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Abstract

Many of the classification algorithms developed in the machine learning literature, including
the support vector machine and boosting, can be viewed as minimum contrast methods that
minimize a convex surrogate of the 0-1 loss function. The convexity makes these algorithms
computationally efficient. The use of a surrogate, however, has statistical consequences that
must be balanced against the computational virtues of convexity. To study these issues, we
provide a general quantitative relationship between the risk as assessed using the 0-1 loss and
the risk as assessed using any nonnegative surrogate loss function. We show that this relationship
gives nontrivial upper bounds on excess risk under the weakest possible condition on the loss
function: that it satisfy a pointwise form of Fisher consistency for classification. The relationship
is based on a simple variational transformation of the loss function that is easy to compute in
many applications. We also present a refined version of this result in the case of low noise.
Finally, we present applications of our results to the estimation of convergence rates in the
general setting of function classes that are scaled convex hulls of a finite-dimensional base class,
with a variety of commonly used loss functions.

Keywords: machine learning, convex optimization, boosting, support vector machine, Rademacher
complexity, empirical process theory

1



1 Introduction

Convexity has become an increasingly important theme in applied mathematics and engineering,
having acquired a prominent role akin to the one played by linearity for many decades. Build-
ing on the discovery of efficient algorithms for linear programs, researchers in convex optimization
theory have developed computationally tractable methods for large classes of convex programs (Nes-
terov and Nemirovskii, 1994). Many fields in which optimality principles form the core conceptual
structure have been changed significantly by the introduction of these new techniques (Boyd and
Vandenberghe, 2003).

Convexity arises in many guises in statistics as well, notably in properties associated with the
exponential family of distributions (Brown, 1986). It is, however, only in recent years that the
systematic exploitation of the algorithmic consequences of convexity has begun in statistics. One
applied area in which this trend has been most salient is machine learning, where the focus has
been on large-scale statistical models for which computational efficiency is an imperative. Many
of the most prominent methods studied in machine learning make significant use of convexity; in
particular, support vector machines (Boser et al., 1992, Cortes and Vapnik, 1995, Cristianini and
Shawe-Taylor, 2000, Schölkopf and Smola, 2002), boosting (Freund and Schapire, 1997, Collins
et al., 2002, Lebanon and Lafferty, 2002), and variational inference for graphical models (Jordan
et al., 1999) are all based directly on ideas from convex optimization.

If algorithms from convex optimization are to continue to make inroads into statistical theory
and practice, it is important that we understand these algorithms not only from a computational
point of view but also in terms of their statistical properties. What are the statistical consequences
of choosing models and estimation procedures so as to exploit the computational advantages of
convexity?

In the current paper we study this question in the context of multivariate classification. We
consider the setting in which a covariate vector X ∈ X is to be classified according to a binary
response Y ∈ {−1, 1}. The goal is to choose a discriminant function f : X → R, from a class of
functions F , such that the sign of f(X) is an accurate prediction of Y under an unknown joint
measure P on (X,Y ). We focus on 0-1 loss; thus, letting `(α) denote an indicator function that
is one if α ≤ 0 and zero otherwise, we wish to choose f ∈ F that minimizes the risk R(f) =
E`(Y f(X)) = P (Y 6= sign(f(X))).

Given a sample Dn = ((X1, Y1), . . . , (Xn, Yn)), it is natural to consider estimation procedures
based on minimizing the sample average of the loss, R̂(f) = 1

n

∑n
i=1 `(Yif(Xi)). As is well known,

however, such a procedure is computationally intractable for many nontrivial classes of func-
tions (see, e.g., Arora et al., 1997). Indeed, the loss function `(Y f(X)) is non-convex in its (scalar)
argument, and, while not a proof, this suggests a source of the difficulty. Moreover, it suggests that
we might base a tractable estimation procedure on minimization of a convex surrogate φ(α) for
the loss. In particular, if F consists of functions that are linear in a parameter vector θ, then the
overall problem of minimizing expectations of φ(Y f(X)) is convex in θ. Given a convex parameter
space, we obtain a convex program and can exploit the methods of convex optimization. A wide
variety of classification methods in machine learning are based on this tactic; in particular, Figure 1
shows the (upper-bounding) convex surrogates associated with the support vector machine (Cortes
and Vapnik, 1995), Adaboost (Freund and Schapire, 1997) and logistic regression (Friedman et al.,
2000).

A basic statistical understanding of this setting has begun to emerge. In particular, when
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Figure 1: A plot of the 0-1 loss function and surrogates corresponding to various practical classifiers.
These functions are plotted as a function of the margin α = yf(x). Note that a classification error
is made if and only if the margin is negative; thus the 0-1 loss is a step function that is equal to one
for negative values of the abscissa. The curve labeled “logistic” is the negative log likelihood, or
deviance, under a logistic regression model; “hinge” is the piecewise-linear loss used in the support
vector machine; and “exponential” is the exponential loss used by the Adaboost algorithm. The
deviance is scaled so as to majorize the 0-1 loss; see Lemma 9.

appropriate regularization conditions are imposed, it is possible to demonstrate the Bayes-risk
consistency of methods based on minimizing convex surrogates for 0-1 loss. Lugosi and Vayatis
(2003) have provided such a result under the assumption that the surrogate φ is differentiable,
monotone, strictly convex, and satisfies φ(0) = 1. This handles all of the cases shown in Figure 1
except the support vector machine. Steinwart (2002) has demonstrated consistency for the support
vector machine as well, in a general setting where F is taken to be a reproducing kernel Hilbert
space, and φ is assumed continuous. Other results on Bayes-risk consistency have been presented
by Breiman (2000), Jiang (2003), Mannor and Meir (2001), and Mannor et al. (2002).

Consistency results provide reassurance that optimizing a surrogate does not ultimately hinder
the search for a function that achieves the Bayes risk, and thus allow such a search to proceed within
the scope of computationally efficient algorithms. There is, however, an additional motivation for
working with surrogates of 0-1 loss beyond the computational imperative. Minimizing the sample
average of an appropriately-behaved loss function has a regularizing effect: it is possible to obtain
uniform upper bounds on the risk of a function that minimizes the empirical average of the loss
φ, even for classes that are so rich that no such upper bounds are possible for the minimizer of
the empirical average of the 0-1 loss. Indeed a number of such results have been obtained for
function classes with infinite VC-dimension but finite fat-shattering dimension (Bartlett, 1998,
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Shawe-Taylor et al., 1998), such as the function classes used by AdaBoost (see, e.g., Schapire et al.,
1998, Koltchinskii and Panchenko, 2002). These upper bounds provide guidance for model selection
and in particular help guide data-dependent choices of regularization parameters.

To carry this agenda further, it is necessary to find general quantitative relationships between
the approximation and estimation errors associated with φ, and those associated with 0-1 loss.
This point has been emphasized by Zhang (2003), who has presented several examples of such
relationships. We simplify and extend Zhang’s results, developing a general methodology for finding
quantitative relationships between the risk associated with φ and the risk associated with 0-1 loss.
In particular, let R(f) denote the risk based on 0-1 loss and let R∗ = inff R(f) denote the Bayes
risk. Similarly, let us refer to Rφ(f) = Eφ(Y f(X)) as the “φ-risk,” and let R∗

φ = inff Rφ(f) denote
the “optimal φ-risk.” We show that, for all measurable f ,

ψ(R(f) −R∗) ≤ Rφ(f) −R∗
φ, (1)

for a nondecreasing function ψ : [0, 1] → [0,∞). Moreover, we present a general variational repre-
sentation of ψ in terms of φ, and show how this representation allows us to infer various properties
of ψ.

This result suggests that if ψ is well-behaved then minimization of Rφ(f) may provide a rea-
sonable surrogate for minimization of R(f). Moreover, the result provides a quantitative way to
transfer assessments of statistical error in terms of “excess φ-risk” Rφ(f)−R∗

φ into assessments of
error in terms of “excess risk” R(f) −R∗.

Although our principal goal is to understand the implications of convexity in classification, we do
not impose a convexity assumption on φ at the outset. Indeed, while conditions such as convexity,
continuity, and differentiability of φ are easy to verify and have natural relationships to optimization
procedures, it is not immediately obvious how to relate such conditions to their statistical conse-
quences. Thus, we consider the weakest possible condition on φ: that it is “classification-calibrated,”
which is essentially a pointwise form of Fisher consistency for classification (Lin, 2001). In partic-
ular, if we define η(x) = P (Y = 1|X = x), then φ is classification-calibrated if, for η(x) 6= 1/2,
the minimizer f∗ of the conditional expectation E[φ(Y f∗(X))|X = x] has the same sign as the
Bayes decision rule, sign(2η(x) − 1). We show that our upper bound on excess risk in terms of
excess φ-risk is nontrivial precisely when φ is classification-calibrated. Obviously, no such bound is
possible when φ is not classification-calibrated.

The difficulty of a pattern classification problem is closely related to the behavior of the posterior
probability η(X). In many practical problems, it is reasonable to assume that, for most X, η(X) is
not too close to 1/2. Tsybakov (2001) has introduced an elegant formulation of such an assumption
and considered the rate of convergence of the risk of a function that minimizes empirical risk
over some fixed class F . He showed that, under the assumption of low noise, the risk converges
surprisingly quickly to the minimum over the class. If the minimum risk is nonzero, we might
expect a convergence rate no faster than 1/

√
n. However, under Tsybakov’s assumption, it can be

as fast as 1/n. We show that minimizing empirical φ-risk also leads to surprisingly fast convergence
rates under this assumption. In particular, if φ is uniformly convex, the empirical φ-risk converges
quickly to the φ-risk, and the noise assumption allows an improvement in the relationship between
excess φ-risk and excess risk.

