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Suppose you reach into your pocket and pull out a coin; think of one side as “heads” and the
other as “tails.” You toss the coin three times. We could now define some random variables, at least
informally, e.g.,

• the number of heads on the first toss (which is 0 or 1),
• the total number of heads (which is 0, 1, 2, or 3).

This experiment is a little hypothetical—hence the subjunctive voice. If we actually did it and
got “head tail head,” the observed value of our first random variable—the number of heads on
the first toss—would be 1; the observed value of the other random variable—the total number of
heads—would be 2.

Even after the experiment is done and the data are collected, we can still think about the things
that could have happened but didn’t. Random variables and probabilities are mainly not about
actual outcomes. Rather, these concepts apply to an experiment and the various ways it could have
turned out. In fact, most statistical calculations (e.g., confidence levels and significance levels)
apply to the experiment and all of its possible outcomes, including the ones that did not materialize.

Reaching into pockets and pulling out coins are not mathematical ideas. The connection
between real coins and mathematical models is a complicated topic. To continue the discussion,
we need to start from another angle. A.N. Kolmogorov laid the foundations for modern probability
theory with the “sample space representation” of probabilities. For the coin, this amounts to a list
of the 23 = 8 possible outcomes:

H H H
H H T
H T H
H T T
T H H
T H T
T T H
T T T

For instance, H T H corresponds to the sequence “heads tails heads.”
Kolmogorov defined random variables as functions on the sample space. Here are some

examples:

X1 X2 X3 S

H H H 1 1 1 3
H H T 1 1 0 2
H T H 1 0 1 2
H T T 1 0 0 1
T H H 0 1 1 2
T H T 0 1 0 1
T T H 0 0 1 1
T T T 0 0 0 0
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• X1 is the number of heads on the first toss,
• X2 is the number of heads on the second toss,
• X3 is the number of heads on the third toss,
• S = X1 + X2 + X3 is the total number of heads.

Mathematically, a random variable is a function on the sample space.
Doing arithmetic on random variables gives you more random variables.

According to Kolmogorov, a probability assigns numbers to outcomes: these numbers are
non-negative, and their sum has to be 1. (This is for the “discrete” case; other cases are discussed
below.) If A is an “event,” i.e., a subset of sample space, the probability of A is by definition the
sum of the probabilities of the outcomes in A. Thus, P {A} = ∑

ω∈A P {ω}.
For example, it may be natural to assign probability 1/8 to each of the 8 outcomes. More

generally, if we think the tosses are independent but the chance of heads is p, the probability
assignment would be as follows:

Probability

H H H p3

H H T p2(1 − p)

H T H p2(1 − p)

H T T p(1 − p)2

T H H p2(1 − p)

T H T p(1 − p)2

T T H p(1 − p)2

T T T (1 − p)3

This is a “statistical model,” in the sense that the probabilities depend on a parameter p that may
be estimated from data.

For mathematicians, Kolmogorov brought great clarity to an area that was previously quite
murky. For applied workers, the setup may be less satisfying. The connection between the physical
coin and the mathematical coin takes some getting used to. The number of heads seems to be in one
realm, the function on the sample space in quite another. Furthermore, “observed values”—which
represent the data that statisticians have to work with—remain outside the formalism.

To what extent does the statistical model of a coin correspond to a real coin? For a few thousand
tosses, the fit is excellent, in the sense that observed frequencies match expected frequencies, with
margins of error that are in line with the theory. For instance, take John Kerrich’s coin (Freedman-
Pisani-Purves 2007, Chapter 16). With 10,000 tosses and p = 1/2, the expected number of heads
is 5,000 and the standard error is 50: these are computed from the model (see below). Kerrich
observed 5,067 heads on the real coin. Many similar tests can be done on his data—e.g., we could
look at the frequency of pairs like “heads tails,” or triples like “heads tails heads”—with similar
results.

