Comments on standardizing path diagrams: what are the parameters?

DA Freedman, Statistics Department, UC Berkeley

15 January 2005

Let

$$Y_i = a + bU_i + cV_i + \delta_i \tag{1}$$

and

$$Z_i = \alpha + \beta Y_i + \epsilon_i. \tag{2}$$

Take U_i , V_i as data, with mean 0, variance 1, and correlation r. The δ_i are IID with mean 0 and variance σ^2 . The ϵ_i are IID with mean 0 and variance τ^2 , independent of the δ_i . (See exercise 5C6 in *Statistical Models*.) Let s_Y be the standard deviation of $\{Y_1, \ldots, Y_n\}$. If we standardize the Y_i , then (i) we're dividing by a random variable, s_Y ; and (ii), the δ_i get dependent. So, what are the parameters?

One solution is to standardize Y at the population level. First,

$$E\left[\frac{1}{n}\sum_{i=1}^{n}(Y_{i}-a)^{2}\right] = b^{2} + c^{2} + 2bcr + \sigma^{2} = \theta^{2},$$

say. So, replace Y_i by $\eta_i = (Y_i - a)/\theta$. We have

$$\eta_i = \frac{b}{\theta} U_i + \frac{c}{\theta} V_i + \frac{\delta_i}{\theta}$$
(3)

Thus $E(\overline{\eta}) = 0$ and $E(\overline{\eta^2}) = 1$, although

$$E(\eta_i) = \frac{bU_i + cV_i}{\theta} \neq 0 \text{ and } E(\eta_i^2) = \frac{(bU_i + cV_i)^2 + \sigma^2}{\theta^2} \neq 1.$$

Standardization is "on the average," over the whole population. Note that (3) is a bona fide regression equation, with all the usual assumptions on the errors. Fitting the standardized equation can be viewed as estimating b/θ , c/θ , σ^2/θ^2 . The estimates will suffer from ratio estimator bias, due to division by the random s_Y .

The trick for (2) is the same. First, replace Z_i by

$$Z_i^* = (Z_i - \alpha - a\beta)/\theta.$$

We get the regression equation

$$Z_i^* = \beta \eta_i + \frac{\epsilon_i}{\theta}$$

Let

$$\phi^2 = E\left[\frac{1}{n}\sum_{i=1}^n Z_i^{*2}\right] = \beta^2 + \frac{\tau^2}{\theta^2}.$$

Finally, replace Z_i^* by $\zeta_i = Z_i^*/\phi$. When standardized at the population level, (2) becomes

$$\zeta_i = \frac{\beta}{\phi} \eta_i + \frac{\epsilon_i}{\theta \phi} \tag{4}$$

Again, $E(\zeta_i) \neq 0$ and $E(\zeta_i^2) \neq 1$, so the standardization only applies "on average:" $E(\overline{\zeta}) = 0$ and $E(\overline{\zeta^2}) = 1$. But (4) is a legitimate regression equation.

In the leading special case, U_i , V_i , δ_i , ϵ_i are IID in *i*. We can center U_i , V_i at their expected values and divide by the respective standard deviations. The endogenous variables Y_i , Z_i now have expectation 0. Division by the respective SEs achieves standardization—at the population level—for each *i*. The sample will not be standardized exactly, due to random error. Again, standardizing the sample leads to a minor ratio-estimation bias, with a minor gain on the variance side since intercepts do not need to be estimated.

Also see exercise 5C6 on pp. 84-85 of Statistical Models.