These results suggest an interpretation of pattern classification methods involving a convex
contrast function. It is common to view the excess risk as a combination of an estimation term and

4



an approximation term:

R(f) −R∗ =

(

R(f) − inf
g∈F

R(g)

)

+

(

inf
g∈F

R(g) −R∗

)

.

However, choosing a function with risk near minimal over a class F—that is, finding an f for which
the estimation term above is close to zero—is, in a minimax setting, equivalent to the problem of
minimizing empirical risk, and hence is computationally infeasible for typical classes F of interest.
Indeed, for classes typically used by boosting and kernel methods, the estimation term in this
expression does not converge to zero for the minimizer of the empirical risk. On the other hand, we
can also split the upper bound on excess risk into an estimation term and an approximation term:

ψ(R(f) −R∗) ≤ Rφ(f) −R∗
φ =

(

Rφ(f) − inf
g∈F

Rφ(g)

)

+

(

inf
g∈F

Rφ(g) −R∗
φ

)

.

Often, it is possible to minimize φ-risk efficiently. Thus, while finding an f with near-minimal
risk might be computationally infeasible, finding an f for which this upper bound on risk is near
minimal can be feasible.

The paper is organized as follows. Section 2 presents basic definitions and a statement and
proof of (1). In Section 3, we introduce the convexity assumption and discuss its relationship to
the other conditions. Section 4 presents a refined version of our main result in the setting of low
noise. We give applications to the estimation of convergence rates in Section 5 and present our
conclusions in Section 6.

2 Relating excess risk to excess φ-risk

There are three sources of error to be considered in a statistical analysis of classification problems:
the classical estimation error due to finite sample size, the classical approximation error due to the
size of the function space F , and an additional source of approximation error due to the use of a
surrogate in place of the 0-1 loss function. It is this last source of error that is our focus in this
section. Thus, throughout the section we (a) work with population expectations and (b) assume
that F is the set of all measurable functions. This allows us to ignore errors due to the size of the
sample and the size of the function space, and focus on the error due to the use of a surrogate for
the 0-1 loss function.

We follow the tradition in the classification literature and refer to the function φ as a loss
function, since it is a function that is to be minimized to obtain a discriminant. More precisely,
φ(Y f(X)) is generally referred to as a “margin-based loss function,” where the quantity Y f(X) is
known as the “margin.” (It is worth noting that margin-based loss functions are rather different
from distance metrics, a point that we explore in the Appendix.)

This ambiguity in the use of “loss” will not confuse; in particular, we will be careful to distinguish
the risk, which is an expectation over 0-1 loss, from the “φ-risk,” which is an expectation over φ.
Our goal in this section is to relate these two quantities.

2.1 Setup

Let (X × {−1, 1},G ⊗ 2{−1,1}, P ) be a probability space. Let X be the identity function on X and
Y the identity function on {−1, 1}, so that P is the distribution of (X,Y ), i.e., for A ∈ G ⊗ 2{−1,1},
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P ((X,Y ) ∈ A) = P (A). Let PX on (X ,G) be the marginal distribution of X, and let η : X → [0, 1]
be a measurable function such that η(X) is a version of P (Y = 1|X). Throughout this section, f
is understood as a measurable mapping from X into R.

Define the {0, 1}-risk, or just risk, of f as

R(f) = P (sign(f(X)) 6= Y ),

where sign(α) = 1 for α > 0 and −1 otherwise. (The particular choice of the value of sign(0) is
not important, but we need to fix some value in {±1} for the definitions that follow.) Based on an
i.i.d. sample Dn = ((X1, Y1), . . . , (Xn, Yn)), we want to choose a function fn with small risk.

Define the Bayes risk R∗ = inff R(f), where the infimum is over all measurable f . Then any f
satisfying sign(f(X)) = sign(η(X) − 1/2) a.s. on {η(X) 6= 1/2} has R(f) = R∗.

Fix a function φ : R → [0,∞). Define the φ-risk of f as

Rφ(f) = Eφ(Y f(X)).

Let F be a class of functions f : X → R. Let fn = f̂φ be a function in F which minimizes the
empirical expectation of φ(Y f(X)),

R̂φ(f) = Êφ(Y f(X)) =
1

n

n
∑

i=1

φ(Yif(Xi)).

Thus we treat φ as specifying a contrast function that is to be minimized in determining the
discriminant function fn.

2.2 Basic conditions on the loss function

For (almost all) x, we define the conditional φ-risk

E(φ(Y f(X))|X = x) = η(x)φ(f(x)) + (1 − η(x))φ(−f(x)).

It is useful to think of the conditional φ-risk in terms of a generic conditional probability η ∈ [0, 1]
and a generic classifier value α ∈ R. To express this viewpoint, we introduce the generic conditional
φ-risk

Cη(α) = ηφ(α) + (1 − η)φ(−α).

The notation suppresses the dependence on φ. The generic conditional φ-risk coincides with the
conditional φ-risk of f at x ∈ X if we take η = η(x) and α = f(x). Here, varying α in the generic
formulation corresponds to varying f in the original formulation, for fixed x.

For η ∈ [0, 1], define the optimal conditional φ-risk

H(η) = inf
α∈R

Cη(α) = inf
α∈R

(ηφ(α) + (1 − η)φ(−α)).

Then the optimal φ-risk satisfies

R∗
φ := inf

f
Rφ(f) = EH(η(X)),

where the infimum is over measurable functions.
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We say that a sequence α1, α2, . . . achieves H at η if

lim
i→∞

Cη(αi) = lim
i→∞

(ηφ(αi) + (1 − η)φ(−αi)) = H(η).

If the infimum in the definition of H(η) is uniquely attained for some α, we can define α∗ : [0, 1] → R

by
α∗(η) = arg min

α∈R

Cη(α) = arg min
α∈R

ηφ(α) + (1 − η)φ(−α).

In that case, we define f∗φ : X → R, up to PX -null sets, by

f∗φ(x) = arg min
α∈R

E(φ(Y α)|X = x)

= α∗(η(x))

and then
Rφ(f∗φ) = EH(η(X)) = R∗

φ.

For η ∈ [0, 1], define

H−(η) = inf
α:α(2η−1)≤0

Cη(α) = inf
α:α(2η−1)≤0

(ηφ(α) + (1 − η)φ(−α)).

This is the optimal value of the conditional φ-risk, under the constraint that the sign of the argument
α disagrees with that of 2η − 1.

We now turn to the basic condition we impose on φ. This condition generalizes the requirement
that the minimizer of Cη(α) (if it exists) has the correct sign. This is a minimal condition that can
be viewed as a pointwise form of Fisher consistency for classification.

Definition 1. We say that φ is classification-calibrated if, for any η 6= 1/2,

H−(η) > H(η).

Equivalently, φ is classification-calibrated if any sequence α1, α2, . . . that achieves H at η satisfies
lim infi→∞ sign(αi(η − 1/2)) = 1. Since sign(αi(η − 1/2)) ∈ {−1, 1}, this is equivalent to the
requirement limi→∞ sign(αi(η− 1/2)) = 1, or simply that sign(αi(η− 1/2)) 6= 1 only finitely often.

2.3 The ψ-transform and the relationship between excess risks

We begin by defining a functional transform of the loss function:

Definition 2. We define the ψ-transform of a loss function as follows. Given φ : R → [0,∞),
define the function ψ : [0, 1] → [0,∞) by ψ = ψ̃∗∗, where

ψ̃(θ) = H−

(

1 + θ

2

)

−H

(

1 + θ

2

)

,

and g∗∗ : [0, 1] → R is the Fenchel-Legendre biconjugate of g : [0, 1] → R, which is characterized by

epi g∗∗ = co epi g.

Here co S is the closure of the convex hull of the set S, and epi g is the epigraph of the function g,
that is, the set {(x, t) : x ∈ [0, 1], g(x) ≤ t}. The nonnegativity of ψ is established below in Lemma
5, part 7.
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Recall that g is convex if and only if epi g is a convex set, and g is closed (epi g is a closed set)
if and only if g is lower semicontinuous (Rockafellar, 1997). By Lemma 5, part 5, ψ̃ is continuous,
so in fact the closure operation in Definition 2 is vacuous. We therefore have that ψ is simply the
functional convex hull of ψ̃,

ψ = co ψ̃ ,

which is equivalent to the epigraph convex hull condition of the definition. This implies that ψ = ψ̃
if and only if ψ̃ is convex; see Example 5 for a loss function where the latter fails.

The importance of the ψ-transform is shown by the following theorem.

Theorem 3. 1. For any nonnegative loss function φ, any measurable f : X → R and any
probability distribution on X × {±1},

ψ(R(f) −R∗) ≤ Rφ(f) −R∗
φ.

2. Suppose |X | ≥ 2. For any nonnegative loss function φ, any ε > 0 and any θ ∈ [0, 1], there is
a probability distribution on X × {±1} and a function f : X → R such that

R(f) −R∗ = θ

and
ψ(θ) ≤ Rφ(f) −R∗

φ ≤ ψ(θ) + ε.

3. The following conditions are equivalent.

(a) φ is classification-calibrated.

(b) For any sequence (θi) in [0, 1],

ψ(θi) → 0 if and only if θi → 0.

(c) For every sequence of measurable functions fi : X → R and every probability distribution
on X × {±1},

Rφ(fi) → R∗
φ implies R(fi) → R∗.