With 100,000 tosses, the independence assumptions built into the model start to conflict with
the data: there will be small serial correlations. Furthermore, the probability of heads may well
differ from 50%, at least to a degree that is detectable. With similar caveats, the model also works
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for dice, roulette wheels, and so forth. (Dice need to have counter-filled spots, roulette wheels
have to be balanced. . . .) For card shuffling, the usual model of randomness (drawing at random
without replacement, so that all permutations of the deck are equally likely) does not apply so well:
it takes many, many shuffles to bring a deck of cards into anything like random order—a fact that
professional card players may exploit to their advantage.

What is the expectation of a random variable?

A random variable X has expectation and variance, denoted E(X) and var(X) respectively:

var(X) = E
{
[X − E(X)]2} = E(X2) − [E(X)]2.

The standard error of X is
√

var(X). The standard error is abbreviated as SE; “expected value” is
a frequent synonym for expectation.

A random error will be somewhere around its expected value. The SE gauges the likely
size of the amount off.

Rule 1: the discrete case. Suppose P {X = xi} = pi for i = 1, 2, . . . and
∑

i pi = 1. Then
E(X) = ∑

i xipi, E(X
2) = ∑

i x
2
i pi, and so forth. More generally, E{g(X)} = ∑

i g(xi)pi.

Rule 2: the absolutely continuous case. If X has density f , i.e., P {X ≤ x} = ∫ x

−∞ f (u) du,
then E(X) = ∫ ∞

−∞ uf (u) du, E(X2) = ∫ ∞
−∞ u2f (u) du, and so forth. More generally, E{g(X)} =∫ ∞

−∞ g(u)f (u) du.

Rule 3. If a is a real number, then E(aX) = aE(X).

Rule 4. E(X + Y ) = E(X) + E(Y ).

Rule 5. If a is a real number, then var(aX) = a2var(X). Standard errors are often more
readily interpretable than variances. For instance, the standard error of aX is |a| times the standard
error of X.

Rule 6. var(X + Y ) = var(X) + var(Y ) + 2cov(X, Y ), where

cov(X, Y ) = E
{
[X − E(X)][Y − E(Y )]

} = E(XY) − E(X)E(Y ).

Caveats

(i) In Rule 2, the function g has to be reasonable (e.g., Borel measurable—see below). Of
course, f has to be reasonable too.

(ii) If a random variable has infinitely many values and the distribution has “long tails,” the
expectation may be infinite or ill-defined. This is a concern in probability courses, but is usually
not an issue in applied statistics. See Nassim Taleb’s book, The Black Swan, for examples (drawn
from finance) where long tails really matter.

Conditional distributions and expectations

The formal definition of conditional probability, even for events, is somewhat opaque:

P {A|B} = P {A and B}
P {B}
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It takes a real effort to see that the definition matches the intuition—the probability of A, given
that B occurs. Working through some examples is the best way to go. In essence, P { • |B} is a
new probability assignment on the sample space. Probabilities outside B are reset to 0; inside B,
probabilities are renormalized so the sum is 1.

The conditional distribution of Y given X is the distribution of Y , given the value of X. In the
discrete case, this is just P {Y = y|X = x}. The conditional expectation of Y given X is

E(Y |X = x) =
∑
y

yP {Y = y|X = x}

The sum will be finite or countable.
In the absolutely continuous case, the pair (X, Y ) has a density f , i.e.,

P {X ≤ x and Y ≤ y} =
∫ x

−∞

∫ y

−∞
f (u, v) dudv

Then X has density g and Y has density h:

g(x) =
∫ ∞

−∞
f (x, v) dv, h(y) =

∫ ∞

−∞
f (u, y) du

(These are sometimes called “marginal” densities, by contrast with the “joint” density f .) Further-
more, Y has a conditional density given that X = x, viz., h(y|x) = f (x, y)/g(x). Said another
way, the conditional distribution of Y given X = x has the density h(y|x). For instance,

P {Y ≤ w|X = x} =
∫ w

−∞
h(y|x) dy, E(Y |X = x) =

∫ ∞

−∞
yh(y|x) dy,

E(Y 2|X = x) =
∫ ∞

−∞
y2h(y|x) dy, E

(
g(Y )|X = x

) =
∫ ∞

−∞
g(y)h(y|x) dy

What is independence?

