Statistics 215 D.A. Freedman Spring 2008
Notes on ratio estimators and the delta-method

Let (X;, Y;) be IID pairs of positive random variables, each variable having several moments.

Let i
R — Zi:l Y;
Yo Xi
a ratio estimator. We seek the asymptotic mean and variance of R. Let & = [X; — E(X;)]/E(X;)
andn; = [Y; — E(Y;))]/E(Y;), sothat E(&;) = E(n;) = 0, while
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where the overline denotes sample average. For instance,
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Technically, of course, R may have an infinite variance, or even an infinite mean, e.g., the denom-
inator might have a positive density near 0. We proceed informally, in this respect among others.
For n large, § = n = 0. Thus,
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This is a one-term Taylor series expansion, called the “delta-method”; for rigor, the remainder term
would have to be bounded. Now
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Thus, R is asymptotically unbiased for E(Y;)/E(X;). The asymptotic variance is
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To operationalize (9), we can estimate E(Y;)/E(X;) by R, and var(n; — &;) by
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We turn now to asymptotic bias. This requires an additional term in the expansion:
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The last two terms in the display are responsible for the asymptotic bias:
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The asymptotic bias is therefore
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As before, E(X;) can be estimated by the sample mean of the X;’s, while var(X;) is estimated by

the sample variance, cov(X;, ¥;) by the sample covariance, and so forth.