Here we mention that classification-calibration implies ψ is invertible on [0, 1], so in that case
it is meaningful to write the upper bound on excess risk in Theorem 3(1) as ψ−1(Rφ(f) − R∗

φ).
Invertibility follows from convexity of ψ together with Lemma 5, parts 6, 8, and 9.

Zhang (2003) has given a comparison theorem like Parts 1 and 3b of this theorem, for convex
φ that satisfy certain conditions. These conditions imply an assumption on the rate of growth
(and convexity) of ψ̃. Lugosi and Vayatis (2003) show that a limiting result like Part 3c holds for
strictly convex, differentiable, monotonic φ. In Section 3, we show that if φ is convex, classification-
calibration is equivalent to a simple derivative condition on φ at zero. Clearly, the conclusions of
Theorem 3 hold under weaker conditions than those assumed by Zhang (2003) or Lugosi and
Vayatis (2003). Steinwart (2002) has shown that if φ is continuous and classification-calibrated,
then Rφ(fi) → R∗

φ implies R(fi) → R∗. Theorem 3 shows that we may obtain a more quantitative
statement of the relationship between these excess risks, under weaker conditions.

Before presenting the proof of Theorem 3, we illustrate the ψ-transform in the case of four
commonly used margin-based loss functions.
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Figure 2: Exponential loss. The left panel shows φ(α), its reflection φ(−α), and two different
convex combinations of these functions, for η = 0.3 and η = 0.7. Note that the minima of these
combinations are the values H(η), and the minimizing arguments are the values α∗(η). The right
panel shows H(η) and α∗(η) plotted as a function of η, and the ψ-transform ψ(θ).

Example 1 (Exponential loss). Here φ(α) = exp(−α). Figure 2, left panel, shows φ(α), φ(−α),
and the generic conditional φ-risk Cη(α) for η = 0.3 and η = 0.7. In this case, φ is strictly convex
on R, hence Cη(α) is also strictly convex on R, for every η. So Cη is either minimal at a unique
stationary point, or it attains no minimum. Indeed, if η = 0, then Cη(α) → 0 as α→ −∞; if η = 1,
then Cη(α) → 0 as α → ∞. Thus we have H(0) = H(1) = 0 for exponential loss. For η ∈ (0, 1),
solving for the stationary point yields the unique minimizer

α∗(η) =
1

2
log

(

η

1 − η

)

.

We may then simplify the identity H(η) = Cη(α
∗(η)) to obtain

H(η) = 2
√

η(1 − η).

Notice that this expression is correct even for η equal to 0 or 1. It is easy to check that

H−

(

1 + θ

2

)

≡ exp(0) = 1,
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Figure 3: Truncated quadratic loss.

and so

ψ̃(θ) = 1 −
√

1 − θ2.

Since ψ̃ is convex, ψ = ψ̃. The right panel of Figure 2 shows the graphs of α∗, H, and ψ over the
interval [0, 1].

Finally, for 0 < η < 1, sign(α∗(η)) = sign(η − 1/2) by inspection. Also, a sequence (αi) can
achieve H at η = 0 (respectively, 1) only if it diverges to −∞ (respectively, ∞). It therefore follows
that exponential loss is classification-calibrated.

Example 2 (Truncated quadratic loss). Now consider φ(α) = [max{1 − α, 0}]2, as depicted
together with φ(−α), C0.3(α), and C0.7(α) in the left panel of Figure 3. If η = 0, it is clear that any
α ∈ (−∞,−1] makes Cη(α) vanish. Similarly, any α ∈ [1,∞) makes the conditional φ-risk vanish
when η = 1. On the other hand, when 0 < η < 1, Cη is strictly convex with a (unique) stationary
point, and solving for it yields

α∗(η) = 2η − 1. (2)

Notice that, though α∗ is in principle undefined at 0 and 1, we could choose to fix α∗(0) = −1 and
α∗(1) = 1, which are valid settings. This would extend (2) to all of [0, 1].

As in Example 1, we may simplify the identity H(η) = Cη(α
∗(η)) for 0 < η < 1 to obtain

H(η) = 4η(1 − η),
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Figure 4: Hinge loss.

which is also correct for η = 0 and 1, as noted. It is also immediate that H−((1+θ)/2) ≡ φ(0) = 1,
so we have

ψ̃(θ) = θ2.

Again, ψ̃ is convex, so ψ = ψ̃. The right panel of Figure 3 shows α∗, H, and ψ. Observe that
truncated quadratic loss is classification-calibrated: the case 0 < η < 1 is obvious from (2); for
η = 0 or 1, it follows because any (αi) achieving H at 0 (respectively, 1) must eventually take
values in (−∞,−1] (respectively, [1,∞)).

Example 3 (Hinge loss). Here we take φ(α) = max{1 − α, 0}, which is shown in the left panel
of Figure 4 along with φ(−α), C0.3(α), and C0.7(α). By direct consideration of the piecewise-linear
form of Cη(α), it is easy to see that for η = 0, each α ≤ −1 makes Cη(α) vanish, just as in Example
2. The same holds for α ≥ 1 when η = 1. Now for η ∈ (0, 1), we see that Cη decreases strictly on
(−∞,−1] and increases strictly on [1,∞). Thus any minima must lie in [−1, 1]. But Cη is linear
on [−1, 1], so the minimum must be attained at 1 for η > 1/2, −1 for η < 1/2, and anywhere in
[−1, 1] for η = 1/2. We have argued that

α∗(η) = sign(η − 1/2) (3)

for all η ∈ (0, 1) other than 1/2. Since (3) yields valid minima at 0, 1/2, and 1 also, we could choose
to extend it to the whole unit interval. Regardless, a simple direct verification as in the previous
examples shows

H(η) = 2min{η, 1 − η}
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Figure 5: Sigmoid loss.

for 0 ≤ η ≤ 1. Since H−((1 + θ)/2) ≡ φ(0) = 1, we have

ψ̃(θ) = θ,

and ψ = ψ̃ by convexity. We present α∗, H, and ψ in the right panel of Figure 4. To conclude,
notice that the form of (3) and separate considerations for η ∈ {0, 1}, as in Example 2, easily imply
that hinge loss is classification-calibrated.

Example 4 (Sigmoid loss). We conclude by examining a non-convex loss function. Let φ(α) =
1− tanh(kα) for some fixed k > 0. Figure 5, left panel, depicts φ(α) with k = 1, as well as φ(−α),
C0.3(α), and C0.7(α). Using the fact that tanh is an odd function, we can rewrite the conditional
φ-risk as

Cη(α) = 1 + (1 − 2η) tanh(kα). (4)

From this expression, two facts are clear. First, when η = 1/2, every α minimizes Cη(α), because it
is identically 1. Second, when η 6= 1/2, Cη(α) attains no minimum, because tanh has no maximal
or minimal value on R. Hence α∗ is not defined for any η.

Inspecting (4), for 0 ≤ η < 1/2 we obtain H(η) = 2η by letting α → −∞. Analogously, when
α→ ∞, we get H(η) = 2(1 − η) for 1/2 < η ≤ 1. Thus we have

H(η) = 2min{η, 1 − η}, 0 ≤ η ≤ 1.

12



Since H−((1 + θ)/2) ≡ φ(0) = 1, we have

ψ̃(θ) = θ,

and convexity once more gives ψ = ψ̃. We present H and ψ in the right panel of Figure 5. Finally,
the foregoing considerations imply that sigmoid loss is classification-calibrated, provided we note
carefully that the definition of classification-calibration requires nothing when η = 1/2.

2.4 Properties of ψ and proof of Theorem 3

The following elementary lemma will be useful throughout the paper.

Lemma 4. Suppose g : R → R is convex and g(0) = 0. Then

1. for all λ ∈ [0, 1] and x ∈ R,
g(λx) ≤ λg(x).

2. for all x > 0, 0 ≤ y ≤ x,

g(y) ≤ y

x
g(x).

3. g(x)/x is increasing on (0,∞).

Proof. For 1, g(λx) = g(λx+ (1− λ)0) ≤ λg(x) + (1− λ)g(0) = λg(x). To see 2, put λ = y/x in 1.
For 3, rewrite 2 as g(y)/y ≤ g(x)/x.

Lemma 5. The functions H, H− and ψ have the following properties:

1. H and H− are symmetric about 1/2: for all η ∈ [0, 1], H(η) = H(1−η), H−(η) = H−(1−η).

2. H is concave and, for 0 ≤ η ≤ 1, it satisfies

H(η) ≤ H

(

1

2

)

= H−

(

1

2

)

.

3. If φ is classification-calibrated, then H(η) < H(1/2) for all η 6= 1/2.

4. H− is concave on [0, 1/2] and on [1/2, 1], and for 0 ≤ η ≤ 1 it satisfies

H−(η) ≥ H(η).

5. H, H− and ψ̃ are continuous on [0, 1].

6. ψ is continuous on [0, 1].

7. ψ is nonnegative and minimal at 0.

8. ψ(0) = 0.

9. The following statements are equivalent:

(a) φ is classification-calibrated.

13



(b) ψ(θ) > 0 for all θ ∈ (0, 1].

Before proving the lemma, we point out that there is no converse to part 3. To see this, let
φ be classification-calibrated, and consider the loss function φ̃(α) = φ(−α), with corresponding
H̃(η). Since (αi) achieves H at η if and only if (−αi) achieves H̃ at η, we see that φ̃ is not
classification-calibrated. However, H̃(η) = H(1 − η), so because part 3 holds for φ, it must also
hold for φ̃.

Proof. 1 is immediate from the definitions.