Suppose we make two draws at random from the box 1 2 2 5 . Let X be the first
draw, and Y the second.

(i) Suppose the draws are made with replacement.

If X = 1, the chance that Y = 5 is 1/4.
If X = 2, the chance that Y = 5 is 1/4.
If X = 5, the chance that Y = 5 is 1/4.

This is independence: P {Y = y|X = x} is the same for all x. (Equality has to hold for each y, not
just one special y; this definition is good only in the discrete case.) Here is an equivalent condition.

Factorization. Discrete random variables X and Y are independent provided

P {X = x and Y = y} = P {X = x}P {Y = y} for all x and y.
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(ii) In the box example, if the draws are made without replacement, the two random variables
are dependent: P {Y = y|X = x} may be different for different x’s.

If X = 1, the chance that Y = 5 is 1/3.
If X = 2, the chance that Y = 5 is 1/3.
If X = 5, the chance that Y = 5 is 0.

The sample space representation for the draws is shown below.

Probability
with without

X Y replacement

1 1 1 1 1/16 0/12
1 2 1 2 2/16 2/12
1 5 1 5 1/16 1/12

2 1 2 1 2/16 2/12
2 2 2 2 4/16 2/12
2 5 2 5 2/16 2/12

5 1 5 1 1/16 1/12
5 2 5 2 2/16 2/12
5 5 5 5 1/16 0/12

It may be irritating to compute the probabilities. One way to do it is to label the four tickets as
a, b, c, d; then display the possible outcomes, as below. (Notice that b and c label the two tickets
marked “2.”) All possible pairs are equally likely. Without replacement, the pairs a a, b b, c c, d d
cannot occur. That is what the blanks mean. The body of each table shows the values of X and Y .
For example, with replacement, the chance that X = 1 and Y = 2 is 2/16, because this pattern
occurs in two out of the 16 entries. Without replacement, the chance is 2/12.

With replacement

a b c d

a 1 1 1 2 1 2 1 5
b 2 1 2 2 2 2 2 5
c 2 1 2 2 2 2 2 5
d 5 1 5 2 5 2 5 5

Without replacement

a b c d

a 1 2 1 2 1 5
b 2 1 2 2 2 5
c 2 1 2 2 2 5
d 5 1 5 2 5 2

In the absolutely continuous case, we have to start over, because P {X = x} = 0 for all x
and 0/0 is ill-defined (0 • x = 0 for all x). Suppose the pair (X, Y ) has a joint density f . The
independence condition here is that h(y|x) is the same for all x, where h is the conditional density
of Y given X = x, as discussed above. An equivalent condition is factorization.

Absolutely continuous random variables X, Y are independent provided the joint den-
sity f factors: f (x, y) = g(x)h(y) for all x, y. (Minor technical difficulties are elided.)

Danger ahead. Independence is special. Many statistical calculations ride on the assumption
of independence. This assumption is often left implicit. In applications, independence is often
questionable.
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Notation

X
	
Y means that X and Y are independent.

If E(Y |X = x) = ϕ(x), we often write E(Y |X) = ϕ(X).

Sums of independent variables

Proposition. If X
	
Y then

(i) E(XY) = E(X)E(Y ),

(ii) cov(X, Y ) = 0,

(iii) var(X + Y ) = var(X) + var(Y ).

Let’s restate (iii). If the standard error (SE) ofX is σ and the SE of Y is τ , and the two variables
are independent, then the SE of X + Y is

√
σ 2 + τ 2: this is the square root law. The correlation

between X and Y is the covariance divided by the product of the standard errors. If the covariance
is 0, the variables are “uncorrelated:” independence implies a correlation of 0. The converse holds
for jointly normal variables, but not in general.

