Table 1: Results on 5-class toy dataset. err: Error on test set. lh: Avg. likelihood test set.
minent: Smallest entropy pred. distribution. maxent: Largest entropy pred. distribution.

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Active Set Size

T
es

t
E

rr
o

r

v=5, w=50
v=5, w=25

Figure 1: Active set size vs. error on test set, 5-class toy dataset.

11 Conclusions. Future Work

We have described a sparse approximation to Bayesian inference for multi-class Gaussian
process models which achieves a scaling linear in the number of training points and the

0 50 100 150
0.2

0.25

0.3

0.35

0.4

0.45

0.5

Active Set Size

T
es

t
S

et
 L

ik
el

ih
o

o
d

v=5, w=50
v=5, w=25

Figure 2: Active set size vs. average test set likelihood, 5-class toy dataset.

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Active Set Size

T
es

t
E

rr
o

r

v=1, w=40
v=5, w=20

Figure 3: Active set size vs. error on test set, 5-class toy dataset.

number of classes. The central idea is to use an analogy to the Laplace approximation
framework of [14] which allows for a O(C) representation given independent priors, even
though the posterior processes are strongly coupled. Note that this idea could be applied
to other C-process likelihoods as well: namely, if the log likelihood is concave, its Hessian
provides the value for Πi under the Laplace approximation, and if this Hessian has a simple
structure (implied by a “simple” coupling up to second order through the likelihood) an
efficient O(C) representation may arise.

Compared to previous kernel-based large margin multi-class algorithms, our scheme is some-
what harder to implement and may run slower on particular problems. It is also not the
solution to a well-understood convex problem, but rather approximates a hard combinato-

0 50 100 150
0.2

0.25

0.3

0.35

0.4

0.45

0.5

Active Set Size

T
es

t
S

et
 L

ik
el

ih
o

o
d

v=1, w=40
v=5, w=20

Figure 4: Active set size vs. average test set likelihood, 5-class toy dataset.

rial one. However, it offers a number of strong advantages. Being a Bayesian approximation,
valid predictive probability (“error bars”) estimates can be obtained and hyperparameters
can be adjusted by empirical Bayesian methods. Our method operates jointly on the data
from all classes and does not require imposing artificial binary partitions or combining
binary discriminants in a posthoc heuristic fashion. The linear scaling in the number of
training points is guaranteed a priori, as opposed to the degree of sparsity in SVM which
depends in an unknown way on the data distribution and the kernel parameters. Previous
work on Bayesian GP multi-class problems include [14, 4], but we are not aware of previous
sparse approximations.

In future work, we will address the model selection problem by implementing marginal
likelihood maximization. This works in the same way as for the binary IVM (see [10] for
details), and the cost for computing the criterion and its gradient will be dominated by the
conditional inference procedure described here. We have mentioned above that in order to
cope with very large training sets, a randomized selection strategy together with intelligent
cacheing of the stub vectors would be required.30

The present scheme does not generalize to a large number C of classes, namely there is
a O(d (C L)3) scaling component and the numerical quadrature routines cannot be used
anymore to perform ADF projections or compute predictive probabilities. We are also in-
terested in using our methodology to address generalizations of larger structured graphical
models (such as sequence models and conditional random fields) using nonparametric Gaus-
sian process priors, which can be seen as classification problems with a very large but highly
structured label space. However, such generalizations certainly require a satisfying proba-
bilistic solution for the C-class model with moderate C.

30Recall that we are already forced to use some randomization in the selection, because no more than
min{n/C, n/L} patterns can be scored for each iteration.

References

[1] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
2002. Available online at www.stanford.edu/~boyd/cvxbook.html.

[2] Lehel Csató. Gaussian Processes — Iterative Sparse Approximations. PhD thesis,
Aston University, Birmingham, UK, March 2002.

[3] P. Davis and P. Rabinovitz. Methods of Numerical Integration. Academic Press, 1984.

[4] Mark N. Gibbs. Bayesian Gaussian Processes for Regression and Classification. PhD
thesis, University of Cambridge, 1997.

[5] Roger Horn and Charles Johnson. Matrix Analysis. Cambridge University Press, 1st
edition, 1985.

[6] Neil D. Lawrence, Matthias Seeger, and Ralf Herbrich. Fast sparse Gaussian process
methods: The informative vector machine. In S. Becker, S. Thrun, and K. Obermayer,
editors, Advances in Neural Information Processing Systems 15, pages 609–616. MIT
Press, 2002. See www.cs.berkeley.edu/~mseeger.

[7] Y. Lee, Y. Lin, and G. Wahba. Multicategory support vector machines, theory, and ap-
plications to the classification of microarray data and satellite radiance data. Technical
Report 1064, University of Wisconsin, September 2002.

[8] Thomas Minka. Expectation propagation for approximate Bayesian inference. In
J. Breese and D. Koller, editors, Uncertainty in Artificial Intelligence 17. Morgan Kauf-
mann, 2001.

[9] Manfred Opper and Ole Winther. Gaussian processes for classification: Mean field
algorithms. Neural Computation, 12(11):2655–2684, 2000.

[10] M. Seeger. Bayesian Gaussian Process Models: PAC-Bayesian Generalisation Error
Bounds and Sparse Approximations. PhD thesis, University of Edinburgh, July 2003.
See www.cs.berkeley.edu/~mseeger.

[11] M. Seeger and M. I. Jordan. Fast sparse Gaussian process classification with mul-
tiple classes. Technical report, University of California at Berkeley, 2004. See
www.cs.berkeley.edu/~mseeger. Submitted.

[12] Matthias Seeger. Gaussian processes for machine learning. International Journal of
Neural Systems, 14(2):1–38, 2004.

[13] J. Weston and C. Watkins. Multi-class support vector machines. Technical Report
CSD-TR-98-04, Royal Holloway, London, 1998.

[14] Christopher K. I. Williams and David Barber. Bayesian classification with Gaus-
sian processes. IEEE Transactions on Pattern Analysis and Machine Intelligence,
20(12):1342–1351, 1998.