For 2, concavity follows because H is an infimum of concave (affine) functions of η. Now,
since H is concave and symmetric about 1/2, H(1/2) = H((1/2)η + (1/2)(1 − η)) ≥ (1/2)H(η) +
(1/2)H(1 − η) = H(η). Thus H is maximal at 1/2. To see that H(1/2) = H−(1/2), notice that
α(2η − 1) ≤ 0 for all α when η = 1/2.

To prove 3, assume that there is an η 6= 1/2 with H(η) = H(1/2). Fix a sequence α1, α2, . . .
that achieves H at 1/2. By the assumption,

lim inf
i→∞

(ηφ(αi) + (1 − η)φ(−αi)) ≥ H(η) = H(1/2) = lim
i→∞

φ(αi) + φ(−αi)

2
, (5)

Rearranging, we have

(η − 1/2) lim inf
i→∞

(φ(αi) − φ(−αi)) ≥ 0.

Since H(1 − η) = H(η), the same argument shows that H(η) = H(1/2) implies

(η − 1/2) lim inf
i→∞

(φ(−αi) − φ(αi)) ≥ 0.

It follows that

lim
i→∞

(φ(αi) − φ(−αi)) = 0,

so all the expressions in (5) are equal. Hence, H is achieved by (αi) at η, and if φ is classification-
calibrated we must have that

lim inf
i→∞

(sign(αi(η − 1/2)) = 1.

The same argument shows that H is achieved by (αi) at 1 − η, and if φ is classification-calibrated
we must have that

lim sup
i→∞

(sign(αi(η − 1/2)) = −1.

Thus, if H(η) = H(1/2), φ is not classification-calibrated.

For 4, H− is concave on [0, 1/2] by the same argument as for the concavity of H. (Notice that
when η < 1/2, H− is an infimum over a set of concave functions, but in this case when η > 1/2, it
is an infimum over a different set of concave functions.) The inequality H− ≥ H follows from the
definitions.

For 5, first notice that the concavity of H implies that it is continuous on the relative interior
of its domain, i.e. (0, 1). Thus, to show that H is continuous [0, 1], it suffices (by symmetry) to
show that it is left continuous at 1. Because [0, 1] is locally simplicial in the sense of Rockafellar
(1997), his Theorem 10.2 gives lower semicontinuity of H at 1 (equivalently, upper semicontinuity
of the convex function −H at 1). To see upper semicontinuity of H at 1, on the other hand, fix
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any ε > 0 and choose αε such that φ(αε) ≤ H(1) + ε/2. Then for any η between 1 − ε/(2φ(−αε))
and 1 we have

H(η) ≤ Cη(αε) ≤ H(1) + ε.

Since this is true for any ε, lim supη→1H(η) ≤ H(1), which is upper semicontinuity. Thus H is left
continuous at 1. The same argument shows that H− is continuous on (0, 1/2) and (1/2, 1), and
left continuous at 1/2 and 1. Symmetry implies that H− is continuous on the closed interval [0, 1].
The continuity of ψ̃ is now immediate.

To see 6, observe that ψ is a closed convex function with locally simplicial domain [0, 1], so its
continuity follows by once again applying Theorem 10.2 of Rockafellar (1997).

It follows immediately from 2 and 4 that ψ̃ is nonnegative and minimal at 0. Since epi ψ is the
convex hull of epi ψ̃, i.e., the set of all convex combinations of points in epi ψ̃, we see that ψ is also
nonnegative and minimal at 0, which is 7.

8 follows immediately from 2.
To prove 9, suppose first that φ is classification-calibrated. Then for all θ ∈ (0, 1], ψ̃(θ) > 0.

But every point in epi ψ is a convex combination of points in epi ψ̃, so if (θ, 0) ∈ epi ψ, we can only
have θ = 0. Hence for θ ∈ (0, 1], points in epi ψ of the form (θ, c) must have c > 0, and closure
of ψ̃ now implies ψ(θ) > 0. For the converse, notice that if φ is not classification-calibrated, then
some θ > 0 has ψ̃(θ) = 0, and so ψ(θ) = 0.

Proof. (Of Theorem 3). For Part 1, it is straightforward to show that

R(f) −R∗ = R(f) −R(η − 1/2)

= E (1 [sign(f(X)) 6= sign(η(X) − 1/2)] |2η(X) − 1|) ,

where 1 [Φ] is 1 if the predicate Φ is true and 0 otherwise (see, for example, Devroye et al., 1996).
We can apply Jensen’s inequality, since ψ is convex by definition, and the fact that ψ(0) = 0
(Lemma 5, part 8) to show that

ψ(R(f) −R∗) ≤ Eψ (1 [sign(f(X)) 6= sign(η(X) − 1/2)] |2η(X) − 1|)
= E (1 [sign(f(X)) 6= sign(η(X) − 1/2)]ψ (|2η(X) − 1|)) .

Now, from the definition of ψ we know that ψ(θ) ≤ ψ̃(θ), so we have

ψ(R(f) −R∗) ≤ E
(

1 [sign(f(X)) 6= sign(η(X) − 1/2)] ψ̃ (|2η(X) − 1|)
)

= E
(

1 [sign(f(X)) 6= sign(η(X) − 1/2)]
(

H−(η(X)) −H(η(X))
))

= E

(

1 [sign(f(X)) 6= sign(η(X) − 1/2)]

(

inf
α:α(2η(X)−1)≤0

Cη(X)(α) −H(η(X))

))

≤ E
(

Cη(X)(f(X)) −H(η(X))
)

= Rφ(f) −R∗
φ,

where we have used the fact that for any x, and in particular when sign(f(x)) = sign(η(x) − 1/2),
we have Cη(x)(f(x)) ≥ H(η(x)).

For Part 2, the first inequality is from Part 1. For the second, fix ε > 0 and θ ∈ [0, 1].
From the definition of ψ, we can choose γ, α1, α2 ∈ [0, 1] for which θ = γα1 + (1 − γ)α2 and
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ψ(θ) ≥ γψ̃(α1) + (1 − γ)ψ̃(α2) − ε/2. Choose distinct x1, x2 ∈ X , and choose PX such that
PX{x1} = γ, PX{x2} = 1 − γ, η(x1) = (1 + α1)/2, and η(x2) = (1 + α2)/2. From the definition of
H−, we can choose f : X → R such that f(x1) ≤ 0, f(x2) ≤ 0, Cη(x1)(f(x1)) ≤ H−(η(x1)) + ε/2
and Cη(x2)(f(x2)) ≤ H−(η(x2)) + ε/2. Then we have

Rφ(f) −R∗
φ = Eφ(Y f(X)) − inf

g
Eφ(Y g(X))

= γ
(

Cη(x1)(f(x1)) −H(η(x1))
)

+ (1 − γ)
(

Cη(x2)(f(x2)) −H(η(x2))
)

≤ γ
(

H−(η(x1)) −H(η(x1))
)

+ (1 − γ)
(

H−(η(x2)) −H(η(x2))
)

+ ε/2

= γψ̃(α1) + (1 − γ)ψ̃(α2) + ε/2

≤ ψ(θ) + ε.

Furthermore, since sign(f(x1)) = sign(f(x2)) = −1 but η(x1), η(x2) ≥ 1/2,

R(f) −R∗ = E|2η(X) − 1|
= γ(2η(x1) − 1) + (1 − γ)(2η(x2) − 1)

= θ.

For Part 3, first note that, for any φ, ψ is continuous on [0, 1] and ψ(0) = 0 by Lemma 5, parts
6, 8, and hence θi → 0 implies ψ(θi) → 0. Thus, we can replace condition (3b) by

(3b’) For any sequence (θi) in [0, 1],

ψ(θi) → 0 implies θi → 0.

To see that (3a) implies (3b’), let φ be classification-calibrated, and let (θi) be a sequence that
does not converge to 0. Define c = lim sup θi > 0, and pass to a subsequence with lim θi = c. Then
limψ(θi) = ψ(c) by continuity, and ψ(c) > 0 by classification-calibration (Lemma 5, part 9). Thus,
for the original sequence (θi), we see lim supψ(θi) > 0, so we cannot have ψ(θi) → 0.

To see that (3b’) implies (3c), suppose that Rφ(fi) → R∗
φ. By Part 1, ψ(R(fi) −R∗) → 0, and

(3b’) implies R(fi) → R∗.

Finally, to see that (3c) implies (3a), suppose that φ is not classification-calibrated and fix
some η 6= 1/2. We can find a sequence α1, α2, . . . such that (αi) achieves H at η but has
lim infi→∞ sign(αi(η − 1/2)) 6= 1. Replace the sequence with a subsequence that also achieves
H at η but has lim sign(αi(η − 1/2)) = −1. Fix x ∈ X and choose the probability distribution
P so that PX{x} = 1 and P (Y = 1|X = x) = η. Define a sequence of functions fi : X → R for
which fi(x) = αi. Then limR(fi) > R∗, and this is true for any infinite subsequence. But since αi

achieves H at η, limRφ(fi) = R∗
φ.

3 Further analysis of conditions on φ

In this section we consider additional conditions on the loss function φ. In particular, we study the
role of convexity.
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3.1 Convex loss functions

For convex φ, classification-calibration is equivalent to a condition on the derivative of φ at zero.
Recall that a subgradient of φ at α ∈ R is any value mα ∈ R such that φ(x) ≥ φ(α) +mα(x − α)
for all x.

Theorem 6. Let φ be convex. Then φ is classification-calibrated if and only if it is differentiable
at 0 and φ′(0) < 0.

Proof. Fix a convex function φ.
(=⇒) Since φ is convex, we can find subgradients g1 ≥ g2 such that, for all α,

φ(α) ≥ g1α+ φ(0)

φ(α) ≥ g2α+ φ(0).