Corollary. SupposeX1, X2, . . . are independent and identically distributed (IID). LetE(Xi) =
µ and var(Xi) = σ 2. Let Sn = X1 + · · · + Xn. Then

(i) E(Sn) = nµ,

(ii) var(Sn) = nσ 2.

In translation: (i) The sum of IID random variables has expected value equal to n times the common
expected value of the summands (n being the number of summands). (ii) The standard error of the
sum is

√
n times the common standard error of the summands. Thus, the uncertainty in the sum

increases rather slowly relative to the expected value—the square root law in action.
Let X = Sn/n be the average of X1, X2, . . . , Xn: this is often called “the sample average” or

“the sample mean.” Then E
(
X

) = nµ/n = µ and var
(
X

) = nσ 2/n2 = σ 2/n. A more helpful
statement, perhaps, is this: X has expectation µ and standard error σ/

√
n. When n is large, X is

going to be close to its expected value. This is the law of large numbers. (Remember, the Xi are
IID by assumption.)

Terminology

E(X) is often referred to as the “mean” of X. A statistician with a tin ear may therefore
say, “the mean of the sample mean is the population mean.” Mathematically, this translates to the
equation E

(
X

) = µ. In other words, if you take the expected value of the average of independent,
identically distributed random variables, you get their common expected value.

Some examples

Example 1. A coin lands heads with probability p. It is tossed once. Let X be the number
of heads (0 or 1). Find E(X) and var(X). To begin with, E(X) = p by Rule 1 for computing
expected values. But X2 = X, so E(X2) = p as well. Now var(X) = p − p2 = p(1 − p).

Example 2. A coin lands heads with probability p. It is tossed n times. (The implicit
assumption: tosses are independent, and the probability of heads stays the same from one toss to
another.) Let X be the number of heads. How big is X?
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The distribution of X is Bin(n, p), i.e., binomial with parameters n and p:

P {X = j} =
(
n

j

)
pj (1 − p)n−j

Moreover, E(X) = np and var(X) = np(1 − p): see the previous example, and the Corollary
before that. So X is around np, but is off by something like

√
np(1 − p).

The central limit theorem makes this more precise: as n gets large,

P
{
np − z

√
np(1 − p) < X < np + z

√
np(1 − p)

}

converges to
1√
2π

∫ +z

−z

e−x2/2 dx, (∗)

the area under the normal curve between −z and +z.
More generally, suppose Xi are IID, E(Xi) = µ, var(Xi) = σ 2, and Sn = X1 + · · ·+Xn. As

n gets large,

P
{
nµ − zσ

√
n < Sn < nµ + zσ

√
n
}

converges to (∗). Independence is a key assumption here: the central limit theorem need not hold
if the Xi are merely uncorrelated.

Example 3. A coin is tossed 10 times. (The implicit assumptions: the tosses are independent,
and the chance of heads is 1/2.) Let S be the number of heads among the first 6 tosses. Let T be
the number of heads among the last 6 tosses. Are S and T independent? Clearly not: they have in
common the number of heads on tosses 5 and 6. However, S and T are functionally independent:
you cannot compute one from the other. Statistical independence is a much stronger condition than
functional independence.

Example 4. As before, a coin is tossed 10 times. Let X be +1 if the first toss is heads; else,
X = −1. So E(X) = 0. Let V be the number of heads among the last 9 tosses. So E(V ) = 4.5.

(a) Are X and V independent? Yes: X comes from the first toss, V from the last 9 tosses, and
the tosses are independent.

(b) Let U = XV . Are U and V independent? Clearly not. Among other things, |U | = V .
So U tells you everything there is to know about V . On the other hand, U and V are uncorrelated.
Indeed, E(UV ) = 0 because E(UV ) = E(XV 2) = E(X)E(V 2) = 0 •E(V 2) = 0. Furthermore,
E(U) = 0 so E(U)E(V ) = 0. Consequently, cov(U, V ) = 0. The take-home message: uncorre-
lated variables can be dependent. Independence is a strong condition. Zero correlation is a weaker
condition.

