Let $\left(P_{i}, X_{i}, \epsilon_{i}\right)$ be IID, jointly normal, with positive variances, and $E\left(P_{i}\right)=E\left(X_{i}\right)=E\left(\epsilon_{i}\right)=$ 0 . Suppose P_{i} and X_{i} are correlated, as are P_{i} and ϵ_{i}; however, X_{i} and ϵ_{i} are uncorrelated, i.e., $X_{i} \perp \epsilon_{i}$, viz., $E\left(X_{i} \epsilon_{i}\right)=0$. Thus, P_{i} is "endogenous" and X_{i} is "exogenous." (For jointly normal variables, uncorrelated and independent are synonymous.) Let a, b be real parameters, and $Q_{i}=a P_{i}+b X_{i}+\epsilon_{i}$. We think of Q_{i}, P_{i}, X_{i} as observable, ϵ_{i} as unobservable.

Claim. The parameters a, b cannot be identified from the joint distribution of Q_{i}, P_{i}, X_{i}.
Let $\alpha=\operatorname{cov}\left(X_{i}, P_{i}\right) / \operatorname{var}\left(X_{i}\right)$, so that $\delta_{i}=P_{i}-\alpha X_{i} \perp X_{i}$. Check that $\delta_{i} \neq 0$-otherwise, P_{i} would be exogenous. Let c be a real number. Check that

$$
Q_{i}=(a-c) P_{i}+(b+\alpha c) X_{i}+\left(c \delta_{i}+\epsilon_{i}\right)
$$

and $X_{i} \perp c \delta_{i}+\epsilon_{i}$. Thus, (a, b) and $(a-c, b+\alpha c)$ lead to the same joint distribution for the observables, Q_{i}, P_{i}, X_{i}. Matters would be otherwise, of course, if ϵ_{i} were observable-but it isn't, so it is legitimate to change the disturbance term along with the parameters.

The extension to p-dimensional X_{i} is easy. Suppose X_{i} is $p \times 1$, and $C=\operatorname{cov}\left(X_{i}\right)$ is full rank; C is a $p \times p$ matrix. Let $D=\operatorname{cov}\left(X_{i}, Y_{i}\right)$, viewed as a $p \times 1$-vector. We continue to assume that ($P_{i}, X_{i}, \epsilon_{i}$) are IID and jointly normal, with expectation 0 ; that P_{i} and ϵ_{i} have positive variance, that P_{i} and X_{i} are correlated ($D \neq 0$), as are P_{i} and ϵ_{i}; that $X_{i} \perp \epsilon_{i}$. Let a be scalar whilst b is $p \times 1$. Let $\alpha=C^{-1} D$. The rest of the construction is the same: $Q_{i}=a P_{i}+X_{i} b+\epsilon_{i}$.

Take II
Let's redo this from a slightly different perspective. Again, units are IID. For a typical unit, the response variable is Y, a scalar. The $1 \times p$ vector of explanatory variables is X, which may be endogenous. There is $1 \times q$ vector of variables Z, which are proposed for use as instruments, with $q \geq p \geq 1$. The (unobservable) disturbance term is ϵ. The variables Z, X, Y are assumed to be jointly normal, with expectation 0 . Let Γ be the variance-covariance matrix of Z, X, Y; this is assumed to have rank $q+p+1$, and the $q \times p$ matrix $M=E\left(Z^{\prime} X\right)$ is assumed to have rank p. Notice that Γ determines-and is determined by-the joint distribution of the observables Z, X, Y. The matrix M is a sub-matrix of Γ.

Let $\alpha=E\left(Z^{\prime} \epsilon\right)$; this is a $q \times 1$ vector of nuisance parameters. Let β be $p \times 1$ with

$$
\begin{equation*}
Y=X \beta+\epsilon \tag{1}
\end{equation*}
$$

This β is a parameter vector.

Claim. Γ does not determine α or β.
Choose any β whatsoever; then simply define $\epsilon=Y-X \beta$. Thus, Γ does not determine β. Let $N=E\left(Z^{\prime} Y\right)$, a $q \times 1$ sub-matrix of Γ. Let H be the column space of M translated by N; this
is a p-dimensional hyperplane in R^{q}. Plainly, $\alpha=E\left(Z^{\prime} \epsilon\right)=E\left(Z^{\prime} Y\right)-M \beta=N-M \beta$ is in H. Because M has rank p, as β runs through all p vectors, α runs through all of H; thus, α cannot be determined from Γ, which completes the proof.

Interestingly, if $0_{q \times 1} \notin H$-i.e., α cannot be $0_{q \times 1}$-then Z cannot be exogenous. If $0_{q \times 1} \in H$, then Z can be exogenous, but need not be so. After all, H is p-dimensional, and $0_{q \times 1}$ is but a single point. In short, additional information is needed to determine exogeneity, beyond the joint distribution of the observables.

Corollary. Γ can determine that $\alpha \neq 0$; however, Γ cannot determine that $\alpha=0$.
To get a specific example where Γ determines that $\alpha \neq 0$, take $q=2$ and $p=1$. Let $X=\theta_{1} Z_{1}+\theta_{2} Z_{2}+U$ and $Y=\psi_{1} Z_{1}+\psi_{2} Z_{2}+X+U+V$. Here, Z_{1}, Z_{2}, U, V are independent standard normal variables, $\theta_{1}, \theta_{2}, \psi_{1}, \psi_{2}$ are free parameters. Since

$$
Y=\left(\theta_{1}+\psi_{1}\right) Z_{1}+\left(\theta_{2}+\psi_{2}\right) Z_{2}+2 U+V
$$

we have

$$
M=E\left(Z^{\prime} X\right)=\binom{\theta_{1}}{\theta_{2}}, \quad N=E\left(Z^{\prime} Y\right)=\binom{\theta_{1}+\psi_{1}}{\theta_{2}+\psi_{2}}
$$

Thus, N is in the column space of M-i.e., N is proportional to M-only if $\left(\psi_{1}, \psi_{2}\right)$ is proportional to (θ_{1}, θ_{2}). On the other hand, suppose in equation (1) that the "structural parameter" is $\beta=1$, and $\epsilon=U+V$. Then X is indeed endogenous, being correlated with ϵ. But Z_{1} and Z_{2} can be used as instruments only when $\psi_{1}=\psi_{2}=0$; otherwise, the "exclusion restrictions" are violated, i.e., Z_{1} and Z_{2} should appear in the equation.