Then we have

ηφ(α) + (1 − η)φ(−α) ≥ η(g1α+ φ(0)) + (1 − η)(−g2α+ φ(0))

= (ηg1 − (1 − η)g2)α+ φ(0) (6)

=

(

1

2
(g1 − g2) + (g1 + g2)

(

η − 1

2

))

α+ φ(0). (7)

Since φ is classification-calibrated, for η > 1/2 we can express H(η) as infα>0 ηφ(α)+(1−η)φ(−α).
If (7) were greater than φ(0) for every α > 0, it would then follow that for η > 1/2, H(η) ≥ φ(0) ≥
H(1/2), which, by Lemma 5, part 3, is a contradiction. We now show that g1 > g2 implies this
contradiction. Indeed, we can choose

1

2
< η <

1

2
+

g1 − g2
2|g1 + g2|

to show that |(η− 1/2)(g1 + g2)| < (g1 − g2)/2, so (7) is greater than φ(0) for all α > 0. Thus, if φ
is classification-calibrated, we must have g1 = g2, which implies φ is differentiable at 0.

To see that we must also have φ′(0) < 0, notice that, from (6), we have

ηφ(α) + (1 − η)φ(−α) ≥ (2η − 1)φ′(0)α+ φ(0).

But for any η > 1/2 and α > 0, if φ′(0) ≥ 0, this expression is at least φ(0). Thus, if φ is
classification-calibrated, we must have φ′(0) < 0.

(⇐=) Suppose that φ is differentiable at 0 and has φ′(0) < 0. Then the function Cη(α) =
ηφ(α) + (1 − η)φ(−α) has C ′

η(0) = (2η − 1)φ′(0). For η > 1/2, this is negative. It follows from
the convexity of φ that Cη(α) is minimized by some α∗ ∈ (0,∞]. To see this, notice that for some
α0 > 0, we have

Cη(α0) ≤ Cη(0) + α0C
′
η(0)/2.

But the convexity of φ, and hence of Cη, implies that for all α,

Cη(α) ≥ Cη(0) + αC ′
η(0).

In particular, if α ≤ α0/4,

Cη(α) ≥ Cη(0) +
α0

4
C ′

η(0) > Cη(0) +
α0

2
C ′

η(0) ≥ Cη(α0).

Similarly, for η < 1/2, the optimal α is negative. This means that φ is classification-calibrated.
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The next lemma shows that for convex φ, the ψ transform is a little easier to compute.

Lemma 7. If φ is convex and classification-calibrated, then ψ̃ is convex, hence ψ = ψ̃.

Proof. Theorem 6 tells us φ is differentiable at zero and φ′(0) < 0. Hence we have

φ(0) ≥ H−(η)

= inf
α:α(η−1/2)≤0

(ηφ(α) + (1 − η)φ(−α))

≥ inf
α:α(η−1/2)≤0

(

η(φ(0) + φ′(0)α) + (1 − η)(φ(0) − φ′(0)α)
)

= φ(0) + inf
α:α(η−1/2)≤0

(

(2η − 1)φ′(0)α
)

= φ(0).

Thus, H−(η) = φ(0). The concavity of H (Lemma 5, part 2) implies ψ̃ = H−(η)−H(η) is convex,
which gives the result.

If φ is convex and classification-calibrated, then it is differentiable at zero, and we can define
the Bregman divergence of φ at 0:

dφ(0, α) = φ(α) − (φ(0) + αφ′(0)).

We consider a symmetrized, normalized version of the Bregman divergence at 0, for α ≥ 0:

ξ(α) =
dφ(0, α) + dφ(0,−α)

−φ′(0)α .

Since φ is convex on R, both φ and ξ are continuous, so we can define

ξ−1(θ) = inf {α : ξ(α) = θ} .

Lemma 8. For convex, classification-calibrated φ,

ψ(θ) ≥ −φ′(0)θ
2
ξ−1

(

θ

2

)

.
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Proof. From convexity of φ, we have

ψ(θ) = H

(

1

2

)

−H

(

1 + θ

2

)

= φ(0) − inf
α>0

(

1 + θ

2
φ(α) +

1 − θ

2
φ(−α)

)

= sup
α>0

(

−θφ′(0)α +
1 + θ

2

(

φ(0) − φ(α) + αφ′(0)
)

+
1 − θ

2

(

φ(0) − φ(−α) − αφ′(0)
)

)

= sup
α>0

(

−θφ′(0)α − 1 + θ

2
dφ(0, α) − 1 − θ

2
dφ(0,−α)

)

≥ sup
α>0

(

−θφ′(0)α − dφ(0, α) − dφ(0,−α)
)

= sup
α>0

(θ − ξ(α)) (−φ′(0)α)

≥
(

θ − ξ(ξ−1(θ/2))
)

(−φ′(0)ξ−1(θ/2))

= −φ′(0)θ
2
ξ−1

(

θ

2

)

.

Notice that a slower increase of ξ (that is, a less curved φ) gives better bounds on R(f) − R∗

in terms of Rφ(f) −R∗
φ.

3.2 General loss functions

All of the classification procedures mentioned in earlier sections utilize surrogate loss functions
which are either upper bounds on 0-1 loss or can be transformed into upper bounds via a positive
scaling factor. This is not a coincidence: as the next lemma establishes, it must be possible to scale
any classification-calibrated φ into such a majorant.

Lemma 9. If φ : R → [0,∞) is classification-calibrated, then there is a γ > 0 such that γφ(α) ≥
1 [α ≤ 0] for all α ∈ R.

Proof. Proceeding by contrapositive, suppose no such γ exists. Since φ(α) ≥ 1 [α ≤ 0] on (0,∞),
we must then have infα≤0 φ(α) = 0. But φ(α) = C1(α), hence

0 = inf
α≤0

C1(α) = H−(1) ≥ H(1) ≥ 0.

Thus, H−(1) = H(1), so φ is not classification-calibrated.

We have seen that for convex φ, the function ψ̃ is convex, and so ψ = ψ̃. The following example
shows that we cannot, in general, avoid computing the convex lower bound ψ.
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Example 5. Consider the following (classification-calibrated) loss function; see the left panel of
Figure 6.

φ(α) =















4 if α ≤ 0, α 6= −1,
3 if α = −1,
2 if α = 1,
0 if α > 0, α 6= 1.

Then ψ̃ is not convex, so ψ 6= ψ̃.

Proof. It is easy to check that

H−(η) =

{

min{4η, 2 + η} if η ≥ 1/2,
min{4(1 − η), 3 − η} if η < 1/2,

and that H(η) = 4min{η, 1 − η}. Thus,

H−(η) −H(η) =

{

min{8η − 4, 5η − 2} if η ≥ 1/2
min{4 − 8η, 3 − 5η} if η < 1/2,

so

ψ̃(θ) = min

{

4θ,
1

2
(5θ + 1)

}

.

This function, illustrated in the right panel of Figure 6, is not convex; in fact it is concave.

4 Tighter bounds under low noise conditions

In a study of the convergence rate of empirical risk minimization, Tsybakov (2001) provided a
useful condition on the behavior of the posterior probability near the optimal decision boundary
{x : η(x) = 1/2}. Tsybakov’s condition is useful in our setting as well; as we show in this section,
it allows us to obtain a refinement of Theorem 3.

Recall that

R(f) −R∗ = E (1 [sign(f(X)) 6= sign(η(X) − 1/2)] |2η(X) − 1|)
≤ PX (sign(f(X)) 6= sign(η(X) − 1/2)) , (8)

with equality provided that η(X) is almost surely either 1 or 0. We say that P has noise exponent
α ≥ 0 if there is a c > 0 such that every measurable f : X → R has

PX (sign(f(X)) 6= sign(η(X) − 1/2)) ≤ c (R(f) −R∗)α . (9)

Notice that we must have α ≤ 1, in view of (8). If α = 0, this imposes no constraint on the noise:
take c = 1 to see that every probability measure P satisfies (9). On the other hand, α = 1 if
and only if |2η(X) − 1| ≥ 1/c a.s. [PX ]. The reverse implication is immediate; to see the forward
implication, notice that the condition must apply for every measurable f . For α = 1 it requires
that

(∀A ∈ G) P (A) ≤ c

∫

A
|2η(X) − 1| dPX

⇐⇒ (∀A ∈ G)

∫

A

1

c
dPX ≤

∫

A
|2η(X) − 1| dPX

⇐⇒ 1

c
≤ |2η(X) − 1| a.s. [PX ].
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Figure 6: Left panel, the loss function of Example 5. Right panel, the corresponding (nonconvex) ψ̃.
The dotted lines depict the graphs for the two linear functions of which ψ̃ is a pointwise minimum.

Theorem 10. Suppose P has noise exponent 0 < α ≤ 1, and φ is classification-calibrated and
error-averse. Then there is a c > 0 such that for any f : X → R,

c (R(f) −R∗)α ψ

(

(R(f) −R∗)1−α

2c

)

≤ Rφ(f) −R∗
φ.

Furthermore, this never gives a worse rate than the result of Theorem 3, since

(R(f) −R∗)α ψ

(

(R(f) −R∗)1−α

2c

)

≥ ψ

(

R(f) −R∗

2c

)

.

Proof. Fix c > 0 such that for every f : X → R,

PX (sign(f(X)) 6= sign(η(X) − 1/2)) ≤ c (R(f) −R∗)α .