Example 5. A coin is tossed 3 times; the probability of heads is p. Let S be the number
of heads. Given that S = 2, what is the conditional probability of H H T? There are only three
sequences with S = 2, viz., H H T, H T H, T H H. Unconditionally, they are all equally likely: each
has chance p2(1 −p). Hence, each has conditional probability 1/3. Unconditionally, the tosses are
independent. Conditionally, they are dependent.
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Example 6. Let U , V , W be independent random variables, each having positive variance.

(a) Are U + W and V + W independent? Clearly not: they have W in common.

(b) Are U + W and V + W conditionally independent, given W? Yes: conditioning on W

converts W to a constant, but does not affect the distribution of U and V . For any value w of W ,
the variables U + w and V + w are independent, which completes the argument for conditional
independence. (By strict mathematical standards, the arguments in these notes may seem a little
informal—but these arguments can made entirely rigorous, if that is desired.)

Example 7. A coin is tossed 10 times. (Implicit assumptions: the tosses are independent,
and the chance of heads on each toss is 1/2.) Let X be the number of heads on the first 5 tosses,
and Y the total number of heads. What is E(Y |X = x)? var(Y |X = x)? Conditionally, if
X = x, then Y is distributed like x + Z, where Z is the number of heads in 5 tosses of a coin. So
E(Y |X = x) = x + 2.5 and var(Y |X = x) = 5/4. Here, the possible values of x are 0, 1, . . . , 5.

Example 8. Suppose (X, Y ) is a point chosen at random in the unit square.

(a) Are X and Y independent? Yes.

(b) Find E(X) and var(X). Well, E(X) = ∫ 1
0 x dx = 1/2 and E(X2) = ∫ 1

0 x2 dx = 1/3, so
var(X) = 1/3 − (1/2)2 = 1/12. But the SE is

√
1/12

.= 0.29. Compared to var(X), the SE gives
a better idea of how far X is likely to stray from the expected value.

(c) Given that Y < X, what is the conditional distribution of (X, Y )? Let T be the triangular
region in the unit square below the main diagonal (see diagram). Conditionally, (X, Y ) is uniform
in T .

Example 9. As in the previous example, let T be the triangular region in the unit square below
the main diagonal. Let (X, Y ) be a point chosen at random in T .

(a) Is X uniformly distributed? If so, on what interval? No, X isn’t uniform: the density of X
at x is 2x. (You are more likely to get a point at the right end of the triangle than the left end—the
right end is bigger.)

(b) Given X = x, is Y uniformly distributed? If so, on what interval? Yes, Y is conditionally
uniform given X = x, on the interval [0, x].

(c) Are X and Y independent? No, see part (b).

(d) Find E(Y |X = x). The answer is x/2.
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What about general probabilities and random variables?

Discrete probability models are enough for many purposes. For other purposes, the mathe-
matics gets very complicated very fast, especially for people who don’t intend to be professional
mathematicians. Few of the complexities are relevant to applications, but an example may be in-
teresting nonetheless. Suppose we want to pick a number at random between 0 and 1. The sample
space is the closed unit interval [0, 1]. If 0 ≤ a ≤ b ≤ 1, the chance of picking a number in [a, b]
should be b − a. However, it rarely makes sense to define probabilities for all subsets of the unit
interval. Instead, attention may be restricted to the “Borel σ -field” B, i.e., the smallest collection
of subsets of the unit interval that contains all the intervals [a, b] with 0 ≤ a ≤ b ≤ 1, and

(i) B contains the empty set ∅,

(ii) B is closed under complementation, i.e., if A is in B then the complement of A is also
in B,

(iii) B is closed under the formation of countable unions, i.e., if Ai is in B for i = 1, 2, . . . ,
then the union

⋃
i Ai is also in B.

Conditions (i)-(ii)-(iii) are what make B a σ -field. “Closed under complementation” has nothing
to do with being a closed set, although closed sets are indeed in B, as are open sets, and pretty
much any other sets that might be of interest.

