Exogeneity cannot be determined from the joint distribution of observables

DA Freedman, Statistics, UCB

15 November 2004

The linear probability model

Lat ξ , ζ be independent random variables, with mean 0. (To match Schneider et al, ξ may be taken as two-valued.) Let

$$X = \alpha \xi + \beta \zeta, \quad U = \gamma \xi + \zeta.$$

The response variable Y in a linear probability model is 0 or 1 with

$$P(Y = 1 | \xi, \zeta) = a + bX + U.$$

The observables are ξ , X, Y. The parameters are a, b, α , β , γ and the distribution of ζ . For the model to hold, the random variables ξ , ζ must be bounded, and the parameters must be restricted to suitably narrow intervals.

Since X will be endogenous if $\beta \neq 0$, the idea is to use ξ as an instrument. However, the exogeneity of ξ cannot be determined from the joint distribution of observables. The joint distribution of ξ , X identifies α and the distribution of $\beta\zeta$. We must now consider

$$\begin{split} P(Y=1|\xi,X) &= a+bX+E(U|\xi,X) \\ &= a+bX+\gamma\xi+E(\xi|\xi,\xi) \\ &= a+bX+\gamma\xi+\xi \\ &= a+bX+\gamma\xi+\frac{X-\alpha\xi}{\beta} \\ &= a+\left(\gamma-\frac{\alpha}{\beta}\right)\xi+\left(b+\frac{1}{\beta}\right)X. \end{split}$$

The identifiable parameters are therefore

$$\alpha$$
, a , $\gamma - \frac{\alpha}{\beta}$, $b + \frac{1}{\beta}$,

and the distribution of $\beta \zeta$. But ξ is exogenous iff $\gamma = 0$. The crucial parameter γ is not separately identifiable, nor is $\gamma = 0$.

The probit model

The same construction can be used for the probit. Suppose ξ , ζ are independent normal variables, with mean 0 and respective variances σ^2 , τ^2 . Let

$$X = \alpha \xi + \beta \zeta, \quad U = \gamma \xi + \zeta.$$

The response variable *Y* is

1 if
$$a + bX + U > 0$$
, else 0.

The observables are ξ , X, Y. The parameters are a, b, α , β , γ , σ^2 , τ^2 . Here, X is endogenous unless $\beta = 0$. We want to use ξ as an instrument for X, but ξ is endogenous unless $\gamma = 0$.

For simplicity, suppose $\beta \geq 0$. We get α , σ , $\beta \tau$ from the joint distribution of ξ , X. We must now compute

$$P(Y = 1|\xi, X) = P(a + bX + U > 0|\xi, X). \tag{1}$$

By the previous argument, $P(Y = 1 | \xi, X) = 1$ if

$$a + \left(\gamma - \frac{\alpha}{\beta}\right)\xi + \left(b + \frac{1}{\beta}\right)X > 0;$$

otherwise, the conditional probability is 0. For simplicity, suppose $a \neq 0$. Then (1) identifies

$$sign(a), \quad \frac{\gamma}{a} - \frac{\alpha}{a\beta}, \quad \frac{b}{a} + \frac{1}{a\beta}.$$

In both examples,

$$U = \frac{X - \alpha \xi}{\beta} + \gamma \xi = \left(\gamma - \frac{\alpha}{\beta}\right) \xi + \frac{X}{\beta}$$

is computable from ξ , X. However, the computation uses the parameters α , β , γ . Therefore, from a statistical perspective, U remains latent. In the probit model, it may be more attractive to introduce yet another independent normal variable η , with mean 0 and (say) known variance 1, setting $U = \gamma \xi + \zeta + \eta$. Then (1) is

$$\Phi\left(a + \left(\gamma - \frac{\alpha}{\beta}\right)\xi + \left(b + \frac{1}{\beta}\right)X\right),\,$$

where Φ is the standard normal. The identifiable parameters are then

$$\alpha$$
, σ , $\beta \tau$, a , $\gamma - \frac{\alpha}{\beta}$, $b + \frac{1}{\beta}$.

We need τ so that β itself is not identifiable: if α , β are identifiable, so is γ . For similar results in the regression model, see exercise 8E5 in *Statistical Models*.