We approximate the error integral separately over a region with high noise, and over the remainder
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of the input space. To this end, fix ε > 0 (the noise threshold), and notice that

R(f) −R∗ = E (1 [sign(f(X)) 6= sign(η(X) − 1/2)] |2η(X) − 1|)
= E (1 [|2η(X) − 1| < ε]1 [sign(f(X)) 6= sign(η(X) − 1/2)] |2η(X) − 1|)

+ E (1 [|2η(X) − 1| ≥ ε]1 [sign(f(X)) 6= sign(η(X) − 1/2)] |2η(X) − 1|)
≤ cε (R(f) −R∗)α

+ E (1 [|2η(X) − 1| ≥ ε]1 [sign(f(X)) 6= sign(η(X) − 1/2)] |2η(X) − 1|) .

Now, for any x,

1 [|2η(x) − 1| ≥ ε] |2η(x) − 1| ≤ ε

ψ(ε)
ψ(|2η(x) − 1|). (10)

Indeed, when |2η(x) − 1| < ε, (10) follows from the fact that ψ is nonnegative (Lemma 5, parts
8,9), and when |2η(x) − 1| ≥ ε it follows from Lemma 4(2).

Thus, using the same argument as in the proof of Theorem 3,

R(f) −R∗ ≤ cε (R(f) −R∗)α +
ε

ψ(ε)
E (1 [sign(f(X)) 6= sign(η(X) − 1/2)]ψ (|2η(X) − 1|))

≤ cε (R(f) −R∗)α +
ε

ψ(ε)

(

Rφ(f) −R∗
φ

)

,

and hence,
(

R(f) −R∗

ε
− c (R(f) −R∗)α

)

ψ(ε) ≤ Rφ(f) −R∗
φ.

Choosing

ε =
1

2c
(R(f) −R∗)1−α

and substituting gives the first inequality. (We can assume that R(f)−R∗ > 0, since the inequality
is trivial otherwise.)

The second inequality follows from the fact that ψ(θ)/θ is non-decreasing, which we know from
Lemma 4, part 3.

5 Estimation rates

In previous sections, we have seen that the excess risk, R(f) − R∗, can be bounded in terms of
the excess φ-risk, Rφ(f) − R∗

φ. Many large margin algorithms choose f̂ to minimize the empirical
φ-risk,

R̂φ(f) = Êφ(Y f(X)) =
1

n

n
∑

i=1

φ(Yif(Xi)).

In this section, we examine the convergence of f̂ ’s excess φ-risk, Rφ(f̂) − R∗
φ. We can split this

excess risk into an estimation error term and an approximation error term:

Rφ(f̂) −R∗
φ =

(

Rφ(f̂) − inf
f∈F

Rφ(f)

)

+

(

inf
f∈F

Rφ(f) −R∗
φ

)

.
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We focus on the first term, the estimation error term. We assume throughout that some f∗ ∈ F
achieves the infimum,

Rφ(f∗) = inf
f∈F

Rφ(f).

The simplest way to bound Rφ(f̂) −Rφ(f∗) is to use a uniform convergence argument: if

sup
f∈F

∣

∣

∣R̂φ(f) −Rφ(f)
∣

∣

∣ ≤ εn, (11)

then

Rφ(f̂) −Rφ(f∗) =
(

Rφ(f̂) − R̂φ(f̂)
)

+
(

R̂φ(f̂) − R̂φ(f∗)
)

+
(

R̂φ(f∗) −Rφ(f∗)
)

≤ 2εn +
(

R̂φ(f̂) − R̂φ(f∗)
)

≤ 2εn,

since f̂ minimizes R̂φ.
This approach can give the wrong rate. For example, for a nontrivial class F , the expectation

of the empirical process in (11) can decrease no faster than 1/
√
n. However, if F is a small class

(for instance, a VC-class) and Rφ(f∗) = 0, then Rφ(f̂) should decrease as 1/n.
Lee et al. (1996) showed that fast rates are also possible for the quadratic loss φ(α) = (1−α)2 if

F is convex, even if Rφ(f∗) > 0. In particular, because the quadratic loss function is strictly convex,
it is possible to bound the variance of the excess loss (difference between the loss of a function f
and that of the optimal f∗) in terms of its expectation. Since the variance decreases as we approach
the optimal f∗, the risk of the empirical minimizer converges more quickly to the optimal risk than
the simple uniform convergence results would suggest. Mendelson (2002) improved this result, and
extended it from prediction in L2(PX) to prediction in Lp(PX) for other values of p. The proof used
the idea of the modulus of convexity of a norm. In this section, we use this idea to give a simpler
proof of a more general bound when the loss function satisfies a strict convexity condition, and we
obtain risk bounds. The modulus of convexity of an arbitrary strictly convex function (rather than
a norm) is a key notion in formulating our results.

Definition 11 (Modulus of convexity). Given a pseudometric d defined on a vector space S,
and a convex function f : S → R, the modulus of convexity of f with respect to d is the function
δ : [0,∞) → [0,∞] satisfying

δ(ε) = inf

{

f(x1) + f(x2)

2
− f

(

x1 + x2

2

)

: x1, x2 ∈ S, d(x1, x2) ≥ ε

}

.

If δ(ε) > 0 for all ε > 0, we say that f is strictly convex with respect to d.

We consider loss functions φ that also satisfy a Lipschitz condition with respect to a pseudo-
metric d on R: we say that φ : R → R is Lipschitz with respect to d, with constant L, if

for all a, b ∈ R, |φ(a) − φ(b)| ≤ L · d(a, b).

(Note that if d is a metric and φ is convex, then φ necessarily satisfies a Lipshitz condition on any
compact subset of R (Rockafellar, 1997).)
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In the following theorem, we use the expectation of a centered empirical process as a measure
of the complexity of the class F ; define

ξF (ε) = E sup
{

Ef − Êf : f ∈ F , Ef = ε
}

.

Define the excess loss class gF as

gF = {gf : f ∈ F} = {(x, y) 7→ φ(yf(x)) − φ(yf∗(x)) : f ∈ F} ,

where f∗ = arg minf∈F Eφ(Y f(X)).

Theorem 12. There is a constant K for which the following holds. For a pseudometric d on
R, suppose that φ : R → R is Lipschitz with constant L and convex with modulus of convexity
δ(ε) ≥ cεr (both with respect to d). Define β = min(1, 2/r). Fix a convex class F of real functions
on X such that for all f ∈ F , x1, x2 ∈ X , and y1, y2 ∈ Y, d(y1f(x1), y2f(x2)) ≤ B. For i.i.d. data
(X1, Y1), . . . , (Xn, Yn), let f̂ ∈ F be the minimizer of the empirical φ-risk, Rφ(f) = Êφ(Y f(X)).
Then with probability at least 1 − e−x,

Rφ(f̂) ≤ Rφ(f∗) + ε,

where

ε = Kmax

{

ε∗,

(

crL
2x

n

)1/(2−β)

,
BLx

n

}

,

ε∗ ≥ ξgF (ε∗),

cr =

{

(2c)−2/r if r ≥ 2,
(2c)−1B2−r otherwise.

Thus, for any probability distribution P on X ×Y that has noise exponent α, there is a constant c′

such that, with probability at least 1 − e−x,

c′
(

R(f̂) −R∗
)α

ψ







(

R(f̂) −R∗
)1−α

2c′






≤ ε+ inf

f∈F
Rφ(f) −R∗

φ.

5.1 Proof of Theorem 12

There are two key ingredients in the proof. Firstly, the following result shows that if the variance
of an excess loss function is bounded in terms of its expectation, then we can obtain faster rates
than would be implied by the uniform convergence bounds. Secondly, simple conditions on the loss
function ensure that this condition is satisfied for convex function classes.

Lemma 13. Consider a class F of functions f : X → R with supf∈F ‖f‖∞ ≤ B. Let P be a
probability distribution on X , and suppose that there are c ≥ 1 and 0 < β ≤ 1 such that, for all
f ∈ F ,

Ef2(X) ≤ c(Ef)β. (12)
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Fix 0 < α, ε < 1. Suppose that if some f ∈ F has Êf ≤ αε and Ef ≥ ε, then some f ′ ∈ F has
Êf ′ ≤ αε and Ef = ε. Then with probability at least 1 − e−x, any f ∈ F satisfies

Êf ≤ αε⇒ Ef ≤ ε.

provided that

ε ≥ max

{

ε∗,

(

9cKx

(1 − α)2n

)1/(2−β)

,
4KBx

(1 − α)n

}

.

where K is an absolute constant and

ε∗ ≥ 6

1 − α
ξF (ε∗).

As an aside, notice that Tsybakov’s condition Tsybakov (2001) is of the form (12). To see this,
let f∗ be the Bayes decision rule, and consider the class of functions {αgf : f ∈ F , α ∈ [0, 1]},
where

gf (x, y) = `(f(x), y) − `(f∗(x), y)

and ` is the discrete loss. Then the condition

PX (f(X) 6= f∗(X)) ≤ c (E`(f(X), Y ) − E`(f∗(X), Y ))α

can be rewritten
Eg2

f (X,Y ) ≤ c(Egf (X,Y ))α.

Thus, we can obtain a version of Tsybakov’s result for small function classes from Lemma 13: if
the Bayes decision rule f∗ is in F , then the function f̂ that minimizes empirical risk has

Êgf̂ = R̂(f) − R̂(f∗) ≤ 0,

and so with high probability has Egf̂ = R(f) − R∗ ≤ ε under the conditions of the theorem. If F
is a VC-class, we have ε ≤ c log n/n for some constant c, which is surprisingly fast when R∗ > 0.