Henri Lebesgue showed there was a unique countably additive function λ defined on B with
λ{[a, b]} = b − a for all a, b with 0 ≤ a ≤ b ≤ 1. His λ is now called “Lebesgue measure.”
“Countable additivity” is discussed again, below.

Further technical detail

Let F be a σ -field of subsets of a set ,. In other words, , ∈ F ; furthermore, F is closed
under complementation and the formation of countable unions. A sequence A1, A2, . . . of sets in
F is pairwise disjoint if Ai ∩ Aj = ∅ for all i �= j : in other words, Ai and Aj cannot occur
simultaneously. A real-valued function P on F is a probability provided (i) P ≥ 0, (ii) P assigns
measure 1 to the whole space ,, and (iii) P is countably additive, i.e., P {⋃i Ai} = ∑

i P {Ai} for
pairwise disjoint sets A1, A2, . . . in F . This is how Kolmogorov defined probability. To restate
(iii), the probability of a countable union of pairwise disjoint sets must be the sum of the individual
probabilities. The ur-probability is Lebesgue measure on the unit interval.

In Kolmogorov’s setup, a random variable X is a measurable function on ,. That is to say,
for each real number y,

{X ≤ y} = {ω : ω ∈ , and X(ω) ≤ y} ∈ F

In other words, you fix y. Then you think about the set of ω in , for which X(ω) ≤ y. This set has
to be in F . Now the distribution of X makes sense: at least in principle, P {X ≤ y} is computable.
Without measurability, P {X ≤ y} would be undefined, because {X ≤ y} wouldn’t be an element
of F .

If X is a random variable, its expected value is the “Lebesgue-Stieltjes” integral with respect
to P :

E(X) =
∫
,

X dP
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Constructing the Lebesgue-Stieltjes integral is quite a project, even for a mathematician today; just
the construction of Lebesgue measure on the unit interval might take some concentrated effort.

An infinite set is “countable” if it can be put into a 1–1 correspondence with the positive
integers {1, 2, 3, . . .}. Georg Cantor demonstrated that the unit interval is uncountable: [0, 1] has
the “cardinality of the continuum,” which is larger than the cardinality of the positive integers. It
takes some time to accept the idea that there are infinities of different sizes.

Why “absolutely continuous” not just “continuous”? As it turns out, there are random variables
X such that (i)P {X = x} = 0 for all x, but (ii)X does not have a density. Condition (i) is continuity.
This is a weaker condition than absolute continuity.

Conditional distributions and expectations can be defined in general, but that would take us
too far afield. These few pages are no substitute for good undergraduate courses in real analysis
and probability theory—but they may help you find your way through some of the thickets.

If you want to read more. . . .

R. M. Dudley (2002). Real Analysis and Probability. Cambridge, University Press. A textbook for
advanced students.

W. Feller (1968, 1971). An Introduction to Probability Theory and Its Applications. Vol. 1, 3rd ed.
Vol. 2, 2nd. ed. Wiley, New York. Although some details are out of focus and some examples need
to be taken with a grain or two of salt, volume 1 is still the great undergraduate text. Volume 2 is a
graduate text, and a very good one.

D. A. Freedman (1971). Markov Chains. Reprinted by Springer in 1983. Also see Brownian
Motion and Diffusion. The Appendix has a detailed discussion of many topics mentioned here,
especially, conditioning. Again, a graduate-level text.

D. A. Freedman, R. Pisani, and R. Purves (1998). Statistics. 3rd ed. Norton. Chapters 13-14-15
discuss probabilities. Chapters 16-17-18 are about random variables. An informal introduction to
the ideas. Might be the place to start.

D. A. Freedman and P. B. Stark. “What is the probability of an earthquake?” In Earthquake Science
and Seismic Risk Reduction. NATO Science Series IV: Earth and Environmental Sciences, vol. 32,
Kluwer, Dordrecht, The Netherlands (2003) pp. 201–213. F. Mulargia and R.J. Geller, editors. On
the interpretation of statistical models.

P. Humphreys (2005). “Probability theory and its models.” Corcoran Philosophy Department,
University of Virginia. On the interpretation of statistical models.

