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We use the setup for Section 7 in Freedman and Berk (2008), with only one period. We have
the unweighted world governed by π , and the weighted world governed by π̃ . In the unweighted
world,

(i) subjects are IID,
(ii) Z, V are independent,

(iii) π(X = 1|Z, V ) = p(Z), where 0 < p(Z) < 1 does not depend on V ,
(iv) Y = �(X, Z, V ), where � is a measurable function that does not depend on U ,
(v) V is independent of (X, Z).

Conditions (ii)–(iv) apply the common (i.e., population-level) distribution of the subjects, and (v)
follows from (ii)–(iv).

We now reweight to π to the probability π̃ :

dπ̃

dπ
= c

p(Z)
on {X = 1}

= c

1 − p(Z)
on {X = 0}

As Lemma 1 shows, c must be 1/2 in order for π̃ to be a probability; properties (i)–(ii) and (iv)–(v)
are preserved, but (iii) becomes

π̃(X = 1|Z, V ) = 1/2 (∗)

Furthermore, the joint distribution of Z, V is unchanged; so is the relationship between Y and
X, Z, V . All that changes is the conditional distribution of X given Z.

Lemma 1. Let X and W be random variables on (�, F , π), with X = 0 or 1 while W takes
values in a complete separable metric space M. Suppose π(X = 1|W) = p(W) where 0 < p < 1
is a Borel function on M. Let

φ = X

p(W)
+ 1 − X

1 − p(W)
,

a finite, positive, F -measurable function on �. Let c be a positive real number. Define the σ -finite
measure π̃ on (�, F ) by

dπ̃

dπ
= cφ.

Let B be a Borel subset of M. Then—

(i) π̃(X = 1 & W ∈ B) = cπ(W ∈ B).
(ii) π̃(X = 0 & W ∈ B) = cπ(W ∈ B).

(iii) π̃(�) = 2c.
(iv) π̃ is a probability measure iff c = 1/2.
(v) If c = 1/2, the π̃ -distribution of W coincides with the π -distribution.

(vi) If c = 1/2, then π̃(X = 1|W) = 1/2.
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Proof. Write 1B for the indicator function of B. This is a Borel function on M. Then

π̃(X = 1 & W ∈ B) =
∫

{X=1}
1B(W) dπ̃

=
∫

{X=1}
1B(W)

dπ̃

dπ
dπ

= c

∫
{X=1}

1

p(W)
1B(W) dπ

= cEπ

[ X

p(W)
1B(W)

]

= cEπ

{
Eπ

[ X

p(W)
1B(W)

∣∣∣W]}
(∗∗)

= cEπ

{
p(W)

p(W)
1B(W)

}

= cEπ

{
1B(W)

}
= cπ(W ∈ B)

because Eπ(X|W) = p(W) on the right hand side of (∗∗). This proves (i), and (ii) is similar. Then
(iii) and (iv) are immediate: take B = M. Now (v) follows by adding (i) and (ii). Finally, (vi) is
immediate from (i). QED

Discussion. π describes the original, unweighted world; π̃ describes the weighted world. X

is treatment status, while W = (Z, V ) is the vector of covariates and latents used to construct the
response Y , which is computed from X and W in the weighted world using the same formula as in
the unweighted world.

Conclusion (v) of the lemma shows that Z and V are independent in the weighted world; (vi)
proves (∗), and hence the independence of V from (X, Z). We still have Y = �(X, Z, V ), at least
almost surely, because π̃ ≡ π .

To be clearer (but fussier), we should start with (X, Z, V, Y ) defined on some probability triple
(�, F , π), impose conditions (ii)–(v), then define π̃ and prove the claims about it. After that, we
could introduce IID copies of (X, Z, V, Y ). Each copy would be reweighted. For instance, we could
simply take Cartesian products of the basic triple with itself. The unweighted world corresponds to
(�, F , π)Z and the weighted world is (�, F , π̃)Z, where Z is the sequence of positive integers.

NB. The sample is blown up to population level using the weights, and sampling error is
ignored. This is a one-period model, but the argument generalizes to several periods, as we discuss
next.

Two periods

The setup is the same, except there are treatment variables X1 and X2 for each the two periods,
with π(X1 = 1|W) = p1(W) and π(X2 = 1|X1, W) = p2(X1, W), these functions being positive
and less than 1. Let

φ = 1

p1(W)
× 1

p2(1, W)
on {X1 = 1 & X2 = 1}
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= 1

p1(W)
× 1

1 − p2(1, W)
on {X1 = 1 & X2 = 0}

= 1

1 − p1(W)
× 1

p2(0, W)
on {X1 = 0 & X2 = 1}

= 1

1 − p1(W)
× 1

1 − p2(0, W)
on {X1 = 0 & X2 = 0}

and let
dπ̃

dπ
= cφ.

As before, π̃(X1 = x1 & X2 = x2 & W ∈ B) = cπ(W ∈ B). For example, take x1 = x2 = 1. To
simplify the analog of (∗∗) in the proof, we would compute

Eπ

[ X1X21B(W)

p1(W)p2(1, W)

∣∣∣W]
= 1B(W)

p1(W)p2(1, W)
π(X1 = 1 & X2 = 1|W)

= 1B(W)

p1(W)p2(1, W)
π(X1 = 1|W)π(X2 = 1|X1 = 1, W)

= 1B(W)

p1(W)p2(1, W)
p1(W)p2(1, W)

= 1B(W).

Thus, c = 1/4 if π̃ is to be a probability, and the argument proceeds as before. In the weighted
world, i.e., relative to π̃ with c = 1/4,

• the distribution of W is unchanged,
• X1, X2, and W are independent,
• X1 and X2 are each 0 or 1 with probability 1/2.

Here, W represents the initial covariates, as well as the latents used to update covariates, select
treatments, and compute responses. The responses Y1, Y2 would be computed from treatment
variables and latents using the same formulas in the weighted and unweighted worlds, covariates
would be updated the same way, etc. The extension to n periods is straightforward.

Example. In Simulation #1 of Freedman and Berk (2008), let Z2 = α + βZ1 + δ, where δ is
random, mean 0, independent of Z1. If you omit c2Z2 and run a weighted regression of Y on X

and Z1, then â estimates a + c2α. Given the parameter values in the simulation, namely, β = 1/2
and α = 3/4, the estimand is 2.5, in accordance with the simulation results in Table 1 of that paper.
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