The proof of Lemma 13 uses techniques from Massart (2000b), Mendelson (2002), and Bartlett
et al. (2003), as well as the following concentration inequality, which is a refinement, due to Rio
(2001) and Klein (2002) of a result of Massart (2000a), following Talagrand (1994), Ledoux (2001).
The best estimates on the constants are due to Bousquet (2002).

Lemma 14. There is an absolute constant K for which the following holds. Let G be a class of
functions defined on X with supg∈G ‖g‖∞ ≤ b. Suppose that P is a probability distribution such
that for every g ∈ G, Eg = 0. Let X1, ...,Xn be independent random variables distributed according
to P and set σ2 = supg∈G var g. Define

Z = sup
g∈G

1

n

n
∑

i=1

g(Xi).

Then, for every x > 0 and every ρ > 0,

Pr

{

Z ≥ (1 + ρ)EZ + σ

√

Kx

n
+
K(1 + ρ−1)bx

n

}

≤ e−x.
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Proof. (of Lemma 13)

From the condition on F , we have

Pr
{

∃f ∈ F : Êf ≤ αε, Ef ≥ ε
}

≤ Pr
{

∃f ∈ F : Êf ≤ αε, Ef = ε
}

= Pr
{

sup
{

Ef − Êf : f ∈ F , Ef = ε
}

≥ (1 − α)ε
}

.

We bound this probability using Lemma 14, with ρ = 1 and G = {Ef − f : f ∈ F , Ef = ε}. This
shows that

Pr
{

∃f ∈ F : Êf ≤ αε, Ef ≥ ε
}

≤ Pr {Z ≥ (1 − α)ε} ≤ e−x,

provided that

2EZ ≤ (1 − α)ε

3
,

√

cεβKx

n
≤ (1 − α)ε

3
, and

4KBx

n
≤ (1 − α)ε

3
.

(We have used the fact that supf∈F ‖f‖∞ ≤ B implies supg∈G ‖g‖∞ ≤ 2B.) Observing that

EZ = ξF (ε),

and rearranging gives the result.

The second ingredient in the proof of Theorem 12 is the following lemma, which gives conditions
that ensure a variance bound of the kind required for the previous lemma (condition (12)). For a
pseudometric d on R and a probability distribution on X , we can define a pseudometric d̃ on the
set of uniformly bounded real functions on X ,

d̃(f, g) =
(

Ed(f(X), g(X))2
)1/2

.

If d is the usual metric on R, then d̃ is the L2(P ) pseudometric.

Lemma 15. Consider a convex class F of real-valued functions defined on X , a convex loss function
` : R → R, and a pseudometric d on R. Suppose that ` satisfies the following conditions.

1. ` is Lipschitz with respect to d, with constant L:

for all a, b ∈ R, |`(a) − `(b)| ≤ Ld(a, b).

2. R(f) = E`(f) is a strictly convex functional with respect to the pseudometric d̃, with modulus
of convexity δ̃:

δ̃(ε) = inf

{

R(f) +R(g)

2
−R

(

f + g

2

)

: d̃(f, g) ≥ ε

}

.
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Suppose that f∗ satisfies R(f∗) = inff∈F R(f), and define

gf (x) = `(f(x)) − `(f∗(x)).

Then

Egf ≥ 2δ̃
(

d̃(f, f∗)
)

≥ 2δ̃





√

Eg2
f

L



 .

We shall apply the lemma to a class of functions of the form (x, y) 7→ yf(x), with the loss
function ` = φ. (The lemma can be trivially extended to a loss function ` : R×Y → R that satisfies
a Lipschitz constraint uniformly over Y.)

Proof. The proof proceeds in two steps: the Lipschitz condition allows us to relate Eg2
f to d̃(f, f∗),

and the modulus of convexity condition, together with the convexity of F , relates this to Egf .
We have

Eg2
f = E (`(f(X)) − `(f∗(X)))2

≤ E (Ld(f(X), f∗(X)))2

= L2
(

d̃(f, f∗)
)2
. (13)

From the definition of the modulus of convexity,

R(f) +R(f∗)

2
≥ R

(

f + f∗

2

)

+ δ̃(d̃(f, f∗))

≥ R(f∗) + δ̃(d̃(f, f∗)),

where the optimality of f∗ in the convex set F implies the second inequality. Rearranging gives

Egf = R(f) −R(f∗) ≥ 2δ̃(d̃(f, f∗)).

Combining with (13) gives the result.

In our application, the following result will imply that we can estimate the modulus of convexity
of Rφ with respect to the pseudometric d̃ if we have some information about the modulus of
convexity of φ with respect to the pseudometric d.

Lemma 16. Suppose that a convex function ` : R → R has modulus of convexity δ with respect to
a pseudometric d on R, for some fixed c, r > 0, every ε > 0 satisfies

δ(ε) ≥ cεr.

Then for functions f : X → R satisfying supx1,x2
d(f(x1), f(x2)) = B, the modulus of convexity δ̃

of R(f) = E`(f) with respect to the pseudometric d̃ satisfies

δ̃(ε) ≥ crε
max{2,r},

where cr = c if r ≥ 2 and cr = cBr−2 otherwise.
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Proof. Fix functions f1, f2 : X → R with d̃(f1, f2) =
√

Ed2(f1(X), f2(X)) ≥ ε. We have

R(f1) +R(f2)

2
−R

(

f1 + f2

2

)

= E

(

`(f1(X)) + `(f2(X))

2
− `

(

f1(X) + f2(X)

2

))

≥ E (δ(d(f1(X), f2(X))))

≥ cEdr(f1(X), f2(X))

= cE
(

d2(f1(X), f2(X))
)r/2

.

When the function ξ(a) = ar/2 is convex (i.e., when r ≥ 2), Jensen’s inequality shows that

R(f1) +R(f2)

2
−R

(

f1 + f2

2

)

≥ cεr.

Otherwise, we use the following convex lower bound on ξ : [0, B2] → [0, Br],

ξ(a) = ar/2 ≥ Br a

B2
,

which follows from (the concave analog of) Lemma 4, part 2. This implies

R(f1) +R(f2)

2
−R

(

f1 + f2

2

)

≥ cBr−2ε2.

It is also possible to prove a converse result, that the modulus of convexity of φ is at least the
infimum over probability distributions of the modulus of convexity of R. (To see this, we choose a
probability distribution concentrated on the x ∈ X where f1(x) and f2(x) achieve the infimum in
the definition of the modulus of convexity.)

Proof. (of Theorem 12) Consider the class {gf : f ∈ F} with, for each f ∈ F ,

gf (x, y) = φ(yf(x)) − φ(yf∗(x)),

where f∗ ∈ F minimizes Rφ(f) = Eφ(Y f(X)). Applying Lemma 16, we see that the functional
R(f) = Eφ(f), defined for functions (x, y) 7→ yf(x), has modulus of convexity

δ̃(ε) ≥ crε
max{2,r},

where cr = c if r ≥ 2 and cr = cBr−2 otherwise. From Lemma 15,

Egf ≥ 2cr





√

Eg2
f

L





max{2,r}

,

which is equivalent to
Eg2

f ≤ c′rL
2 (Egf )min{1,2/r}

with

c′r =

{

(2c)−2/r if r ≥ 2
(2c)−1B2−r otherwise
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To apply Lemma 13 to the class {gf : f ∈ F}, we need to check the condition. Suppose that

gf has Êgf ≤ αε and Egf ≥ ε. Then, by the convexity of F and the continuity of φ, some
f ′ = γf + (1 − γ)f∗ ∈ F , for 0 ≤ γ ≤ 1, has Egf = ε. Jensen’s inequality shows that

Êgf = Êφ(Y (γf(X) + (1 − γ)f∗(X))) − Êφ(Y f∗(X)) ≤ γ
(

Êφ(Y f(x)) − Êφ(Y f∗(X))
)

≤ αε.

Applying Lemma 13 we have, with probability at least 1 − e−x, any gf with Êgf ≤ ε/2 also has
Egf ≤ ε, provided

ε ≥ max

{

ε∗,

(

36c′rL
2Kx

n

)1/(2−min{1,2/r})

,
16KBLx

n

}

,

where ε∗ ≥ 12ξgF (ε∗). In particular, if f̂ ∈ F minimizes empirical risk, then

Êgf̂ = R̂φ(f̂) − R̂φ(f∗) ≤ 0 <
ε

2
,

hence Egf̂ ≤ ε.

Combining with Theorem 10 shows that, for some c′,

c′
(

R(f̂) −R∗
)α

ψ







(

R(f̂) −R∗
)1−α

2c′






≤ Rφ(f̂) −R∗

φ

= Rφ(f̂) −Rφ(f∗) +Rφ(f∗) −R∗
φ

≤ ε+Rφ(f∗) −R∗
φ.

5.2 Examples

We consider four loss functions that satisfy the requirements for the fast convergence rates: the
exponential loss function used in AdaBoost, the deviance function corresponding to logistic regres-
sion, the quadratic loss function, and the truncated quadratic loss function; see Table 1. These
functions are illustrated in Figures 1 and 3. We use the pseudometric

dφ(a, b) = inf {|a− α| + |β − b| : φ constant on (min{α, β},max{α, β})} .
For all except the truncated quadratic loss function, this corresponds to the standard metric on
R, dφ(a, b) = |a − b|. In all cases, dφ(a, b) ≤ |a − b|, but for the truncated quadratic, dφ ignores
differences to the right of 1. It is easy to calculate the Lipschitz constant and modulus of convexity
for each of these loss functions. These parameters are given in Table 1.