A. N. Kolmogorov and S.V. Fomin (1970). Introductory Real Analysis. Translated from the Russian
by R.A. Silverman. Dover, New York. This is a lovely book, but very mathematical. Chapters 1,
7, and 8 are the most relevant.

J. C. Oxtoby (1980). Measure and Category. Springer, New York. Beautiful, very very mathemat-
ical. Chapters 1–5 are the most relevant.

W. Rudin (1976). Principles of Mathematical Analysis. 3rd ed. McGraw Hill, Undergraduate level,
there are generally words to explain the equations, quite friendly as such books go. Chapters 1, 2,
and 11 are the most relevant.

A. N. Shiryaev (2000). Kolmogorov in Perspective. Translated from the Russian by H. H. McFaden.
History of Mathematics, vol. 20, American Mathematical Society, Providence, R.I. Review of
Kolmogorov’s work. For mathematicians.
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More on observed values

The object here is to sketch the connection between data on the one hand and random variables
in formal statistical models on the other. The concept of “observed value” is often used for this
purpose: see, e.g., Lehmann (1983: 4) or Freedman (2005: 25, 42). However, the project is a
little more difficult than it sounds, because the concept of an observed value is informal, i.e., extra-
mathematical. In the end, we would suggest, such extra-mathematical elements are needed. That
is what differentiates applied work from theory.

In essence, Kolmogorov (1933) formalized the ideas of probability theory in terms of a triple
(,,F, P ), where , is a set, F is a σ -field of subsets of ,, and P is a non-negative, countably
additive function on F with P(,) = 1. Crudely speaking, P distributes mass 1 over the various
ω in ,. In this setup, a random variable X is an F -measurable function on ,; and P assigns mass
to any set A ∈ F , including sets of the form {ω : ω ∈ , and X(ω) ∈ B}.

What is missing here is the possibility of choosing a particularized ω at random from ,,
according to the mass distributed by P . If ω could be chosen, that would determine the observed
value of X(ω) of X. Choosing ω, however, remains an informal activity; formalizing such choices
does not seem to be on the cards. The issues may be more obvious when P is continuous, but
remain even when P is discrete.

A statistical model replaces the probability P on (,,F) by an indexed family Pθ of probabili-
ties, where the parameter θ runs through a parameter space .. The model also specifies a sequence
of special (“observable”) random variables Y1, Y2, . . . .Typically, it is. and the joint distribution of
Y1, Y2, . . . under Pθ that matter, rather than particular features of ,,F, Pθ , Y1, Y2, . . . themselves.
If the model includes other random variables, as it often does, these may be irrelevant for present
purposes; or, they may serve only to define the joint distribution that has just been mentioned.

From the present perspective, random variables, probabilities, expected values and the like are
confined to statistical models. When we choose a model to apply, we assume that the data are like
observed values of the random variables Y1, Y2, . . . specified in the model. This step is necessarily
informal: it leads us away from pure mathematics, and into the empirical world. Moreover—
although it is rarely articulated—this step is critical in applied work, because it brings the pretty
assumptions behind the model (e.g., linearity, independence) into collision with ugly reality.

From the point of view outlined here, there is an important circuit-breaker between statistical
theory and its applications. One application after another could prove to be a fiasco, without
undermining the theory; of course, a reasonable bystander might conclude that the subject-matter
domain to which the theory applies is narrower than had previously been thought. Conversely,
the mathematical rigor of the theory cannot validate any particular application, the issue being the
extent to which the assumptions behind the models fit the circumstances of interest.

For examples and more discussion, see Freedman (2005). “Observed value” was already used
early in the twentieth century, referring to something in the data; see, e.g., Pearson (1916: 248) or
Pearson (1925: 205), where the observed value is distinguished from what we would now call the
random variable. See also Wald (1940: 286), Wald and Wolfowitz (1950: 82). “Realized value”
was also in use by mid-century, as a synonym; see, e.g., Welch (1958: 784).
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