Exogeneity cannot be determined from the joint distribution of observables

DA Freedman, Statistics, UCB
15 November 2004

The linear probability model
Lat ξ, ζ be independent random variables, with mean 0 . (To match Schneider et al, ξ may be taken as two-valued.) Let

$$
X=\alpha \xi+\beta \zeta, \quad U=\gamma \xi+\zeta .
$$

The response variable Y in a linear probability model is 0 or 1 with

$$
P(Y=1 \mid \xi, \zeta)=a+b X+U
$$

The observables are ξ, X, Y. The parameters are $a, b, \alpha, \beta, \gamma$ and the distribution of ζ. For the model to hold, the random variables ξ, ζ must be bounded, and the parameters must be restricted to suitably narrow intervals.

Since X will be endogenous if $\beta \neq 0$, the idea is to use ξ as an instrument. However, the exogeneity of ξ cannot be determinued from the joint distribution of observables. The joint distribution of ξ, X identifies α and the distribution of $\beta \zeta$. We must now consider

$$
\begin{aligned}
P(Y=1 \mid \xi, X) & =a+b X+E(U \mid \xi, X) \\
& =a+b X+\gamma \xi+E(\zeta \mid \xi, \zeta) \\
& =a+b X+\gamma \xi+\zeta \\
& =a+b X+\gamma \xi+\frac{X-\alpha \xi}{\beta} \\
& =a+\left(\gamma-\frac{\alpha}{\beta}\right) \xi+\left(b+\frac{1}{\beta}\right) X .
\end{aligned}
$$

The identifiable parameters are therefore

$$
\alpha, \quad a, \quad \gamma-\frac{\alpha}{\beta}, \quad b+\frac{1}{\beta},
$$

and the distribution of $\beta \zeta$. But ξ is exogenous iff $\gamma=0$. The crucial parameter γ is not separately identifiable, nor is $\gamma=0$.

The probit model

The same construction can be used for the probit. Suppose ξ, ζ are independent normal variables, with mean 0 and respective variances σ^{2}, τ^{2}. Let

$$
X=\alpha \xi+\beta \zeta, \quad U=\gamma \xi+\zeta .
$$

The response variable Y is

$$
1 \text { if } a+b X+U>0, \text { else } 0
$$

The observables are ξ, X, Y. The parameters are $a, b, \alpha, \beta, \gamma, \sigma^{2}, \tau^{2}$. Here, X is endogenous unless $\beta=0$. We want to use ξ as an instrument for X, but ξ is endogenous unless $\gamma=0$.

For simplicity, suppose $\beta \geq 0$. We get $\alpha, \sigma, \beta \tau$ from the joint distribution of ξ, X. We must now compute

$$
\begin{equation*}
P(Y=1 \mid \xi, X)=P(a+b X+U>0 \mid \xi, X) \tag{1}
\end{equation*}
$$

By the previous argument, $P(Y=1 \mid \xi, X)=1$ if

$$
a+\left(\gamma-\frac{\alpha}{\beta}\right) \xi+\left(b+\frac{1}{\beta}\right) X>0
$$

otherwise, the conditional probability is 0 . For simplicity, suppose $a \neq 0$. Then (1) identifies

$$
\operatorname{sign}(a), \quad \frac{\gamma}{a}-\frac{\alpha}{a \beta}, \quad \frac{b}{a}+\frac{1}{a \beta} .
$$

In both examples,

$$
U=\frac{X-\alpha \xi}{\beta}+\gamma \xi=\left(\gamma-\frac{\alpha}{\beta}\right) \xi+\frac{X}{\beta}
$$

is computable from ξ, X. However, the computation uses the parameters α, β, γ. Therefore, from a statistical perspective, U remains latent. In the probit model, it may be more attractive to introduce yet another independent normal variable η, with mean 0 and (say) known variance 1 , setting $U=\gamma \xi+\zeta+\eta$. Then (1) is

$$
\Phi\left(a+\left(\gamma-\frac{\alpha}{\beta}\right) \xi+\left(b+\frac{1}{\beta}\right) X\right)
$$

where Φ is the standard normal. The identifiable parameters are then

$$
\alpha, \quad \sigma, \quad \beta \tau, \quad a, \quad \gamma-\frac{\alpha}{\beta}, \quad b+\frac{1}{\beta} .
$$

We need τ so that β itself is not identifiable: if α, β are identifiable, so is γ. For similar results in the regression model, see exercise 8E5 in Statistical Models.