In the following result, we consider the function class used by algorithms such as AdaBoost: the
class of linear combinations of classifiers from a fixed base class. We assume that this base class has
finite Vapnik-Chervonenkis dimension, and we constrain the size of the class by restricting the `1
norm of the linear parameters. If G is the VC-class, we write F = B absconv(G), for some constant
B, where

B absconv(G) =

{

m
∑

i=1

αigi : m ∈ N, αi ∈ R, gi ∈ G, ‖α‖1 = B

}

.
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φ(α) LB δ(ε)

exponential e−α eB e−Bε2/8

logistic ln(1 + e−2α) 2 e−2Bε2/4

quadratic (1 − α)2 2(B + 1) ε2/4

truncated quadratic (max{0, 1 − α})2 2(B + 1) ε2/4

Table 1: Four convex loss functions defined on R. On the interval [−B,B], each has the indicated
Lipschitz constant LB and modulus of convexity δ(ε) with respect to dφ. All have a quadratic
modulus of convexity.

Theorem 17. Let φ : R → R be a convex loss function. Suppose that, on the interval [−B,B], φ
is Lipschitz with constant LB and has modulus of convexity δ(ε) = aBε

2 (both with respect to the
pseudometric d).

For any probability distribution P on X × Y that has noise exponent α, there is a constant c′

for which the following is true. For i.i.d. data (X1, Y1), . . . , (Xn, Yn), let f̂ ∈ F be the minimizer
of the empirical φ-risk, Rφ(f) = Êφ(Y f(X)). Suppose that F = B absconv(G), where G ⊆ {±1}X
has dV C(G) = d, and

ε∗ ≥ BLB max

{

(

LBaB

B

)1/(d+1)

, 1

}

n−(d+2)/(2d+2)

Then with probability at least 1 − e−x,

R(f̂) ≤ R∗ + c′
(

ε∗ +
LB(LB/aB +B)x

n
+ inf

f∈F
Rφ(f) −R∗

φ

)

.

Proof. It is clear that F is convex and satisfies the conditions of Theorem 12. That theorem implies
that, with probability at least 1 − e−x,

R(f̂) ≤ R∗ + c′
(

ε+ inf
f∈F

Rφ(f) −R∗
φ

)

,

provided that

ε ≥ Kmax

{

ε∗,
L2

Bx

2aBn
,
BLBx

n

}

,

where ε∗ ≥ ξgF (ε∗). It remains to prove suitable upper bounds for ε∗.
By a classical symmetrization inequality (see, for example, Van der Vaart and Wellner, 1996),

we can upper bound ξgF in terms of local Rademacher averages:

ξgF (ε) = E sup
{

Egf − Êgf : f ∈ F , Egf = ε
}

≤ 2E sup

{

1

n

n
∑

i=1

εigf (Xi, Yi) : f ∈ F , Egf = ε

}

,
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where the expectations are over the sample (X1, Y1) . . . , (Xn, Yn) and the independent uniform
(Rademacher) random variables εi ∈ {±1}. The Ledoux and Talagrand (1991) contraction inequal-
ity and Lemma 15 imply

ξgF (ε) ≤ 4LE sup

{

1

n

n
∑

i=1

εidφ(Yif(Xi), Yif
∗(Xi)) : f ∈ F , Egf = ε

}

≤ 4LE sup

{

1

n

n
∑

i=1

εidφ(Yif(Xi), Yif
∗(Xi)) : f ∈ F , d̃φ(f, f∗)2 ≤ 2aBε

}

= 4LE sup

{

1

n

n
∑

i=1

εif(Xi, Yi) : f ∈ Fφ, Ef
2 ≤ 2aBε

}

,

where
Fφ = {(x, y) 7→ dφ(yf(x), yf∗(x)) : f ∈ F} .

One approach to approximating these local Rademacher averages is through information about
the rate of growth of covering numbers of the class. For some subset A of a pseudometric space
(S, d), let N (ε,A, d) denote the cardinality of the smallest ε-cover of A, that is, the smallest set
Â ⊂ S for which every a ∈ A has some â ∈ Â with d(a, â) ≤ ε. Using Dudley’s entropy integral
(Dudley, 1999), Mendelson (2002) has shown the following result: Suppose that F is a set of
[−1, 1]-valued functions on X , and there is a γ > 0 and 0 < p < 2 for which

sup
P

N (ε,F , L2(P )) ≤ γε−p,

where the supremum is over all probability distributions P on X . Then for some constant Cγ,p

(that depends only on γ and p),

1

n
E sup

{

n
∑

i=1

εif(Xi) : f ∈ F , Ef2 ≤ ε

}

≤ Cγ,p max
{

n−2/(2+p), n−1/2ε(2−p)/4
}

.

Since dφ(a, b) ≤ |a − b|, any ε-cover of {f − f∗ : f ∈ F} is an ε-cover of Fφ, so N (ε,Fφ, L2(P )) ≤
N (ε,F , L2(P )).

Now, for the class absconv(G) with dV C(G) = d, we have

sup
P

N (ε, absconv(G), L2(P )) ≤ Cdε−2d/(d+2);

(see, for example, Van der Vaart and Wellner, 1996). Applying Mendelson’s result shows that

1

n
E sup

{

n
∑

i=1

εif(Xi) : f ∈ B absconv(G), Ef2 ≤ ε

}

≤ Cd max
{

Bn−(d+2)/(2d+2), Bd/(d+2)n−1/2ε1/(d+2)
}

.

Solving for ε∗ ≥ ξgF (ε∗) shows that it suffices to choose

ε∗ = C ′
dBLB max

{

(

LBaB

B

)1/(d+1)

, 1

}

n−(d+2)/(2d+2),

for some constant C ′
d that depends only on d.
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6 Conclusions

We have focused on the relationship between properties of a nonnegative margin-based loss function
φ and the statistical performance of the classifier which, based on an iid training set, minimizes em-
pirical φ-risk over a class of functions. We first derived a universal upper bound on the population
misclassification risk of any thresholded measurable classifier in terms of its corresponding popu-
lation φ-risk. The bound is governed by the ψ-transform, a convexified variational transform of φ.
It is the tightest possible upper bound uniform over all probability distributions and measurable
functions in this setting.

Using this upper bound, we characterized the class of loss functions which guarantee that every
φ-risk consistent classifier sequence is also Bayes-risk consistent, under any population distribu-
tion. Here φ-risk consistency denotes sequential convergence of population φ-risks to the smallest
possible φ-risk of any measurable classifier. The characteristic property of such a φ, which we
term classification-calibration, is a kind of pointwise Fisher consistency for the conditional φ-risk
at each x ∈ X . The necessity of classification-calibration is apparent; the sufficiency underscores
its fundamental importance in elaborating the statistical behavior of large-margin classifiers.

For the widespread special case of convex φ, we demonstrated that classification-calibration is
equivalent to the existence and strict negativity of the first derivative of φ at 0, a condition readily
verifiable in most practical examples. In addition, the convexification step in the ψ-transform is
vacuous for convex φ, which simplifies the derivation of closed forms.

Under the noise-limiting assumption of Tsybakov (2001), we sharpened our original upper
bound and studied the Bayes-risk consistency of f̂ , the minimizer of empirical φ-risk over a convex,
bounded class of functions F which is not too complex. We found that, for convex φ satisfying
a certain uniform strict convexity condition, empirical φ-risk minimization yields convergence of
misclassification risk to that of the best-performing classifier in F , as the sample size grows. Fur-
thermore, the rate of convergence can be strictly faster than the classical n−1/2, depending on the
strictness of convexity of φ and the complexity of F .

Two important issues that we have not treated are the approximation error for population φ-risk
relative to F , and algorithmic considerations in the minimization of empirical φ-risk. In the setting
of scaled convex hulls of a base class, some approximation results are given by Breiman (2000),
Mannor et al. (2002) and Lugosi and Vayatis (2003). Regarding the numerical optimization to
determine f̂ , Zhang and Yu (2003) give novel bounds on the convergence rate for generic forward
stagewise additive modeling (see also Zhang, 2002). These authors focus on optimization of a
convex risk functional over the entire linear hull of a base class, with regularization enforced by an
early stopping rule.
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A Loss, risk, and distance

We could construe Rφ as the risk under a loss function `φ : R×{±1} → [0,∞) defined by `φ(ŷ, y) =
φ(ŷy). The following result establishes that loss functions of this form are fundamentally unlike
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distance metrics.

Lemma 18. Suppose `φ : R
2 → [0,∞) has the form `φ(x, y) = φ(xy) for some φ : R → [0,∞).

Then

1. `φ is not a distance metric on R,

2. `φ is a pseudometric on R iff φ ≡ 0, in which case `φ assigns distance zero to every pair of
reals.

Proof. By hypothesis, `φ is nonnegative and symmetric. Another requirement of a distance metric
is definiteness: for all x, y ∈ R,

x = y ⇐⇒ `φ(x, y) = 0. (14)

But we may write any z ∈ (0,∞) in two different ways, as
√
z
√
z and, for example, (2z)((1/2)z).

To satisfy (14) requires φ(z) = 0 in the former case and φ(z) > 0 in the latter, an impossibility.
This proves 1.

To prove 2, recall that a pseudometric relaxes (14) to the requirement

x = y =⇒ `φ(x, y) = 0. (15)

Since each z ≥ 0 has the form xy for x = y =
√
z, (15) amounts to the necessary condition that

φ ≡ 0 on [0,∞). The final requirement on `φ is the triangle inequality, which in terms of φ becomes

φ(xz) ≤ φ(xy) + φ(yz), for all x, y, z ∈ R. (16)

Since φ must vanish on [0,∞), taking y = 0 in (16) shows that only the zero function can (and
does) satisfy the constraint.
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